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Abstract

The effect of thermal modulation on the onset of convection in a horizontal porous
layer saturated with Walter’s liquid-B’ is investigated by a linear stability analy-
sis. The modified Darcy law with viscoelastic correction is used to describe the
fluid motion in the porous layer. The following three cases have been considered
for discussion: (i) When the oscillating temperature field is symmetric, i.e., the
wall temperatures are modulated in phase. (ii) When the oscillating temperature
field is asymmetric, corresponding to an out-of-phase modulation (iii) When only
the temperature of the bottom wall is modulated the upper wall being held at a
fixed constant temperature. The perturbation method is used to find the critical
Rayleigh number and the corresponding wave number for small amplitude thermal
modulation. The stability of the system characterized by a correction Rayleigh
number is calculated as a function of elasticity parameter, Darcy number, Prandtl
number and the frequency of modulation. It is found that the onset of convection
can be delayed or advanced by the factors represented by these parameters.
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1. Introduction

The problem of natural convection in a Walter’s liquid-B’ horizontal fluid layer and a

porous layer has been investigated by many authors because of its applications in ap-

plied geophysics. The onset of thermal convection in a fluid saturated porous medium

has attracted the interest of engineers and scientists for a long time due to its numer-

ous applications in fields such as geothermal energy utilization, oil reservoir modeling,

building thermal insulation, nuclear waste disposals and mantle convection, to mention

a few. The problem has been investigated extensively by several researchers and the

growing volume of work in this area is well documented by Ingham and Pop (1998),

Nield and Bejan (2006) and Vafai (2005).

The study of convection in a porous medium is of great practical importance in the fields

such as chemical engineering, geothermal activities, oil recovery techniques, biomechan-

ics and biological processes and so on. In these practical applications, naturally occur-

ring phenomena are usually unsteady because of the periodicity of the principal driving

forces. More specifically, if heat is introduced slowly, the basic temperature gradient is

uniform, the instability usually manifests in the form of rolls and numbers of studies

on this (Cheng, 1978) are available. If heat is introduced rapidly, the basic temper-

ature gradient is non-uniform, being a function of position and time, the instability

may manifest in the form of columnar instability. The effect of non-uniform basic tem-

perature gradient on the onset of convection in horizontal fluid layers (Venezian, 1969;

Rosenblat and Herbert, 1970; Finucane and Kelly, 1976) and in porous layers (Nield,

1975; Rudraiah et al, 1980, 1982, 1990) has been investigated and they have shown that

a non-uniform temperature gradient controls (i.e., either augments or suppresses) the

convection.

There are many investigations available on the effect of time dependent boundary tem-

perature on the onset of Releigh-Benard convection. Most of the findings related to

this problem have been reviewed by Davis [1976]. A linear stability analysis in case of

small amplitude to temperature modulation is performed by Venezian [1969]. He has

established that the onset of convection can be delayed or advanced by the out of or in

phase modulation of the boundary temperatures, respectively. It has been found that at

low frequencies the equilibrium state becomes unstable, because at low frequencies the

disturbances grow to a sufficient size that the inertia effects become more important.
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Rosenblat and Herbert [1970] found the asymptotic solution of the low frequency and

arbitrary amplitude thermal modulation problem. The solution is discussed from the

viewpoint of the stability or otherwise of the basic state and possible stability criteria

are analyzed. Comparison is made with known experimental results. Rosenblat and

Tanaka [1971] have studied the effect of thermal modulation on the onset of Rayleigh-

Benard convection when the temperature gradient has both a steady and time periodic

component. They have solved the problem using Galerkin technique and discussed the

stability using Floquet theory. It has been found that, in general, there is enhancement

of the critical value of a suitably defined Rayleigh number.

Finucane and Kelly [1976] performed both theoretical and experimental investigation

of the thermal modulation in a horizontal fluid layer. A numerical analysis of the linear

stability equations indicated that the linear assumption is valid at the low frequencies of

modulation. A nonlinear analysis employing the shape assumption and free boundary

conditions was developed and examined numerically. They found both experimentally

and numerically that a low frequencies the modulation is destabilizing, whereas high fre-

quency modulation is stabilizing. Roppo et al. [1984] have performed weakly nonlinear

stability analysis and found that the modulation produces a range of stable hexagons

near the critical Rayleigh-number. These authors have reported that for low frequen-

cies the modulation is destabilizing, whereas at high frequencies some stabilization is

apparent. Recently, Schmitt and Lucke (1991), Or and Kelly (1999), Li (2001) and Or

(2001) have also investigated the effect of modulation on the thermal convection in a

horizontal fluid layer.

On the other hand, the studies related to the effect of thermal modulation on the onset

of convection in a fluid saturated porous medium have not received much attention.

On the other hand the studies related to the effect of thermal modulation on the onset

of convection in a fluid-saturated porous medium have received marginal attention.

The effect of time dependent wall temperature on the onset of convection in a porous

medium has been studied by Caltagirone (1976), and Rudraiah and Malashetty (1990).

Quite recently non-Newtonian fluids housed in fluid-based systems, with and without

porous matrix, have been extensively used in application situations and hence warrant

the attention they have been duly getting. In the asthenosphere and the deeper mantle

it is well known now that viscoelastic behavior is an important rheological process (see
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Lowrie, 1997). The other application areas of viscoelastic fluid saturated porous media

are flow through composites, timber wood, snow systems and rheology of food transport.

The present problem housed in a porous medium suggests an elastohydrodynamical

model for geophysical applications and the likes of it (see Lowrie, 1997; Siddheshwar

and Srikrishna, 2001; Yoon et al., 2004). Regulation of convection in these application

situations is important and the study of this is the motive for the paper.

With the growing importance of non-Newtonian fluids in modern technology and indus-

tries, the investigations on such fluids are desirable. During recent years the theory of

polar fluids has received much attention and this is because the traditional Newtonian

fluids cannot precisely describe the characteristics of the fluid flow with suspended par-

ticles. The study of such fluids have applications in a number of processes that occur in

industry such as the extrusion of polymer fluids, solidification of liquid crystals, cooling

of metallic plate in a bath, exotic lubricants and colloidal and suspension solutions. In

the category of non-Newtonian fluids Walter’s liquid- B’ has distinct features, such as

polar effects. The theory of polar fluids and related theories are models for fluids whose

microstructure is mechanically significant.

We investigate the effect of thermal modulation on the onset of convection in a horizon-

tal porous layer saturated with a Walters’s liquid-B’. The amplitude and frequency of

the modulation are externally controlled parameters and hence the onset of convection

can be delayed or advanced by a proper tuning of these parameters. The problem has

potential application in achieving major enhancement of mass, momentum and heat

transfer in the geothermal context and related areas.

2. Mathematical Formulation

We consider Walter’s liquid-B’ saturated horizontal porous layer of thickness d in the

presence of gravity. The wall temperatures are externally imposed and are given by

T = T0 +
1
2

∆T (1 + ε cosωt) at z = 0 (1)

T = T0 −
1
2

∆T [1− ε cos(ωt+ ϕ)] at z = d (2)

where ε represents a small amplitude of the thermal modulation, ω the frequency, ϕ

the phase angle and T0 is the reference temperature. The time dependent parts denote

the modulation imposed on the adverse thermal gradient caused by the temperatures
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T0 +∆T/2 and T0−∆T/2 at the lower and upper walls respectively. The fluid saturated

porous medium is assumed to have coinciding principal axes of permeability and thermal

conductivity. One of the axes is directed upwards in the z direction. The x and y axes

are defined by the directions of the other two principal axes.

The governing basic equations

ρ0

[
1
ε

∂~a

∂t
+

1
ε2

(~q · ∇~q
]

= −∇ρ + ρ~g − 1
k

(
µ− µv

∂

∂t

)
~q. (3)

A
∂T

∂t
+ (~q · ∇)T = κt∇2T (4)

∇ · ~q = 0 (5)

ρ = ρ0{1− α(T − T0)} (6)

where A = (ρ0cp)m/(ρ0cp)f = [(1 − ε)(ρ0cp)s + ε(ρ0cp)f ]/(ρ0cp)f is the ratio of heat

capacities of the fluid saturated porous medium to that of the fluid, ε is the porosity

of the medium, cp is the specific heat, T is the temperature, κ is the effective thermal

diffusivity, α is the volumetric expansion coefficient, µv is the viscoelasticity of Walters’

liquid-B’ and ρ0 is the reference density. The subscripts m, s and f refer respectively to

the porous medium, solid and fluid.

The basic state is quiescent and the temperature Tb and the pressure pb satisfy

ρb~g +∇pb = 0 (7)

A
∂Tb
∂t

= κt
∂2T0

∂z2
. (8)
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The solution of Eq. (7) satisfying the thermal conditions Eq. (1) and Eq. (2) is

Tb = T1(z) = εT2(z, t) (9)

where

T1(z) =
∆T
2

(1− 2z/d) (10)

T2(z) = Re
{[
b(λ)eλz/d + b(−λ)e−λztd

]
e−ωt

}
. (11)

Here

λ = (1− i)
(
Aωd2

2κ

)1/2

(12)

b(λ) =
(

∆T
2
e−iϕ − e−λ

eλ − e−λ

)
(13)

and Re stands for the real part.

We give an infinitesimal disturbance of the form

~q = ~q′, T = Tb + T ′, p = pb + p′ (14)

where q′, T ′ and p′ represent the perturbed quantities. Substituting Eq. (14) in Eq. (3),

eliminating the pressure and retaining the vertical component, we get (after ignoring

the primes). (
1
ε

∂

∂t
+

µ

Kρ0

(
1− µv

µ

∂

∂t

))
∇2w = αg∇2

hT. (15)

Substituting Eq. (14) in Eq. (4), linearizing we obtain (after ignoring the primes)

A
∂T

∂t
= κt∇2T − ∂Tb

∂z
w. (16)

Non- dimensionalizing the equations by setting

x∗ =
x

d
, T ∗ =

T

∆T
, w∗ =

w

κ/d
, t∗ =

t

d2A/κ
, ω∗ =

Ad2

κ
ω (17)

and substituting in Eqs.(15) and (16), we obtain[
1
Pr

∂

∂t
+Da−1

(
1− Γ

Pr

∂

∂t

)]
∇2w −R∇2

hT = 0 (18)

(
∂

∂t
−∇2

)
T = −∂Tb

∂z
w (19)
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where Γ = µvε/ρ0d
2 is the Elastic parameter, Pr = vAε/κt is the modified Prandtl

number, R = αg∆Td3/vκt is the Rayleigh number and Da = K/d2 is the Darcy number.

The boundary conditions are:

w = T = 0 at‘ z = 0, 1. (20)

Eliminating T from Eq. (18) using Eq. (19), we obtain the following equation[
∂

∂t
−∇2

] [
1
Pr

∂

∂t
+Da−1

(
1− Γ

Pr

∂

∂t

)
∇2w +R∇2

hw
∂Tb
∂z

]
= 0. (21)

The dimensionless temperature gradient is given by

∂Tb
∂z

= −1 + εf (22)

where

f = Re
{[
A(λ)eλz +A(−λ)e−λz

]
e−ωt

}
the modulation temperature gradient.

A(λ) =
(
λ

2
e−iϕ − e−λ

eλ − e−λ

)
, λ = (1− i)

(ω
2

)1/2
. (23)

3. Perturbation Procedure With Small Amplitude Approximation

The aim of this section is to determine the eigen functions w and the eigenvalues R of

Eq. (21) from the basic temperature distribution given by Eq. (22) that departs from

the linear profile ∂Tb/∂z = −1 in modulated system by the quantities of the order ε.

It follows that the eigenfunction and the eigenvalues of the present problem differ from

those associated with usual Darcy-Benard convection by quantities of order ε. From

Eq. (21) we can also see that when the temperature profile is linear, as far as stationary

instability is concerned, the viscoelastic properties of the fluid have no effect on the

onset of linear instability. We therefore assume the solution of Eq. (21) in the form

(R,w) = (R0, w0) + ε(R1, w1) + ε2(R2, w2) + · · · (24)

where R0 is the Rayleigh number corresponding to Darcy-Benard convection. Substi-

tuting Eq.(24) into Eq. (21) and equating different powers of ε, we obtain the following

system of equations:

Lw0 = 0 (25)
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Lw1 = R1∇1
hw0 −R0f∇2

hw0 (26)

Lw2 = R1∇2
hw1 +R2∇2

hw0 −R0f∇2
hw1 −R1f∇2

hw0 (27)

where

L =
[
∂

∂t
−∇2

] [
1
Pr

∂

∂t
+Da−1

(
1− Γ

Pr

∂

∂t

)
∇2 −R0∇2

h

]
.

The function w0, which corresponds to no modulation i.e, ε = 0 is solved. The marginal

stable solution should be (chandrashekar 1961).

A general solution of Eq.(25) is

w
(n)
0 = sin(nπz) exp[i(lx+my)] (28)

where l and m are the horizantal wave numbers with the corresponding eigenvalues

R
(n)
0 =

Da−1(nπ2 + a2)2

a2
.

For a fixed value of wave number a, the least eigenvalue occurs at n = 1 and is given by

R0 =
Da−1(π2 + a2)2

a2
. (29)

We note that R0 attains its minimum value, R0c at a = ac, where

Rw = 4π2Da−1 (30)

ac = π. (31)

These are the values reported by Lapwood (1948) for convection in porous layer.

Equation (26) is inhomogeneous and its solution poses a problem due to the presence of

resonance terms. The solvability condition requires that time independent part of the

right-hand side of Eq. (26) should be orthogonal to w0. The term independent of time

on the right hand side is R1∇2
hw0 so that R1 = 0. It follows that all the odd coefficients,

i.e., R1, R3, · · · in Eq. (24) must vanish. If we expand the right-hand side of Eq. (26)

in a Fourier series of the form

eλz sin(mπz) =
∞∑
1

gnm(λ) sin(nπz) (32)

then

gnm(λ) = 2
∫ 1

0
eλz sin(mπz) sin(nπz)dz =

−4nmπ2λ[1 + (−1)n+m+1eλ]
[λ2 + (n+m)2π2][λ2 + (n−m)2π2]

. (33)
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We thus obtain

L[sin(nπz)e−iωt] = L(ω, n) sin(nπz)e−iωt (34)

where

L(ω, n) =
ω2(n2π2 + a2)

Pr
− ω

2Da−1Γ(n2π2 + a2)
Pr

−Da−1(n2π2 +a2)2 +Da−1(π2 +a2)2

+iω
[
Da−1(n2π2 + a2) +

(n2π2 + a2)2

Pr
− Da−1Γ(n2π2 + a2)2

Pr

]
. (35)

From Eq. (26) we have

Lw1 = R0a
2

{
Re

[∑
n

A(λ)gn1(λ) +A(−l)gn1(−λ)

]
sin(nπz)e−iωt

}
. (36)

We obtain w1 by inverting the operator L term by term, in the form

w1 = R0a
2

[
Re
∑
n

Bn(λ)
L(ω, n)

sin(nπz)z−iωt
]

(37)

where

Bn(λ) = A(λ)gn1(λ) +A(−λ)gn1(−λ).

The solution of the homogenous equation corresponding to Eq. (36) involves a term

proportional to sin(πz). However, addition of such a term to the complete solution of

Eq. (36) merely amounts to a renormalization of ω because all the terms proportional

to sin(πz) can then be grouped to define a new w0 with corresponding definition for

w1, w2, etc. Hence, we can assume that w0 is orthogonal to all other wn’s. From Eq.

(27) we get

Lw2 = a2R0fw1 − a2R2w0. (38)

We shall not require the solution of this equation, but merely use it to determine R2c,

the first nonzero correction to R2. The solubility condition requires that the steady part

of the right-hand side is orthogonal to sin(πz) . Thus,

R2 = 2R0

∫ 1

0
fw1 sin(πz)dz (39)

where the upper bar denotes the time average. From Eq. (26) we have

fw1 sinπz =
1

R0a2
w2Lw1. (40)
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Using Eq. (36) and Eq. (37) and finding the time average we obtain w1Lw1, which

yields from Eqs.(39) and (40),

R2 =
R2

0a
2

4

∑ |Bn(λ)|2

|L(ω, n)|2
[L(ω, n) + L∗(ω, n)] (41)

where L∗(ω, n) is the complex conjugate of L(ω, n). The critical value of R2 is obtained

at the wave number given by Eq.(31).

We calculate R2c for the following three different cases.

Case (i) : Oscillating temperature field is symmetric(in phase, φ = 0)

When the oscillating temperature field is symmetric so that the wall temperatures are

modulated in phase with ϕ = 0. In this case,

|B(λ)|2 = 16n2π4ω2

[ω2+(n+1)4π4][ω2+(n−1)4π4]

= |bn|2 (say) if n is even

= 0 if n is odd

(42)

Then

R2c =
R0a

2
c

2

∑
n

|bn|2
A

(A2 +B2)
(43)

where

A = Re[L(ω, n)] =
ω2(n2π2 + a2)

Pr
−ω

2Da−1Γ(n2π2 + a2)
Pr

−Da−1(n2π2+a2)2+Da−1(π2+a2)2

(44a)

and

B = Im[L(ω, n)] = ω

[
Da−1(n2π2 + a2) +

(n2π2 + a2)2

Pr
− Da−1Γ(n2π2 + a2)2

Pr

]
.

(44b)

The summation extends over even values of n.

Case(ii) : Wall temperature field is asymmetric (out of phase, φ = π)

When the wall temperature field is asymmetric corresponding to out-of-phase modula-

tion with ϕ = π, we obtain

|Bn(λ)|2 = |bn|2 if n is odd

= 0 if n is even
(45)



EFFECT OF THERMAL MODULATION ON CONVECTIVE... 11

Then R2c has the same expression as Eq. (43), with the summation extending over odd

values of n only.

Case (iii) : Only lower wall temperature is modulated while the upper one

is held at constant temperature (φ = −i∞)

When only the lower wall temperature is oscillating, while the upper wall is held at

constant temperature, with ϕ = −i∞, we have |Bn(λ)|2 = |bn|2
4 . Then, R2c is given

by Eq. (43) in which the summation extends over all values of n. The variations of

R2c with ω for different physical parameters are shown in the figures and results are

discussed in the final section.

4. Subcritical Instability

The critical value of the Rayleigh number, Rc is determined to order of ε2 by evaluating

R0c and R2c and is of the form

Rc = R0c + ε2R2c (46)

where

R0c =
Da−1(π2 + a2)2

a2
, R2c =

Da−1(π2 + a2)2

2a2

∑
n

|Bn(λ)|2
(

A

(A2 +B2)

)
a=ac

(47), (48)

If R2c is positive, supercritical instabilities exist and Rc has a minimum at ε = 0. When

R2c is negative, subcritical instabilities are possible. In this case, R0c should be greater

than ε2R2c for Rc to become positive. That is

R0c > ε2R2c. (49)

which leads to

ε2 <
2

Da−1(π2 + a2)2
× 1∑

n
|bn(λ)|2 A

(A2+B2)

. (50)

Now we can calculate the maximum range for ε by assigning values to the physical

parameters involved in the above condition. Thus, the range of the amplitude of mod-

ulation, which causes subcritical instabilities in different physical situations, can be

explained. To this effect, graphs have been plotted and the results are discussed in the

next section.
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5. Results and Discussion

The effect of modulated basic temperature gradient on the onset of convection in a Wal-

ter’s liquid-B’ fluid saturated porous layer is investigated to understand the control of

convection. A perturbation technique is used to find the critical thermal Rayleigh num-

ber as a function of frequency of the modulation, elasticity parameter, Darcy number

and Prandtl number. The analysis presented in this paper is based on the assumption

that the amplitude of the modulating temperature is small. The stability of the system

is characterized by the sign of the correction Rayleigh number R2c. A positive R2c rep-

resent a stable system while a negative R2c indicates an unstable one as compared to the

system in the absence of modulation. It is evident that the instability occurs at the min-

imum temperature gradient at which a balance can be maintained between the kinetic

energy dissipated by viscosity and the internal energy released by the buoyancy force.

This minimum temperature is called critical temperature, the corresponding Rayleigh

number is called critical Rayleigh number, where the Rayleigh number is defined as the

ratio of buoyancy force to viscous force. Physically, it represents the balance of energy

released by buoyancy force to the energy dissipated by viscous friction and thermal

dissipation. Once if the temperature gradient crosses this critical temperature, i.e., the

internal energy released by the buoyancy force is greater than the kinetic energy dissi-

pated by viscosity, then the instability occurs. Before that the system remains stable.

Thus the onset of convective instability is characterized by Rayleigh number. Hence we

say that as the critical Rayleigh number increases, convection occurs late and hence the

system becomes stable and as the critical Rayleigh number decreases, convection occurs

early and hence the system becomes unstable.

In the present chapter, the eigenvalue R is written in terms of power series in (Venezian,

1969) and is determined to the order of ε2, accordingly we have R = R0 + ε2R2. Here

we note that R1 is shown to be zero in section 3. Roc and R2c are, respectively, given

by equations (30) and (43).

If R2c is positive, then the value of total R is greater than the value of R which is present

in the problem of convection without modulation. In this case we say that the system

is stable. In a similar way, if R2c is negative, we say that the system is unstable. In this

chapter, the values of R2c will be obtained for the following three cases:

(a) When the oscillating temperature field is symmetric, i.e., the wall temperatures are
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modulated in phase, ϕ = 0.

(b) When the field is asymmetric, corresponding to an out-of-phase modulation, ϕ = π.

(c) When only the temperature of the bottom wall is modulated, the upper wall being

held at a fixed constant temperature. In this case it is convenient to take the wall

temperature to be ∆T
2 [1 + ε cosωt] at the bottom and ∆T

2 at the top. This can be

recovered from the equations by setting ϕ = −i∞.

The correction Rayleigh number R2c is obtained as a function of Elastic parameter Γ,

frequency of temperature modulation ω, Darcy number Da and Prandtl number Pr and

is depicted in figures 1-9.

The results obtained for the above cases are depicted in Figures 1-9 as a function of

frequency of temperature modulation for different values of physical parameters.

Figure 1 is a plot of (−R2c) versus ω for different values of elasticity parameter ΓP
when Pr = 10 and Da = 10−5 for the case of symmetric modulation of the wall

temperature. We observe that, in general, R2c is negative over the whole range of

frequencies, indicating that the symmetric temperature modulation has a destabilizing

effect on the system as compared to the un-modulated system. That is, convection sets

in at lower values of Rayleigh number than the classical Darcy-Benard problem in the

presence of thermal modulation. Further, it is noted that as the elasticity parameter

ΓP increases, the magnitude of correction Rayleigh number R2c decreases indicating

that the effect of elasticity parameter is to suppress the destabilizing effect of thermal

modulation. Besides, the curves for different values of ΓP are very close to zero when

the modulation frequency is very small. Hence, the modulation has very little effect

on the stability of the system when ω approaches to zero value. As ω increases, |R2c|
increases to its maximum value initially and then decreases with further increase in ω.

When ω is very large, all the curves for different ΓP coalesce and |R2c| decrease to zero.

This means that the modulation with large frequency will have no substantial effect

on the stability characteristics of the system. This figure also indicates that the peak

negative value of R2c decreases with an increase in the value of ΓP .

The results obtained for the case of asymmetric modulation with Pr = 10 and Da =

10−5 are presented in Figure 2. We note that the curves of (−R2c) versus ω for different

values of elasticity parameter ΓP do not coalesce as the modulation frequency approaches
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to zero value. Moreover, |R2c| decreases monotonically with an increase in the value

of ω without attaining any peak value for a fixed value of elasticity parameter ΓP and

all the curves for different ΓP coalesce at higher values of ω. Also, in contrast to the

symmetric temperature modulation case, the elasticity parameter plays a dual role in

deciding the stability of the system depending on the value of ω.

Figure 3 displays the variation of (R2c) versus for different values of ΓP with Pr = 10

and Da = 10−5 for the case of only lower wall temperature modulation. Here also we

observe that R2c is negative over the whole range of frequencies as noticed in the case

of symmetric and asymmetric modulation of the wall temperature. From this figure it

is observed that at low frequencies, |R2c| increases with increasing ΓP , while this trend

is reversed at higher values of frequencies.

The effect of Prandtl number on the correction Rayleigh number R2c with Da = 10−5

and ΓP = 0.1 for the cases of ϕ = 0, π and −i∞ is shown in Figures 4, 5 and 6

respectively as a function of ω. When the oscillating temperature field is symmetric

(i.e., ϕ = 0), it is observed that all curves are very close to zero when the modulation

frequency is very small (see Figure 4). Hence, the symmetric temperature modulation

has little effect on the stability of the system when ω approaches to zero. This figure

also indicates that the peak value of |R2c| decreases marginally with increasing Pr and

the curves for different Pr coalesce. Also, increase in the value of Prandtl number is

to reduce marginally the destabilizing effect of symmetric temperature modulation. In

the case of asymmetric temperature modulation (see Figure 5), |R2c| does not attain

any peak value with increasing ω as noticed in the symmetric temperature modulation.

Besides, increase in Pr is to reduce the value of |R2c| at lower as well as moderate values

of ω but it has no impact on the onset of convection at higher values of ω. The results

observed in the case of lower wall temperature modulation are qualitatively similar to

those of symmetric wall temperature modulation (see Figure 6).

The variation of (−R2c) as a function of for different values of Darcy number Da is

shown in Figures 7, 8 and 9 for symmetric temperature modulation, asymmetric wall

temperature modulation and only lower wall temperature modulation, respectively when

Pr = 10 and ΓP = 0.1. From the figures it is evident that effect of increase in Da has

qualitatively similar effect as that of Prandtl number. The peak value of |R2c| decreases

rapidly with an increase in the value of Da from 1 × 10−5 to 3 × 10−4 (see Figures 7
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and 9).
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5. Conclusions

The effect of thermal modulation on the onset of convection in a horizontal layer of

porous medium saturated with Walters liquid-B is studied using a linear stability anal-

ysis. The analytic expression obtained for R2c is computed for various values of physical

parameters for the cases of (i) oscillating wall temperature field is symmetric (i.e., the

wall temperatures are modulated in phase, ϕ = 0), (ii) oscillating wall temperature field
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is asymmetric (i.e., the wall temperatures are modulated out-of-phase, ϕ = π) and (iii)

only lower wall temperature is modulated and the upper wall being held at a fixed con-

stant temperature (i.e., ϕ = −i∞) and the following conclusions may be drawn: (i) The

effects of all three types of modulations namely, symmetric, asymmetric, and only lower

wall temperature modulations are found to be destabilizing. (ii) The effect of thermal

modulation disappears at large frequencies in all the cases of thermal modulation. (iii)

Increase in the value of Pr and Da is to decrease |R2c| in all the cases, while increase

in ΓP reduces |R2c| only in the case of symmetric temperature modulation. (iv) The

critical correction Rayleigh number R2c → 0 with increase in faster for large Da.
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