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Abstract
In this paper, we extended the notion in the graphs called boundary graph to
n-signed graphs and then we proved boundary n-signed graph is always iden-
tity balanced for given any n-signed graph. Further, we proved several switching
equivalence characterizations and structural characterization for boundary n-signed
graphs.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory

the reader is refer to [3]. We consider only finite, simple graphs free from self-loops.
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Let n ≥ 1 be an integer. An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤
k ≤ n. Let Hn = {(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of

all symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication,

and the order of Hn is 2m, where m = dn2 e.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Σn = (Γ, σ)

(Σn = (Γ, µ)), where Γ = (V,E) is a graph called the underlying graph of Σn and

σ : E → Hn (µ : V → Hn) is a function.

In this paper by an n-tuple/n-signed graph/n-marked graph we always mean a symmetric

n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple (a1, a2, ..., an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise it

is a non-identity n-tuple. In an n-signed graph Σn = (Γ, σ) an edge labelled with the

identity n-tuple is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-signed graph Σn = (Γ, σ), for any A ⊆ E(Γ) the n-tuple σ(A) is the

product of the n-tuples on the edges of A.

In [9], the authors defined two notions of balance in n-signed graph Σn = (Γ, σ) as

follows (See also R. Rangarajan and P.S.K.Reddy [6] :

Definition : Let Σn = (Γ, σ) be an n-signed graph. Then,

(i) Σn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Σn is

the identity n-tuple, and

(ii) Σn is balanced, if every cycle in Σn contains an even number of non-identity edges.

Note : An i-balanced n-signed graph need not be balanced and conversely.

The following characterization of i-balanced n-signed graphs is obtained in [9].

Theorem 1 : An n-signed graph Σn = (Γ, σ) is i-balanced if, and only if, it is possible

to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the

product of the n-tuples of u and v.

Let Σn = (Γ, σ) be an n-signed graph. Consider the n-marking µ on vertices of Σn

defined as follows: each vertex v ∈ V , µ(v) is the n-tuple which is the product of

the n-tuples on the edges incident with v. Complement of Σn is an n-signed graph

Σn = (Γ, σc), where for any edge e = uv ∈ Γ, σc(uv) = µ(u)µ(v). Clearly, Σn as defined

here is an i-balanced n-signed graph due to Theorem 1.
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In [9], the authors also have defined switching and cycle isomorphism of an n-signed

graph Σn = (Γ, σ) as follows: (See also ([4], [7], [8]) and ([11]-[17]).

Let Σn = (Γ, σ) and Σ′n = (Γ′, σ′), be two n-signed graphs. Then Σn and Σ′n are said to

be isomorphic, if there exists an isomorphism φ : Γ → Γ′ such that if uv is an edge in

Σn with label (a1, a2, ..., an) then φ(u)φ(v) is an edge in Σ′n with label (a1, a2, ..., an).

Let Σn = (Γ, σ) be an n-signed graph, switching of n-signed graph with respect to the

n-marking µ is the replacing the n-tuple on each edge e = uv ∈ E(Σn) as the product

of n-tuple of u, e = uv and v (i.e, µ(u)σ(uv)µ(v)). The resulting n-signed graph is

denoted by (Σn)µ and is called the switched n-signed graph. Two n-signed graphs

(Σn)1 = (Γ2, σ) and (Σn)2 = (Γ2, σ
′) are said to be switching equivalent and is denoted

by (Σn)1 ∼ (Σn)2, if ((Σn)1)µ
∼= (Σn)2.

Let (Σn)1 = (Γ1, σ) and (Σn)2 = (Γ2, σ
′) be two n-signed graphs with Γ1

∼= Γ2. The

n-tuple each cycle in (Σn)1 is same as the n-tuple each cycle in (Σn)1, then the above

two n-signed graphs (with their underlying graphs are isomorphic) are said to cycle

isomorphic. We make use of the following known result (see [9]):

Theorem 2 : Given a graph Γ, any two n-signed graphs with Γ as underlying graph

are switching equivalent if, and only if, they are cycle isomorphic.

In this paper, we introduced the notion called boundary n-signed graph and we obtained

some interesting results in the following sections.

2. Switching Invariant Boundary n-Signed Graphs

Inspired by the concept of boundary vertex introduced by Chartrand et al. ([1], [2]),

in [5]), the authors the new notion in the graph theory called boundary graph B(Γ)

contingent upon only 1-component graph Γ. Suppose Γ = (V,E) be any graph, the

boundary graph B(Γ) of Γ with V (B(Γ)) = V (Γ) with p, q ∈ V (B(Γ)) and e = pq ∈
E(B(Γ)), if either the distance between p and r is less than or equal to the distance

between p and q, for each r ∈ N(q) or the distance between q and r is less than or equal

to the distance between p and q, for each r ∈ N(p).

In [5], the authors also remarked that the graphs Radius(Γ) = 1 = diam(Γ), then Γ is

boundary graph.

By using the concept of complement in n-signed graphs, we define the boundary n-signed

graph B(Σn) = (B(Γ), σ) is an n-signed graph whose underlying graph is boundary graph
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and n-tuple of any edge pq ∈ B(Σn) is the component-wise multiplication of n-tuples of

the vertices p and q assigned by using the n-marking. For some n-signed graph (Σn)1,

such that B[(Σn)1] ∼= Σn, then Σn is called the B(Σn).

The n-signed graphs can be classified into two types namely, identity balanced and

identity unbalanced signed graphs. Further, the n-signed graph Σn = (Γ, σ) is identity

balanced and identity unbalanced, we have B(Σn) is always identity balanced in either

of the cases.

Theorem 3 : Let Σn = (Γ, σ) be any n-signed graph. Then its B(Σn) is identity

balanced.

Proof : Let p and q be any two vertices in n-signed marked graph. By the definition

of B(Σn), we observed that V (B(Σn)) = V (Σn). Let pq be any edge in B(Σn), then the

n-tuple of the edge pq is equal to the component-wise multiplication n-tuples assigned

to p and q by n-marking. Hence, by Theorem 1, B(Σn) is identity balanced. 2

Let k ∈ Z+, the kth iterated boundary n-signed graph B(Σn) of Σn is defined as follows:

B0(Σn) = Σn, Bk(Σn) = B(Bk−1(Σn)).

Corollary 4 : Let Σn = (Γ, σ) be any n-signed graph and k ∈ Z+. Then iterated

boundary n-signed graph Bk(Σn) is identity balanced.

Theorem 5 : Let (Σn)1 = (Γ1, σ1) and (Σn)2 = (Γ2, σ2) with Γ1
∼= Γ2. Then B[(Σn)1] ∼

B[(Σn)2].

Proof : Let (Σn)1 and (Σn)2 be any n-signed graphs with their underlying graphs are

isomorphic. Then B[(Σn)1] and B[(Σn)2] are identity balanced and they are switching

equivalent, by Theorem 2. 2

In [5], the authors characterized the graphs for which graph and its boundary graph are

isomorphic.

Theorem 6 : Let Γ = (V,E) be graph. Then Γ is isomorphic to any complete graph

if, and only if, the graph Γ and the boundary graph B(Γ) are isomorphic.

By the motivation of the above work, we obtained the necessary and sufficient conditions

for B(Σn) ∼ Σn.

Theorem 7 : Let Σn = (Γ, σ) be any n-signed graph. Then Σn is identity balanced

and Γ is isomorphic to Kq, for any q ∈ Z+ if, and only if, the boundary n-signed graph

B(Σn) and the n-signed graph Σn are switching equivalent.
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Proof : Suppose Σn is identity balanced and Γ is isomorphic to Kq, for any q ∈ Z+.

Then, since B(Σn) is identity balanced as per Theorem 3. Then B(Σn) and Σn are

identity balanced and hence they are switching equivalent, from the Theorem 2.

Conversely, suppose that B(Σn) ∼ Σn. Then Γ and B(Γ) are isomorphic. Now Γ is any

complete graph. Consider an n-signed graph Σn = (Γ, σ) with Γ is isomorphic to any

complete graph Kq, for any q ∈ Z+, then B(Σn) is identity balanced. If Σn identity

unbalanced (i.e., the component-wise multiplication of all n-tuples of each cycle in Σn is

non-identity n-tuple), then Σn = (Γ, σ) and B(Σn) are not switching equivalent, which

is a contradiction and hence Σn = (Γ, σ) and B(Σn) are switching equivalent, by the

hypothesis. Therefore, Σn is identity n-tuple. 2

Let Γ = (V,E) be any graph and a vertex p ∈ V (Γ) is said to be complete vertex, if

〈N(p)〉 is complete. In [5], the authors characterized the graphs for which B(Γ) and Γ

are isomorphic. The neighborhood of the p ∈ Γ is denoted by Nk(p) and is defined as

the set of all vertices r ∈ N(p) such that the distance between the vertices p and r is k.

Theorem 8 : Let Γ = (V,E) be graph. Then Γ is isomorphic to B(Γ) if, and only if,

the graph Γ satisfies the following conditions:

i . for each p ∈ V (Γ), 〈N(p)〉 is not complete

ii . if e = pq ∈ E(Γ), then neither N(p)−{q} ⊆ N(q)−{p} nor N(q)−{p} ⊆ N(p)−{q}

iii . for each pair of non-adjacent vertices p, q ∈ V (Γ), the sets Nk(p) and Nk(q) are

empty sets, where k = d(p, q) + 1.

By the motivation of the above work, we characterized n-signed graphs, the boundary

n-signed graph and complement of Σn are switching equivalent.

Theorem 9 : Let Σn = (Γ, σ) be any n-signed graph. Then the complement of n-signed

graph Σn and boundary n-signed graph B(Σn) are switching equivalent if, and only if,

Γ satisfies the conditions of Theorem 8.

Proof : Suppose Γ satisfies the conditions of Theorem 8. Now, we have Γ ∼= B(Γ) from

the above result. Consider an n-signed graph Σn = (Γ, σ) with Γ satisfies the conditions

of Theorem 8. Then B(Σn) and Σn are identity balanced and hence they are switching

equivalent.

Conversely, suppose that Σn ∼ SA(Σn). Then Γ ∼= B(Γ) and the underlying graph Γ

satisfies conditions of Theorem 8. 2
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The c-complement of n-tuple b = (b1, b2, · · · , bn), where c is any element of Hn is an

n-tuple such that bc = bc. Let M be a subset of Hn and c is any element of Hn, the

c-complement of the subset M of Hn is M c = {bc : b ∈M}.

Suppose Σn = (Γ, σ) be any n-signed graph and c is any n-tuple of the set of all n-

tuples Hn, the c-complement of Σn is an n-signed graph (Σn)c = (Γ, σ) and each n-tuple

b = (b1, b2, · · · , bn) in Σn changed as bc.

In view of the above concept, we have the following switching equivalent characteriza-

tions in the flavor of Theorems 7 & 9.

Corollary 10 : Let Σn = (Γ, σ) be an n-signed graph. Then

i . Σn is identity unbalanced and Γ is isomorphic to Kq, for any q ∈ Z+ if, and only

if, the boundary n-signed graph B(Σn) and the c-complement of n-signed graph

[Σn]c are switching equivalent.

ii . Σn is identity balanced and Γ is isomorphic to Kq, for any q ∈ Z+ if, and only if,

B[(Σn)c] and the n-signed graph Σn are switching equivalent.

iii . Σn is identity unbalanced and Γ is isomorphic to Kq, for any q ∈ Z+ if, and only if,

B[(Σn)c] and the c-complement of n-signed graph [Σn]c are switching equivalent.

iv . the complement of n-signed graph Σn and B[(Σn)c] are switching equivalent if, and

only if, Γ satisfies the conditions of Theorem 8.

v . [Σn]c and boundary s− n-signed graph B(Σn) are switching equivalent if, and only

if, Γ satisfies the conditions of Theorem 8.

vi . [Σn]c and B[(Σn)c] are switching equivalent if, and only if, Γ satisfies the conditions

of Theorem 8.

Remark 11 : Let (Σn)1 = (Γ1, σ1) and (Σn)2 = (Γ2, σ2) with Γ1
∼= Γ2. Then

B[((Σn)1)c] ∼ B[((Σn)2)c].

Given any n-signed graph, we have proved that B(Σn) is identity balanced. Using the

c-complement, we have the following result with respect to the notion B(Σn).

Theorem 12 : Suppose the boundary graph B(Γ) is bipartite. Then the c-complement

of boundary n-signed graph B[(Σn)c] is identity balanced.
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Proof : In consideration of Theorem 3, the boundary n-signed graph B(Σn) is identity

balanced. Then n-tuple of each cycle in B(Σn) is identity n-tuple. By the hypoth-

esis, B(Γ) is bipartite. Then n-tuple of each cycle in B(Σn) having identity n-tuple.

Therefore, the c-complement of boundary n-signed graph B[(Σn)c] is identity balanced.

2

3. Structural Characterization of B(Σn)

In this section, we present the structural characterization of B(Σn).

Theorem 13 : Let Σn = (Γ, σ) be any n-signed graph. Then Σn is identity balanced

and Γ is a boundary graph if, and only if, Σn = (Γ, σ) is B(Σn).

Proof : Let us assume that Σn is B(Σn). Then Σn
∼= B[(Σn)1], where (Σn)1 for some n-

signed graph. Therefore, the n-signed graph Σn identity balanced, because Σn = B(Σn).

Conversely, suppose that Σn = (Γ, σ) is identity balanced and Γ is a B(Γ) (i.e, Γ ∼= B(Γ1),

for some graph Γ1). By the hypothesis, Σn is identity balanced, then construct the

marked n-signed graph. According to the Theorem 1, each edge pq in (Σn)µ satisfies

σ(pq) = µ(p)µ(q). Consider the n-signed graph (Σn)1 = (Γ1, σ1) in which each edge

e = (pq) in Γ1, σ1(e) = µ(p)µ(q). Hence Σn
∼= B[(Σn)1]. Therefore, Σn is a B(Σn). 2
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