International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 169-179

WEIGHTED SHARING OF SMALL FUNCTION OF A MEROMORPHIC FUNCTION OF DIFFERENTIAL POLYNOMIAL WITH THEIR DERIVATIVES

HARINA P. WAGHAMORE ${ }^{1}$ AND NAVEENKUMAR S. H. ${ }^{2}$
1,2 Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056, India

Abstract

In this paper, we pay our attention to the uniqueness of more generalised form of a function namely $f^{n} P(f)$ and $\left[f^{n} P(f)\right]^{(k)}$ sharing a small function. The Theorems improves the results of C. K. Basu and T. Lowha [1].

1. Introduction and Main Results

In this article, a meromorphic function will mean meromorphic in the whole complex plane. We shall use the standard notations in the Nevanlinna value distribution theory of meromorphic functions such as $T(r, f), N(r, f), \bar{N}(r, f), m(r, f)$, (see [5, 8]). The notation $S(r, f)$ is defined to be any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$, provided that $T(r, a)=S(r, f)$.

Key Words : Meromorphic function, Weighted sharing, Differential polynomials, Small function.

2010 AMS Subject Classification : Primary 30D35.

Let f and g be two non-constant meromorphic functions. Let a be a finite complex number. We denote by $E(a, f)$ the set of zeros of $f-a$ (counting multiplicity), by $\bar{E}(a, f)$ the set of zeros of $f-a$ (ignoring multiplicity). We say f and g share a CM (IM), if $E(a, f)=E(a, g)(\bar{E}(a, f)=\bar{E}(a, g))$. Similarly, we define that f and g share a small function $a(z) \mathrm{CM}(\mathrm{IM})$, if $E(a(z), f)=E(a(z), g)(\bar{E}(a(z), f)=\bar{E}(a(z), g))$. Moreover, $G C D\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ denotes the greatest common divisor of positive integers $n_{1}, n_{2}, \ldots, n_{k}$.
Definition 1.1 (see[7]) : We denote by $E_{k)}(a, f)$ the set of zeros of $f-a$ with multiplicities at most k, where each zero is counted according to its multiplicity. We denote by $\bar{E}_{k)}(a, f)$ the set of zeros of $f-a$ with multiplicities at most k, where each zero is counted only once. In addition, we denote by $N_{k)}\left(r, \frac{1}{f-a}\right)\left(\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)\right)$ the counting function with respect to the set $E_{k)}(a, f)\left(\bar{E}_{k)}(a, f)\right)$. We denote by $N_{(k}\left(r, \frac{1}{f-a}\right)$ the counting function of a-points of f (counted with proper multiplicities) whose multiplicities are not less than k, we denote by $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ the corresponding reduced counting function (ignoring multiplicity). Set

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right) .
$$

For any constant a, we define

$$
\Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}, \delta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

We also use the notation $\Theta(a ; f, g)$ and $\delta(a ; f, g)$, where $\Theta(a ; f, g)=\min \{\Theta(a, f), \Theta(a, g)\}$ and $\delta(a ; f, g)=\min \{\delta(a, f), \delta(a, g)\}$.
Let a be any value in the extended complex plane. Let k be an arbitrary non negative integer. We define

$$
\begin{equation*}
\Theta_{k)}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)}{T(r, f)} \tag{1.1}
\end{equation*}
$$

Definition 1.2 (see[3]) : Suppose $f(z), g(z)$ satisfy $\bar{E}(a, f)=\bar{E}(a, g)$. Let z_{0} be a common 1-point of $f(z)$ and $g(z)$ with the multiplicity r and q. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ the reduced counting function of those 1-points of $f(z)$ and $g(z)$ where $r>q ; \bar{N}_{E}^{(2}\left(r, \frac{1}{f-1}\right)$ the reduced counting function of those 1-points of $f(z)$ and $g(z)$ where $r=q \geq 2$. In addition, we denote $N_{E}^{1)}\left(r, \frac{1}{f-1}\right)\left(N_{E}^{1}\left(r, \frac{1}{g-1}\right)\right)$ the counting function of those common simple 1-points of $f(z)$ and $g(z)$.

Definition 1.3 (see[3]) : Let f and g be two non-constant entire functions. We denote by $N_{0}\left(r, \frac{1}{f^{\prime}}\right)$ the counting function of those zeros of f^{\prime} which are not the zeros of $f(f-1)$, by $\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)$ the corresponding reduced counting functions. Similarly, we can define $N_{0}\left(r, \frac{1}{g^{\prime}}\right)$ and $\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right)$.
Remark 1.1: From (1.1) we have

$$
0 \leq \Theta(a, f) \leq \Theta_{k)}(a, f) \leq \Theta_{k-1)}(a, f) \leq \Theta_{1)}(a, f) \leq 1
$$

In 1998, Q. C. Zhang [11] proved the following theorem about a meromorphic function and its k-th order derivative.
Theorem A: Let f be a non-constant meromorphic function and let k be a positive integer. Suppose that f and $f^{(k)}$ share 1 CM and $2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{f^{(k)}}\right) \leq$ $(\lambda+o(1)) T\left(r, f^{(k)}\right)$ for $r \in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$ then $\frac{f^{(k)}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C}-\{0\}$.
In 2003, Kit-wing [10] discussed the problem of a meromorphic function and its k-th derivative sharing one small function and proved the following result.
Theorem B : Let $k \geq 1$. Let f be a non-constant non-entire meromorphic function, $a \in s(f)$ and $a(\neq 0, \infty)$ and f do not have any common pole. If $f, f^{(k)}$ share a CM and $4 \delta(0, f)+2(8+k) \Theta(\infty, f)>19+2 k$, then $f=f^{(k)}$.
Two years later, in 2005, Q.C.Zhang [12] proved the following theorem.
Theorem C : Let f be a non-constant meromorphic function and $k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=$ $S(r, f)$. Suppose thst $f-a$ and $f^{(k)}-a$ share $(0, l)$. If $l \geq 2$ and $(3+k) \Theta(\infty, f)+$ $2 \delta_{2+k}(0, f)>k+4$ or, If $l=1$ and $(4+k) \Theta(\infty, f)+3 \delta_{2+k}(0, f)>k+6$, or, if $l=0$, i.e., $f-a$ and $f^{(k)}-a$ share the value 0 IM and $(6+k) \Theta(\infty, f)+5 \delta_{2+k}(0, f)>2 k+10$ then $f \equiv f^{(k)}$.
In 2010, A.Chen, X.Wang and G.Zhang [2] proved the following results.
Theorem \mathbf{D} : Let $K(\geq 1), n(\geq 1)$ be integers and f be a non-constant meromorphic function. Also let $a(z)(\not \equiv 0, \infty)$ be a small function with respect to f. If f and $\left[f^{n}\right]^{(k)}$ share $a(z)$ IM and
$4 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\left(\frac{f}{a}\right)^{\prime}}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq(\lambda+o(1)) T\left(r,\left(f^{n}\right)^{(k)}\right)$,
or, if f and $\left(f^{n}\right)^{(k)}$ share $a(z)$ CM and
$2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{\left(\frac{f}{a}\right)^{\prime}}\right)+N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq(\lambda+o(1)) T\left(r,\left(f^{n}\right)^{(k)}\right)$, for $0<\lambda<1$,
where $r \in I$ and I is a set of infinite linear measure, then $\frac{f-a}{\left(f^{n}\right)^{(k)}-a}=c$, for some constant $c \in \mathbb{C}-\{0\}$.
Theorem \mathbf{E} : Let $K(\geq 1), n(\geq 1)$ be integers and let f be a non-constant meromorphic function. Also
let $a(z)(\not \equiv 0, \infty)$ be a small function with respect to f. If f and $\left(f^{n}\right)^{(k)}$ share $a(z)$ IM and
$(2 k+6) \Theta(\infty, f)+3 \Theta(0, f)+2 \delta_{k+2}(0, f)>2 k+10$ or, if, f and $\left(f^{n}\right)^{(k)}$ share $a(z) C M$ and
$(k+3) \Theta(\infty, f)+\delta_{2}(0, f)+\delta_{k+2}(0, f)>k+4$
then $f \equiv\left(f^{n}\right)^{(k)}$.
Recently, in 2014, C. K. Basu And T. Lowha [1] proved the following results.
Theorem F : Let k, m and n are three positive integers with $m \leq n$ and let f be a non-constant meromorphic function. Also let $a(z)(\equiv 0, \infty)$ be a small function with respect to f. If $\bar{E}_{l)}\left(a, f^{m}(z)\right)=\bar{E}_{l)}\left(a,\left(f^{n}\right)^{(k)}\right)$, where l is a positive integer and $\bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq(\lambda+O(1)) T\left(r,\left(f^{n}\right)^{(k)}\right)$, for $0<\lambda<1$, where $r \in I$ and I is a set of infinite linear measure, then $\frac{\left(f^{n}\right)^{(k)}-a}{f^{m}-a}=c$ for some constant $a \in \mathbb{C}-\{0\}$ where \mathbb{C} is the set of complex numbers.
Theorem G: Let f be a non-constant meromorphic function and let k and n be two positive integers. If $\bar{E}_{l)}(a, f)=\bar{E}_{l)}\left(a,\left(f^{n}\right)^{(k)}\right)$, where l is a positive integer and $a(z)(\not \equiv$ $0, \infty)$ be a small function of f and $(2 k+6) \Theta(\infty, f)+\Theta(0, f)+2 \delta_{2}(0, f)+2 \delta_{k+2}(0, f)$ $>2 k+10$ then $f=\left(f^{n}\right)^{(k)}$.

In this paper, we pay our attention to the uniqueness of more generalized form of a function namely $f^{n} P(f)$ and $\left[f^{n} P(f)\right]^{(k)}$ sharing a small function.
Theorem 1: Let k, m and n are three positive integers with $k \leq m$ and f be a nonconstant meromorphic function. Also let $a(z)(\not \equiv 0, \infty)$ be a small function with respect
to f. If $\bar{E}_{l)}\left(a, f^{n} P(f)\right)=\bar{E}_{l)}\left(a,\left(f^{n} P(f)\right)^{(k)}\right)$, where l is a positive integer and

$$
\begin{aligned}
& 6 \bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{f^{n} P(f)}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right) \\
& \leq(\lambda+o(1)) T\left(r,\left(f^{n} P(f)\right)^{(k)}\right)
\end{aligned}
$$

for $0<\lambda<1$, where $r \in I$ and I is a set of infinite linear measure, then $\frac{\left(f^{n} P(f)\right)^{(k)}-a}{f^{n} P(f)-a}=$ c for some constant $a \in \mathbb{C}-\{0\}$ where \mathbb{C} is the set of complex numbers.
Theorem 2: Let f be a non-constant meromorphic function and let k and n be two positive integers. If $\bar{E}_{l)}\left(a, f^{n} P(f)\right)=\bar{E}_{l)}\left(a,\left(f^{n} P(f)\right)^{(k)}\right)$, where l is a positive integer and $a(z)(\not \equiv 0, \infty)$ be a small function of f and $(3 k+6) \Theta(\infty, f)+(3 k+9) \Theta(0, f)+5 m \delta(0, f)>$ $6 k+15+4 m-n$ then $f^{n} P(f)=\left(f^{n} P(f)\right)^{(k)}$.

2. Some Lemmas

Here we mention some existing lemmas of the literature which will be frequently used to prove the aforementioned theorems.
Lemma 2.1 (see [9]) : Let $f(z)$ be a non-constant meromorphic function and k, p be two positive integers. Then

$$
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.2 (see [5]) : Let f be a non-constant meromorphic function and let n be a positive integer. $P(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f$ where a_{i} is a meromorphic function such that $T\left(r, a_{i}\right)=S(r, f)(i=1,2, \ldots, \mathrm{n})$. Then $T(r, P(f))=n T(r, f)+S(r, f)$.

3. Proof of the Theorems

Proof of Theorem 1 : Let $F=\frac{f^{n} P(f)}{a}$ and $G=\frac{\left(f^{n} P(f)\right)^{(k)}}{a}$.
Therefore, $F-1=\frac{f^{n} P(f)-a}{a}$ and $G-1=\frac{\left(f^{n} P(f)\right)^{(k)}-a}{a}$.
Now, $\bar{E}_{l)}\left(a, f^{n} P(f)\right)=\bar{E}_{l)}\left(a,\left(f^{n} P(f)\right)^{(k)}\right)$ except the zeros and poles of $a(z)$. Define,

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

We now consider two cases:

Case 1: Suppose $H \not \equiv 0$. Then $m(r, H)=s(r, f)$. Now if z_{0} is a common simple zero of $F-1$ and $G-1$ (except the zeros and poles of $a(z)$), then after simple calculation, we get $H\left(z_{0}\right)=0$. So,

$$
N_{E}^{1)}\left(r, \frac{1}{G-1}\right) \leq N\left(r, \frac{1}{H}\right)+S(r, f) \leq T(r, H)+S(r, f) \leq N(r, H)+S(r, f)
$$

Again by analysis, we can deduce that,

$$
\begin{aligned}
N(r, H) & \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{*}\left(r, \frac{1}{G-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{G-1}\right) & =N_{E}^{1)}\left(r, \frac{1}{G-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{*}\left(r, \frac{1}{G-1}\right)+S(r, f)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{G-1}\right) \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{*}\left(r, \frac{1}{G-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{3.1}
\end{align*}
$$

Since, $\bar{E}_{l)}(1, F)=\bar{E}_{l)}(1, G)$. Therefore,

$$
2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{*}\left(r, \frac{1}{G-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right) \leq 2 \bar{N}_{(2}\left(r, \frac{1}{G-1}\right)
$$

From (3.1), we have,

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{G-1}\right) \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{*}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{3.2}
\end{align*}
$$

We also have ,

$$
\begin{equation*}
\bar{N}_{2}\left(r, \frac{1}{F}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \leq 2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right) \tag{3.3}
\end{equation*}
$$

Now by the second fundamental theorem we get,

$$
\begin{equation*}
T(r, G) \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \tag{3.4}
\end{equation*}
$$

From (3.4) using (3.2) and (3.3) we get,

$$
\begin{equation*}
T(r, G) \leq 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+2 \bar{N}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \tag{3.5}
\end{equation*}
$$

By Lemma (2.1) we have,

$$
\begin{aligned}
T\left(r,\left(f^{n} P(f)\right)^{(k)}\right) & \leq 6 \bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{f^{n} P(f)}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right) \\
& +\bar{N}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+S(r, f)
\end{aligned}
$$

which contradicts the given conditions of the theorem.
Case II : Suppose $H(z) \equiv 0$ i.e., $\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}=\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}$. Integrating we get,
$\log F^{\prime}-2 \log (F-1)=\log G^{\prime}-2 \log (G-1)+\log A$. Where A is a constant $\neq 0$.
That is, $\log \frac{F^{\prime}}{(F-1)^{2}}=\log \frac{A G^{\prime}}{(G-1)^{2}}$.
Again integrating we get,

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{3.6}
\end{equation*}
$$

Now if z_{0} is a pole of f with multiplicity p which is not the poles and the zeros of $a(z)$, then z_{0} is the pole of F with multiplicity $(n+m) p$ and the pole of G with multiplicity $(n+m) p+k(\neq(n+m) p)$. This contradicts (3.6). This implies f has no pole, that is f is an entire function.

So, $\bar{N}(r, F)=S(r, f)$ and $\bar{N}(r, G)=S(r, f)$. Now we prove that $B=0$.
We first assume that $B \neq 0$, then $\frac{1}{F-1}=\frac{B\left(G-1+\frac{A}{B}\right)}{G-1}$.
Therefore, $\bar{N}\left(r, \frac{1}{G-1+\frac{A}{B}}\right)=\bar{N}(r, F)=S(r, f)$

Now we assume $\frac{A}{B} \neq 1$.
By the Second fundamental theorem,

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1+\frac{A}{B}}\right)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \\
& \leq T(r, G)+S(r, f)
\end{aligned}
$$

Hence, $T(r, G)=\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)$ i.e., $T\left(r,\left(f^{n} P(f)\right)^{(k)}\right)=\bar{N}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+$ $S(r, f)$
This contradicts the given condition of the theorem.
Next, we assume $\frac{A}{B}=1$. Then, $(A F-A-1) G=-1$.
So, $\frac{a^{2}}{f^{n} P(f)\left(A f^{n} P(f)-A a-A\right)}=-\frac{\left(f^{n} P(f)\right)^{(k)}}{f^{n} P(f)}$
Now by lemma (2.1) and (2.2), we get,

$$
\begin{aligned}
2(n+m) T(r, f) & =T\left(r, \frac{\left(f^{n} P(f)\right)^{(k)}}{f^{n} P(f)}\right)+S(r, f) \\
& \leq N\left(r, \frac{\left(f^{n} P(f)\right)^{(k)}}{f^{n} P(f)}\right)+S(r, f) \\
& \leq N_{k}\left(r, \frac{1}{f^{n} P(f)}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq k \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

i.e., $(2 n+m-k) T(r, f)=S(r, f)$. Which is impossible since $m \geq k$.

Hence our assumption is not true and therefore $B=0$. So, $\frac{G-1}{F-1}=A$.
This proves the theorem.
Proof of Theorem 2 : Let $F=\frac{f^{n} P(f)}{a(z)}$ and $G=\frac{\left(f^{n} P(f)\right)^{(k)}}{a(z)}$. So,
$\bar{E}_{l)}\left(a, f^{n} P(f)\right)=\bar{E}_{l)}\left(a,\left(f^{n} P(f)\right)^{(k)}\right)$ implies, $\bar{E}_{l)}(1, F)=\bar{E}_{l)}(1, G)$, except the zeros and poles of $a(z)$.
We define,

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

Now we consider two cases:
Case I : Suppose $H \not \equiv 0$,
Then (3.5) of the proof in theorem 1 still holds. Writing (3.5) for the function F, we get,

$$
T(r, F) \leq 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{G^{\prime}}\right)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)
$$

i.e., $(n+m) T(r, f) \leq 2 \bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+2 \bar{N}(r, f)$

$$
\begin{aligned}
& +2 N_{2}\left(r, \frac{1}{\left(f^{n} P(f)\right)}\right)+2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+S(r, f) \\
& \leq(3 k+6) \bar{N}(r, f)+(3 k+9) \bar{N}\left(r, \frac{1}{f}\right)+5 m N\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

i.e., $(3 k+6) \Theta(\infty, f)+(3 \mathrm{k}+9) \Theta(0, f)+5 m \delta(0, f) \leq 6 k+4 m+15-n$.

This contradicts the given condition of the theorem.
Case II : Suppose $H \equiv 0$.
So, $\frac{1}{F-1}=\frac{A}{G-1}+B$, where $A \neq 0, B$ are constants. By the same argument of the proof of the
theorem 1, we get,
$\bar{N}(r, F)=S(r, f)$ and $\bar{N}(r, G)=S(r, f)$.
So, $\Theta(\infty, f)=1$.
Assume that, $B \neq 0$, then $\frac{B\left(F-1-\frac{1}{B}\right)}{F-1}=-\frac{A}{G-1}$
So, $\bar{N}\left(r, \frac{1}{F-1+\frac{1}{B}}\right)=\bar{N}(r, G)=S(r, f)$.
If $B \neq-1$, then by the second fundamental theorem for F, we have

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1+\frac{A}{B}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq T(r, F)+S(r, f)
\end{aligned}
$$

So, $T(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f)$ i.e., $(n+m) T(r, f) \leq \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)$.
Hence, $\Theta(0, f)+m \delta(0, f) \leq 1-n$.
Putting $\Theta(\infty, f)=1 ; \Theta(0, f)+m \delta(0, f) \leq 1-n$ in the given condition of the theorem we have, $\Theta(0, f)>1$, which is not true. Hence $B=-1$.
Therefore, $\frac{F}{F-1}=\frac{A}{G-1}$.
i.e., $F(G-1-A)=-A$ that is $F=\frac{A}{-G+(1+A)}$.

So, $f^{n} P(f)=\frac{A}{-\left(f^{n} P(f)\right)^{(k)}+(1+A)}$. Therefore, $\bar{N}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}+(1+A)}\right)=$ $\bar{N}(r, f)=S(r, f)$.
Hence, $T(r, f)=T\left(r,\left(f^{n} P(f)\right)^{(k)}\right)=S(r, f)$. Which is not true. Thus $B=0$.
So, $\frac{1}{F-1}=\frac{A}{G-1}$, i.e., $G-1=A(F-1)$.
If $A \neq 1$ then $G=A\left(F-1+\frac{1}{A}\right)$. So, $N\left(r, \frac{1}{G}\right)=N\left(r, \frac{1}{F-1+\frac{1}{A}}\right)$.
By the second fundamental theorem, we have,

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1+\frac{1}{A}}\right)+S(r, f) \\
T\left(r, f^{n} P(f)\right) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f^{n} P(f)}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+k \bar{N}(r, f)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f)
\end{aligned}
$$

So,

$$
\begin{equation*}
(k+2) \Theta(0, f)+2 m \delta(0, f) \leq k+2+m-n \tag{3.7}
\end{equation*}
$$

Now by the given condition of the theorem and by (3.7) we have, $\Theta(0, f)>1$. This is not possible.
So, $A=1$ and hence $F=G$ i.e., $f^{n} P(f)=\left(f^{n} P(f)\right)^{(k)}$.
This proves the theorem.

References

[1] Basu C. K. and Lowha T., Weighted sharing of a small function of a meromorphic function and its derivatives, International J. Mathematical Archive, 5(3) (2014), 111-118.
[2] Chen Ang, Wang Xiuwang, Zhang Guowei, Unicity of meromorphic function sharing one small function with its derivative. Int. J. Math. Math. Sci., 2010, Art. ID 507454, 11 pp.
[3] Fang Mingliang, Hua Xinhou, Entire functions that share one value. Nanjing Daxue Xuebao Shuxue Bannian Kan, 13(1) 1996), 44-48.
[4] Fang Ming-Liang, Hong Wei, A unicity theorem for entire functions concerning differential polynomials. Indian J. Pure Appl. Math., 32(9) (2001), 1343-1348.
[5] Hayman W. K., Meromorphic functions. Oxford Mathematical Monographs, Clarendon Press, Oxford, (1964), 191 pp.
[6] Lin Shanhua, Lin Weichuan, Uniqueness of meromorphic functions concerning weakly weighted-sharing. Kodai Math. J. 29(2) (2006), 269-280.
[7] Lin X. Q., Lin W. C., Uniqueness of entire functions sharing one value, J. Math. Anal. Appl., 31B(3) (2011), 1062-1076.
[8] Yang Chung-Chun, Yi Hong-Xun, Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, (2003), 569.
[9] Yi H. X., Yang C. C., Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, (1995).
[10] Yu Kit-Wing, On entire and meromorphic functions that share small functions with their derivatives. JIPAM. J. Inequal. Pure Appl. Math., 4(1) (2003), Article 21, 7 pp. (electronic).
[11] Zhang Qing Cai, The uniqueness of meromorphic functions with their derivatives. Kodai Math., J. 21(2) (1998), 179-184.
[12] Zhang Qingcai, Meromorphic function that shares one small function with its derivative. JIPAM. J. Inequal. Pure Appl. Math., 6(4) (2005), Article 116, 13.
[13] Zhang Tongdui, Weiran L., Uniqueness theorems on meromorphic functions sharing one value. Comput. Math. Appl., 55(12) (2008), 2981-2992.

