International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 181-195

ON ARTINCOKERNEL OF THE GROUP $\left(Q_{2 m} \times C_{5}\right)$ WHERE $m=p^{2}, p>2, p$ IS PRIME NUMBER

NASERR RASOOL MAHMOOD ${ }^{1}$ AND SALAH HASSOUN JIHADI ${ }^{2}$
${ }^{1,2}$ Ass.prof., University of Kufa,
Faculty of Education for Girls, Department of Mathematics,

Abstract

The main purpose of this paper is to find Artin's character table $\operatorname{Ar}\left(Q_{2 m} \times C_{5}\right)$ when $m=p^{2}, p>2, p$ is prime number; where $Q_{2 m}$ is denoted to Quaternion group of order $4 m$, time is said to have only one dimension and space to have three dimension, the mathematical quaternion partakes of both these elements; in technical language it may be said to be "time plus space", or "space plus time" and in this sense it has, or at least involves a reference to four dimensions and how the one of time of space the three might in the chain of symbols girdled "- William Rowan Hamilton (Quoted in Robert Percival Graves "Life of sir William Rowan Hamilton" (3 vols., 1882, 1885, 1889))" and C_{5} is Cyclic group of order 5. In 1962, C. W. Curits and I. Reiner studied Representation Theory of finite groups. In 1976, I. M. Isaacs studied Charactrs Theory of finite groups. In 1982, M. S. Kirdar studied the Factor Group of the Z-Valued class function modulo the group of the Generalized Characters. In 1995, N. R. Mahmood studies the Cyclic Decomposition of the factor Group $\operatorname{cf}\left(Q_{2 m}, Z\right) / R(G)\left(Q_{2 m}\right)$. In 2002, K-Sekiguchi studies Extensions and the Irreducibilies of the Induced Characters of Cyclic P-Group. In 2008, A. H. Abdul-Munem studied Artin Cokernel of The Quaternion group $Q_{2 m}$ when m is an Odd number.

Key Words : Even number, Prime number, Quaternion group and Cyclic group.
(c) http: //www.ascent-journals.com

1. Introduction

Representation Theory is a branch of mathematics that studies abstract algebra structures by representing their elements as linear transformations of vector spaces, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in items of matrix addition and matrix multiplication in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication. Moreover, representation and character theory provide applications ,no only in other branches of mathematics but also in physics and chemistry.

For a finite group G, the factor group $\bar{R}(G) / T(G)$ is called the Artincokernel of G denoted by $A C(G), \bar{R}(G)$ denoted the a belian group generated by Z-valued characters of G under the operation of pointwise addition. $T(G)$ is a subgroup of $\bar{R}(G)$ which is generated by Artin's characters.

2. Preliminars :(3.1):[1]

The Generalized Quaternion Group $Q_{2 m}$: For each positive integer $m \geq 2$, the generalized Quaternion Group $Q_{2 m}$ of order $4 m$ with two generators x and y satisfies $Q_{2 m}=\left\{x^{h} y^{k}, 0 \leq h \leq 2 m-1, k=0,1\right\}$ which has the following properties $\left\{x^{2 m}=\right.$ $\left.y^{4}=I, y x^{m} y^{-1}=x^{-m}\right\}$.

Let G be a finite group, all the characters of group G induced from a principal character of cyclic subgroup of G are called Artin characters of G. Artin characters of the finite group can be displayed in a table called Artin characters table of G which is denoted by $\operatorname{Ar}(G)$. The first row is Γ-conjugate classes. The second row is the number of elements in each conjugate class. The third row is the size of the centralized $\left|C_{G}\left(C L_{\alpha}\right)\right|$ and other rows contains the values of Artin characters.

Theorem 3.2 [2] : The general form of Artin characters table of $C p^{s}$ when p is a prime number and s is a positive integer number is given by :-
$\operatorname{Ar}\left(\mathrm{Cp}^{5}\right)=$

Γ-classes						
$\left\|C L_{a}\right\|$	1	1	1	1		1
$\left\|C_{p^{\prime}}\left(C L_{\alpha}\right)\right\|$						
φ_{1}^{\prime}		0	0	0		0
φ_{2}^{\prime}			0	0		0
φ_{3}^{\prime}				0		0
φ_{s}^{\prime}				1	1	
φ_{s+1}^{\prime}	1	1				

Table $(3,1)$

Example 3.3 : We can write Artin characters table of the group C_{5}

$$
\operatorname{Ar}\left(\mathrm{C}_{5}\right)=
$$

Γ-classes	$[1]$	$[x]$
$\left\|C L_{\alpha}\right\|$	1	1
$\|\operatorname{Ccs}(\mathrm{CL} \alpha)\|$	5	5
φ_{1}^{\prime}	5	0
φ_{2}^{\prime}	1	1

Table 3.2

Corollary $3.4[2]:$ Let $m=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}}, \cdots, p_{n}^{\alpha_{n}}$ where $g . c . d\left(p_{i}, p_{j}\right)=1$, if $i \neq j$ and $p_{i}{ }^{\prime}$ s are primes numbers and α_{n} any positive integers, then;

$$
\operatorname{Ar}\left(C_{m}\right)=\operatorname{Ar}\left(C_{p_{1}} \alpha_{1}\right) \otimes \operatorname{Ar}\left(C_{p_{2}} \alpha_{2}\right) \otimes \cdots \otimes \operatorname{Ar}\left(C_{p_{n}} \alpha_{n}\right)
$$

Example 3.5 : Consider the cyclic group C_{18}. To find Artin characterstable for it, we use corollary $(3,4)$ as the following $\operatorname{Ar}\left(C_{18}\right)=\operatorname{Ar}\left(C_{2}\right) \otimes \operatorname{Ar}\left(C_{3}^{2}\right)$ by using theorem (3.2) to find $\operatorname{Ar}\left(C_{2}\right)$ and $\operatorname{Ar}\left(C_{3}^{2}\right)$ are as follows :
$\operatorname{Ar}\left(\mathrm{C}_{2}\right)=\mathrm{Ar}\left(\mathrm{C}_{3}{ }^{2}\right)=$

Γ - classes	$[1]$	$[x]$
$\left\|C L_{\alpha}\right\|$	1	1
$\left\|C_{C_{2}}\left(C L_{\alpha}\right)\right\|$	2	2
φ_{1}^{\prime}	2	0
φ_{2}^{\prime}	1	1

Table $(3,4)$

Γ-classes	$[1]$	$\left[x^{3}\right]$	$[x]$
$\left\|C L_{\alpha}\right\|$	1	1	1
$\mid C_{C_{3^{2}}}\left(C L_{\alpha}\right)$	3^{2}	3^{2}	3^{2}
φ_{1}^{\prime}	3^{2}	0	0
φ_{2}^{\prime}	3	3	0
φ_{3}^{\prime}	1	1	1

Table $(3,5)$
$\operatorname{Ar}\left(\mathrm{C}_{18}\right)=$

Γ-classes	$[1]$	$\left[x^{6}\right]$	$\left[x^{2}\right]$	$\left[x^{9}\right]$	$\left[x^{3}\right]$	$[x]$
$\left\|C L_{\alpha}\right\|$	1	2	2	1	2	2
$\left\|C_{C_{18}}\left(C L_{\alpha}\right)\right\|$	18	9	9	18	9	9
φ_{1}^{\prime}	18	0	0	0	0	0
φ_{2}^{\prime}	6	6	0	0	0	0
φ_{3}^{\prime}	2	2	2	0	0	0
φ_{4}^{\prime}	9	0	0	9	0	0
φ_{5}^{\prime}	3	3	0	3	3	0
φ_{6}^{\prime}	1	1	1	1	1	1

Table $(3,6)$

Theorem 3.6 [1] : The Artin characters table of the Quaternion group $Q_{2 m}$ when m is an odd number is given as follows :

where $0 \leq r \leq m-1, l$ is the number of Γ-classes of $C_{2 m}$ and Φ_{j} are the Artin characters of the quaternion group $Q_{2 m}$, for all $1 \leq j \leq l+1$.

Example 3.7: To construct $\operatorname{Ar}\left(Q_{18}\right)$ by using theorem (3.5)

$\operatorname{Ar}\left(\mathrm{Q}_{18}\right)=$	「-Classes	Γ-Classes of C_{18}						
	$\mathrm{CL}_{\text {a }}$	1	2	2	1	2	2	18
	$C_{Q_{18}}\left(\mathrm{CL}_{\alpha}\right) \mid$	36	18	18	36	18	18	2
	Φ_{1}	$2 \mathrm{Ar}\left(\mathrm{C}_{18}\right)$						0
	Φ_{2}							0
	Φ_{3}							0
	Φ_{4}							0
	Φ_{5}							0
	Φ_{6}							0
	Φ_{7}	9	0	0	9	0	0	1

Γ-Classes	$[1]$	$\left[\mathrm{x}^{6}\right]$	$\left[x^{2}\right]$	$\left[\mathrm{x}^{9}\right]$	$\left[\mathrm{x}^{3}\right]$	$[x]$	$[\mathrm{y}]$
$\left\|\mathrm{CL}_{\mathrm{a}}\right\|$	1	2	2	1	2	2	18
$\left\|C_{Q_{18}}\left(\mathrm{CL}_{\alpha}\right)\right\|$	36	18	18	36	18	18	2
Φ_{1}	36	0	0	0	0	0	0
Φ_{2}	12	12	0	0	0	0	0
Φ_{3}	4	4	4	0	0	0	0
Φ_{4}	18	0	0	18	0	0	0
Φ_{5}	6	6	0	6	6	0	0
Φ_{6}	2	2	2	2	2	2	0
Φ_{7}	9	0	0	9	0	0	1

Table (3.8)

Theorem 3.8 [4]: Let H be a cyclic subgroup of G and $h_{1}, h_{2}, \cdots, h_{m}$ are chosen representatives for the m-conjugate classes of H contained in $C L(g)$ in G, then :

$$
\phi^{\prime}(g)=\left\{\begin{array}{ccc}
\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{1}\right) & \text { if } & h_{i} \in H \cap C L(g) \\
0 & \text { if } & H \cap C L(g)=\phi
\end{array}\right.
$$

Proposition 3.9 [3]: The number of all distinct Artin characters on group G is equal to the number of Γ-classes on G. Furthermore, Artin characters are constant on each Γ-classes.

4. The Main Results

In this section we give the general form of Artin's characters table of the group ($Q_{2 m} \times$ C_{5}), When $m=p^{2}, p>2, p$ is prime number. The group $\left(Q_{2 m} \times C_{5}\right)$ is the direct product group of the quaternion group $Q_{2 m}$ of order $\mathbf{4 m}$ and the cyclic group C_{5} of order 5 , then the order of The group ($Q_{2 m} \times C_{5}$) is $\mathbf{2 0 m}$.

Example 4.1: Let $m=9=3^{2}$ then $\left(Q_{2 m} \times C_{5}\right)=\left(Q_{2.9} \times C_{5}\right)=\left(Q_{2.3}^{2} \times C_{5}\right)=$ $\left\{(1, I),(1, z),\left(1, z^{2}\right),\left(1, z^{3}\right),\left(1, z^{4}\right),(x, I),(x, z),\left(x, z^{2}\right),\left(x, z^{3}\right),\left(x, z^{4}\right)\left(x^{2},, I\right),\left(x^{2}, z\right),\left(x^{2}, z^{2}\right)\right.$, $\left(x^{2}, z^{4}\right), \cdots,\left(x^{17}, I\right),\left(x^{17}, z\right),\left(x^{17}, z^{2}\right),\left(x^{17}, z^{3}\right),\left(x^{17}, z^{4}\right),\left(y_{I}\right),(y, z),\left(y, z^{2}\right),\left(y, z^{3}\right),\left(y, z^{4}\right)$, $(x y, I),(x y, z),\left(x y, z^{2}\right),\left(x y, z^{3}\right),\left(X y, z^{4}\right),\left(x^{2} y, I\right),\left(x^{2} y, z\right),\left(x^{2} y, z^{2}\right),\left(x^{2} y, z^{3}\right),\left(x^{2} y, z^{4}\right)$, $\left.\cdots,\left(x^{17} y, I\right),\left(x^{17} y, z\right),\left(x^{17} y, z^{2}\right),\left(x^{17} y, z^{3}\right),\left(x^{17} y, z^{4}\right)\right\}$.
To find Artin's characters for this group, there are 14 cyclic subgroups, which are : $\langle 1,1\rangle,\left\langle x^{6}, I\right\rangle,\left\langle x^{2} I\right\rangle,\left\langle x^{9}, I\right\rangle,\left\langle x^{3}, I\right\rangle,\langle x, I\rangle,\langle y, I\rangle,\langle 1, z\rangle,\left\langle x^{6}, z\right\rangle,\left\langle x^{2}, z\right\rangle,\left\langle x^{9}, z\right\rangle,\left\langle x^{3}, z\right\rangle,\langle x, z\rangle,\langle y, z\rangle$, then there are 14Γ-Classes, we have 14 distinct Artin's characters.
Let $g \in\left(Q_{10} \times C_{5}\right), g=(q, I)$ or $g=(q, z), q \in Q_{10}, I, z \in C_{5}$ and let φ the principal character of H, Φ_{j} Artin characters of $Q_{10}, 1 \leq j \leq 7$, then by using Theorem 3.8

$$
\phi_{j}(g)=\left\{\begin{array}{ccc}
\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{1}\right) & \text { if } & h_{i} \in H \cap C L(g) \\
0 & \text { if } & H \cap C L(g)=\phi
\end{array}\right.
$$

Case I: If H is a cyclic subgroup of $\left(Q_{2 m} \times\{I\}\right)$, then:
$H_{1}=\langle 1, I\rangle$.
If $g=(1, I), \Phi_{(1,1)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|} \varphi((I, 1))=\frac{180}{1} \cdot 1=180=5.36=5 . \Phi(1)$
since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$.
Otherwise $\Phi_{(1,1)}(g)=0$ since $H \cap C L(g)=\phi . H_{2}=\left\langle x^{6}, I\right\rangle$.
If $g=(1, I), \Phi_{(2,1)}(g)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|} \varphi(g)=\frac{180}{30} \cdot 1=60=5.12=5 . \Phi_{2}(1)$
since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$. If $g=\left(x^{6}, I\right), \Phi_{(2,1)}\left(\left(x^{6}, I\right)\right)=\frac{\mid C_{Q_{18} \times C_{5}(g)}}{\left|C_{H}(g)\right|}(\varphi(g)+$ $\left.\varphi\left(g^{-1}\right)\right)=\frac{90}{30}(1+1)=60=5.12=5 . \Phi_{2}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{\left(g, g^{-1}\right)\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(2,1)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{3}=\left\langle x^{2}, I\right\rangle$.
If $g=(1, I), \Phi_{(3,1)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{9} .1=20=5.4=5 . \Phi_{3}(1)$ since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(3,1)}\left(\left(x^{6}, I\right)\right)=\frac{\mid C_{Q_{18 \times C_{5}}(g) \mid}}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{9}(1+1)=20=5.4=$ $5 . \varphi_{3}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{2}, I\right), \Phi_{(3,1)}\left(\left(x^{2}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{9}(1+1)=20=5.4=$ $5 . \varphi_{3}\left(x^{2}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(3,1)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{4}=\left\langle x^{9}, I\right\rangle$

If $g=(1, I), \Phi_{(4,1)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{2} .1=90=5.18=5 . \Phi_{4}(1)$ since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, I\right), \Phi_{(4,1)}\left(\left(x^{9}, I\right)\right)=\frac{\mid C_{Q_{18} \times C_{5}(g) \mid}}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{2} \cdot 1=90=5.18=5 . \varphi_{4}\left(x^{9}\right)$ since $\left.H \cap C L(g)=\left\{x^{9}, I\right)\right\}$ and $\varphi(g)=1$.
Otherwise $\Phi_{(4,1)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{5}=\left\langle x^{3}, I\right\rangle$
$g=(1, I), \Phi_{(5,1)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{6} .1=30=5.6=5 . \Phi_{5}(1)$ since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(5,1)}\left(\left(x^{6}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)=\frac{90}{6}(1+1)=30=5.6=\right.$ 5. $\varphi_{5}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}=1\right.$.

If $g=\left(x^{9}, I\right), \Phi_{(5,1)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{6}=30=5.6=5 . \varphi_{5}\left(x^{9}\right)$ since $H \cap C L(g)=\{g)\}$ and $\varphi(g)=1$.
If $g=\left(x^{3}, I\right), \Phi_{(5,1)}\left(\left(x^{3}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{6}(1+1)=30=5.6=$ $5 . \varphi_{5}\left(x^{3}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(5,1)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{6}=\langle x, I\rangle$
If $g=(1, I), \Phi_{(6,1)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{18} .1=10=5.2=5 . \Phi_{6}(1)$ since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(6,1)}\left(\left(x^{6}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)=\frac{90}{18}(1+1)=10=5.2=\right.$ 5. $\varphi_{6}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}=1\right.$.

If $g=\left(x^{2}, I\right), \Phi_{(6,1)}\left(\left(x^{2}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))+\varphi\left(g^{-1}\right)=\frac{90}{18}(1+1)=10=5.2=$ $5 . \varphi_{6}\left(x^{2}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{9}, I\right), \Phi_{(6,1)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{18} .1=10=5.2=5 . \varphi_{6}\left(x^{9}\right)$ since $H \cap C L(g)=\left\{\left(x^{9}, I\right)\right\}$ and $\varphi(g)=1$.
If $g=\left(x^{3}, I\right), \Phi_{(6,1)}\left(\left(x^{3}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))+\varphi\left(g^{-1}\right)=\frac{90}{18}(1+1)=10=5.2=$ 5. $\Phi_{6}\left(x^{3}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.

If $g=(x, I), \Phi_{(6,1)}((x, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{18}(1+1)=10=5.2=$ 5. $\Phi_{6}(x)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.

Otherwise $\Phi_{(6,1)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{7}=\langle y, I\rangle$
If $g=(1, I), \Phi_{(7,1)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{4} .1=45=5.9=5 . \Phi_{7}(1)$ since $H \cap C L(g)=\{(1, I)\}$ and $\varphi(g)=1$.

If $g=\left(x^{9}, I\right), \Phi_{(7,1)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{4} .1=45=5.9=5 . \Phi_{7}\left(x^{9}\right)$ since $H \cap C L(g)=\left\{\left(x^{9}, I\right)\right\}$ and $\varphi(g)=1$.
If $g=(y, I), \Phi_{(7,1)}((y, I))=\frac{\mid C_{Q_{18} \times C_{5}(g) \mid}}{\left|C_{H}(g)\right|}(\varphi(g))+\varphi\left(g^{-1}\right)=\frac{10}{4}(1+1)=5=5.1=5 . \Phi_{7}(y)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(7,1)}(g)=0$ since $H \cap C L(g)=\phi$.
Case II :If H is a cyclic subgroup of $\left(Q_{2 m} \times\{z\}\right)$, then :
$H_{1}=\langle 1, z\rangle$
If $g=(1, I), \Phi_{(1,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{5} .1=36=\Phi_{1}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(1,2)}((1, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{5} .1=36=\Phi_{1}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
Otherwise $\Phi_{(1,2)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{2}=\left\langle x^{6}, z\right\rangle$
If $g=(1, I), \Phi_{(2,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{15} \cdot 1=12=\Phi_{2}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(2,2)}((1, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{15} .1=12=\Phi_{2}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(3,2)}\left(\left(x^{6}, I\right)\right)=(\varphi(g)) \frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{45} .(1+1)=4=$ $\Phi_{3}\left(x^{6}\right)$ since $H \cap C L(g)==\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{6}, z\right), \Phi_{(3,2)}\left(\left(x^{6}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{45} .(1+1)=4=\Phi_{3}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(2,2)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{3}=\left\langle x^{2}, z\right\rangle$
If $g=(1, I), \Phi_{(3,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{45} .1=4=\Phi_{3}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(3,2)}((1, z))=\frac{\mid C_{Q_{18} \times C_{5}(g) \mid}}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{45} .1=4=\Phi_{3}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(3,2)}\left(\left(x^{6}, I\right)\right)=\frac{\mid C_{Q_{18} \times C_{5}(g) \mid}}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{180}{45} .1=4=\Phi_{3}\left(x^{6}\right)$ since $H \cap C L(g)==\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{6}, z\right), \Phi_{(3,2)}\left(\left(x^{6}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{180}{45} .1=4=\Phi_{3}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{2}, I\right), \Phi_{(3,2)}\left(\left(x^{2}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{45} .(1+1)=4=\Phi_{3}\left(x^{2}\right)$
since $H \cap C L(g)==\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{2}, z\right), \Phi_{(3,2)}\left(\left(x^{2}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{45} .(1+1)=4=\Phi_{3}\left(x^{2}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(3,2)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{4}=\left\langle x^{9}, z\right\rangle$
If $g=(1, I), \Phi_{(4,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{10} .1=18=\Phi_{4}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(4,2)}((1, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{10} .1=18=\Phi_{4}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, I\right), \Phi_{(4,2)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{10} .1=18=\Phi_{4}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\left\{\left(x^{9}, I\right)\right\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, z\right), \Phi_{(4,2)}\left(\left(x^{9}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{10} .1=18=\Phi_{4}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\left\{\left(x^{9}, z\right)\right\}$ and $\varphi(g)=1$.
Otherwise $\Phi_{(4,2)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{5}=\left\langle x^{3}, z\right\rangle$
If $g=(1, I), \Phi_{(5,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{30} \cdot 1=6=\Phi_{5}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(5,2)}((1, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{30} .1=6=\Phi_{5}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(6,2)}\left(\left(x^{6}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{6}, z\right), \Phi_{(6,2)}\left(\left(x^{6}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{9}, I\right), \Phi_{(5,2)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{30}(1)=6=\Phi_{5}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, z\right), \Phi_{(5,2)}\left(\left(x^{9}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{30}(1)=6=\Phi_{5}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=\left(x^{3}, I\right), \Phi_{(5,2)}\left(\left(x^{3}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+v p\left(g^{-1}\right)\right)=\frac{90}{30}(1+1)=6=\Phi_{5}\left(x^{3}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{3}, z\right), \Phi_{(5,2)}\left(\left(x^{3}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{30}(1+1)=6=\Phi_{5}\left(x^{3}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(5,2)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{6}=\langle x, z\rangle$
If $g=(1, I), \Phi_{(6,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{90} \cdot 1=2=\Phi_{6}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(6,2)}((1, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{90} \cdot 1=2=\Phi_{6}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
If $g=\left(x^{6}, I\right), \Phi_{(6,2)}\left(\left(x^{6}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{180}{90}(1+1)=2=\Phi_{6}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{6}, z\right), \Phi_{(6,2)}\left(\left(x^{6}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{180}{90}(1+1)=2=\Phi_{6}\left(x^{6}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{2}, I\right), \Phi_{(6,2)}\left(\left(x^{2}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}\left(x^{2}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\left(g^{-1}\right)=1$.
If $g=\left(x^{2}, z\right), \Phi_{(6,2)}\left(\left(x^{2}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}\left(x^{2}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{9}, I\right), \Phi_{(6,2)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{90}(1)=2=\Phi_{6}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, z\right), \Phi_{(6,2)}\left(\left(x^{9}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{90}(1)=2=\Phi_{6}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=\left(x^{3}, I\right), \Phi_{(6,2)}\left(\left(x^{3}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}\left(x^{3}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=\left(x^{3}, z\right), \Phi_{(6,2)}\left(\left(x^{3}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}\left(x^{3}\right)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=(x, I), \Phi_{(6,2)}((x, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}(x)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
If $g=(x, z), \Phi_{(6,2)}((x, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{90}{90}(1+1)=2=\Phi_{6}(x)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(6,2)}(g)=0$ since $H \cap C L(g)=\phi$.
$H_{7}=\langle y, z\rangle$
If $g=(1, I), \Phi_{(7,2)}((1, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{20} \cdot 1=9=\Phi_{7}(1)$ since $H \cap C L(g)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
If $g=(1, z), \Phi_{(7,2)}((1, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{20} .1=9=\Phi_{7}(1)$ since $H \cap C L(g)=$ $\{(1, z)\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, I\right), \Phi_{(7,2)}\left(\left(x^{9}, I\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{180}{20}(1)=9=\Phi_{7}\left(x^{9}\right)$ since $H \cap$
$C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=\left(x^{9}, z\right), \Phi_{(7,2)}\left(\left(x^{9}, z\right)\right)=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|} \varphi(g)=\frac{180}{20}(1)=9=\Phi_{7}\left(x^{9}\right)$ since $H \cap$ $C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=(y, I), \Phi_{(7,2)}((y, I))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{10}{20}(1+1)=1=\Phi_{7}(y)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\left(g^{-1}\right)=1$.
If $g=(y, z), \Phi_{(7,2)}((y, z))=\frac{\left|C_{Q_{18} \times C_{5}}(g)\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{10}{20}(1+1)=1=\Phi_{7}(y)$ since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(7, l 2)}(g)=0$ since $H \cap C L(g)=\phi$. Then the Artin characters table of $\left(Q_{18} \times C_{5}\right)$ is given in the following table.

Γ-classes	$[1, I]$	$\left[x^{6}, l\right]$	$\left[x^{2}, I\right]$	$\left[x^{9}, 1\right]$	$\left[x^{3}, I\right]$	$\left[\begin{array}{ll}x, \\ \\ 2\end{array}\right]$	$[y, 1]$	$[1, z]$	$\left[x^{6}, z\right]$	$\left[x^{2}, z\right]$	$\left[x^{9}, z\right]$	$\left[x^{3}, z\right]$	[x, z]	[y, z]
$\left\|C L_{\alpha}\right\|$	1	2	2	1	2	2	18	1	2	2	1	2	2	18
$\underline{\mathrm{Q}_{18} \times \mathrm{C}_{5}\left(\mathrm{CL}_{\sim}\right) \mid}$	180	90	90	180	90	90	10	180	90	90	180	90	90	10
$\Phi_{(1,1)}$	180	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,1)}$	60	60	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,1)}$	20	20	20	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(4,1)}$	90	0	0	90	0	0	0	0	0	0	0	0	0	0
$\Phi(5,1)$	30	30	0	30	30	0	0	0	0	0	0	0	0	0
$\Phi_{(61)}$	10	10	10	10	10	10	0	0	0	0	0	0	0	0
$\Phi_{(7,1)}$	45	0	0	45	0	0	5	0	0	0	0	0	0	0
$\Phi_{(1,2)}$	36	0	0	0	0	0	0	36	0	0	0	0	0	0
$\Phi_{(2,2)}$	12	12	0	0	0	0	0	12	12	0	0	0	0	0
$\Phi_{(3,2)}$	4	4	4	0	0	0	0	4	4	4	0	0	0	0
$\Phi_{(4,2)}$	18	0	0	18	0	0	0	18	0	0	18	0	0	0
$\Phi_{(5,2)}$	6	6	0	6	6	0	0	6	6	0	6	6	0	0
$\Phi_{(6,2)}$	2	2	2	2	2	2	0	2	2	2	2	2	2	0
$\Phi_{(7,2)}$	9	0	0	9	0	0	1	9	0	0	9	0	0	1

Table(4,1)

Theorem 4.2: The Artin's character table of the group ($Q_{2 m}, C_{5}$) where $m=p^{2}$, $p>2, p$ is primenumber; is given as

$\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{5}\right)$														
Γ-classes	$[1, I]$	$\left[x^{2 p}, I\right]$	$\left[x^{2}, r\right]$	$\left[x^{p^{2}}, 1\right]$	$\left[x^{p}, I\right]$	$[x, 1]$	$[y, 1]$	[1,z]	$\left[x^{2 p}, 2\right.$	$\left[x^{2}, z\right]$	$\left[x^{\left.p^{2}, z\right]}\right.$	$\left[x^{p}, z\right]$	$[x, z]$	[$y, z]$
$\left\|C L_{a}\right\|$	1	2	2	1	,	2	$2 p^{2}$	1	2	2	1	2	2	$2 p^{2}$
$\left\|\mathrm{Q}_{18} \times \mathrm{C}_{5}\left(\mathrm{CL}_{2}\right)\right\|$	$20 p^{2}$	$10 p^{2}$	$10 p^{2}$	$20 p^{2}$	$10 p^{2}$	$10 p^{2}$	10	$20 p^{2}$	$10 p^{2}$	$10 p^{2}$	$20 p^{2}$	$10 p^{2}$	$10 p^{2}$	10
$\Phi_{\text {(i) }}$	$5 \mathrm{Ar}\left(Q_{2 p^{2}}\right)$							$5 \mathrm{Ar}\left(\mathrm{Q}_{2 p^{2}}\right)$						
$\Phi_{(21)}$														
$\Phi_{(31)}$														
$\Phi_{(6,1)}$														
$\Phi_{(6.1)}$														
$\Phi_{(0,1)}$														
$\Phi_{(0,2)}$														
$\Phi_{(22)}$														
$\Phi_{(32)}$			Ar($2 p^{2}$					
$\Phi_{(5,2)}$														
$\Phi_{(62)}$														

Table (4.2)
Which is $[14] \times[14]$ matrix square.

Proof : Let $g \in\left(Q_{2 p^{2}} \times C_{5}\right) ; g=(q, I)$ or $g=q(z), q \in Q_{2 m}, I, z \in C_{5}$.
Case I : If H is a cyclic subgroup of $\left(Q_{2 p^{2}} \times\{I\}\right)$,then:

$$
1-H=\langle(x, I)\rangle \quad 2-H=\langle(y, I)\rangle
$$

and φ the principal character of H, Φ_{j} Artin characters of $Q_{2 p^{2}}, 1 \leq j \leq l+1$ then by using theorem 3.8

$$
\phi_{j}(g)=\left\{\begin{array}{ccc}
\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } & h_{i} \in H \cap C L(g) \\
0 & \text { if } & H \cap C L(g)=\phi
\end{array}\right.
$$

(i) If $g=(1, I)$

$$
\Phi_{(j, 1)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|} \varphi(g)=\frac{20 p^{2}}{\left|C_{H}((1, I))\right|} \cdot 1=\frac{5 \mid Q_{2 p^{2}}(1)}{\left|C_{\langle x\rangle(1)}\right|}=5 \Phi_{j}(1)
$$

since $H \cap C L(1, I)=\{(1, I)\}$ and $\varphi(g)=1$.
(ii) If $\left.g=x^{p^{2}}, I\right), g \in H$

$$
\Phi_{(j, 1)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|} \varphi(g)=\frac{20 p^{2}}{\left|C_{H}\left(\left(x^{p^{2}}, 1\right)\right)\right|} \cdot 1=\frac{5\left|Q_{2 p^{2}}\left(x^{p^{2}}\right)\right|}{\left|C_{\langle x\rangle\left(x^{p^{2}}\right)}\right|} \cdot 1=5 \Phi_{j}\left(p^{2}\right)
$$

since $H \cap C L(g)=\{g\}$ and $\varphi(g)=1$.
(iii) If $g \neq\left(x^{p^{2}}, I\right)$ and $g \in H$
 since $H \cap C L(g)=\left\{g, g^{-1}\right\}, g=(q, I), q \in Q_{2 p^{2}}, q \neq x^{p^{2}}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
(iv) If $g \notin H, \Phi_{(j, 1)}(g)=0=5.0=5 \Phi_{j}(q)$ since $H \cap C L(g)=\phi$ and $q \in Q_{2 p^{2}}$ $2-I F H=\langle(y, I)\rangle=\left\{(1, I),(y, I),\left(y^{2}, I\right),\left(y^{3}, I\right)\right\}$.
(i) If $g=(1, I), \Phi_{(l+1,1)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|} \varphi(g)=\frac{20 p^{2}}{4} .1=5 \Phi_{j}(1)$ since $H \cap C L(1, I)=$ $\{(1, I)\}$ and $\varphi(g)=1$.
(ii) If $g=\left(x^{p^{2}}, I\right)=\left(y^{2}, I\right)$ and $g \in H$
$\Phi_{(l+1,1)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|}(\varphi(g))=\frac{20 p^{2}}{4} \cdot 1=5 \cdot p^{2}=5 \Phi_{(i+1)}\left(x^{p^{2}}\right)$ since $H \cap C L(g)=\{g\}$ and $\varphi(g)=1$.
(iii) If $g \neq\left(x^{p^{2}}, I\right)$ and $g \in H$, i.e. $\left\{g=(y, I)\right.$ or $g=\left(y^{3}, I\right)$.
$\Phi_{(l+1,1)}(g) \frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{10}{4}(1+1)=\frac{20}{4}=5.1=5 \Phi_{j+1}(y)$ since $H \cap$ $C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(l+1,1)}(g)=0$ since $H \cap C L(g)=\phi$.
Case II : If H is a cyclic subgroup of $\left(Q_{2 p^{2}} \times\{z\}\right)$ then:

$$
1-H=\langle(x, z)\rangle \quad 2-H=\langle(y, z)\rangle
$$

and φ the principal character of H, Φ Artin characters of $Q_{2 m}, 1 \leq j \leq l+1$ then by using Theorem 3.8

$$
\phi_{j}(g)=\left\{\begin{array}{cl}
\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } \quad h_{i} \in H \cap C L(g) \\
0 & \text { if } \quad H \cap C L(g)=\phi
\end{array}\right.
$$

$1-H=\langle x, z\rangle$.
(i) If $g=(1, I),(1, z)$

$$
\Phi_{(j, 2)}(g)=\frac{\left\lvert\, C_{Q_{2 p^{2} \times C_{5}(g)} \mid}^{\left|C_{H}(g)\right|} \varphi(g)=\frac{20 p^{2}}{\left|C_{H}((1, I))\right|} .1=\frac{5 \mid Q_{2 p^{2}}(1)}{5\left|C_{\langle x\rangle(1)}\right|}=\varphi(1)=\Phi_{j}(1)\right., ~(1)}{}=\varphi
$$

since $H \cap C L(g)=\{(1,1),(1, z)\}$ and $\varphi(g)=1$.
(ii) If $g=(1, I),(1, z),\left(x^{p^{2}}, I\right),\left(x^{p^{2}}, z\right) ; g \in H$.

If $g=(1, I)),(1, z)$

$$
\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|}=\frac{20 p^{2}}{\left|C_{H}((1, I))\right|} \cdot 1=\frac{5\left|Q_{2 p^{2}}(1)\right|}{5\left|C_{\langle x\rangle(1)}\right|} \varphi=\Phi_{j}(1)
$$

since $H \cap C L(g)=\{g\}$ and $\varphi(g)=1$.
If $g=\left(x^{p^{2}}, I\right),\left(x^{p^{2}}, z\right)$

$$
\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|} \varphi(g)=\frac{5\left|Q_{2 p^{2}}\right|\left(x^{p^{2}}\right) \mid}{5\left|C_{\langle x\rangle}\left(x^{p^{2}}\right)\right|} \varphi\left(x^{p^{2}}\right)=\Phi_{j}\left(x^{p^{2}}\right)
$$

since $H \cap C L(g)=\{g\}$ and $\varphi(g)=1$.
(iii) If $g \neq\left(x^{p^{2}}, I\right),\left(x^{p^{2}}, z\right)$ and $g \in H$
$\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|}=\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{10}{\left|C_{H}((g))\right|}(1+1)=\frac{5\left|Q_{2 p^{2}}(q)\right|}{5\left|C_{\langle x\rangle}(q)\right|} \varphi(q)=\Phi_{j}(q)$
since $H \cap C L(g)=\left\{g, g^{-1}\right\}, \varphi(g)=\varphi\left(g^{-1}\right)=1$ and $(g)=(q, z), q \in Q_{2 p^{2}} ; q \neq x^{p^{2}}$.
(iv) If $g \notin H$.
$\Phi_{(j, 2)}(g)=0=\Phi_{j}(q)$ since $H \cap C L(g)=\phi$ and $q \in Q_{2 p^{2}}$
2-If $H=\langle(y, I)\rangle=\left\{(1, I),(y, I),\left(y^{2}, I\right),\left(y^{3}, I\right),(1, z),(y, z),\left(y^{2}, z\right),\left(y^{3}, z\right),\left(1, z^{2}\right),\left(y, z^{2}\right),\left(y^{2}, z^{2}\right)\right.$, $\left.\left(y^{3}, z^{2}\right)\left(1, z^{3}\right),\left(y, z^{3}\right),\left(y^{2}, z^{3}\right),\left(y^{3}, z^{3}\right),\left(1, z^{4}\right),\left(y, z^{4}\right),\left(y^{2}, z^{4}\right),\left(y^{3}, z^{4}\right)\right\}$.
(i) If $g=(1, I),(1, z)$

$$
\Phi_{(l+1,2)}(g)=\frac{\left|C_{Q_{2 p^{2}} \times C_{5}(g)}\right|}{\left|C_{H}(g)\right|}\left(\varphi(g)=\frac{20 p^{2}}{20} \cdot 1=p^{2}=\Phi_{l+1}(g)\right.
$$

since $H \cap C L(g)=\{(1, I),(1, z)\}$ and $\varphi(g)=1$.
(ii) If $g=\left(y^{2}, I\right)=\left(x^{p^{2}}, I\right),\left(y^{2}, z\right),\left(y^{2}, z^{2}\right),\left(y^{2}, z^{3}\right),\left(y^{2}, z\right)$ and $g \in H$
$\Phi_{(l+1,2)}(g)=\frac{\mid C_{Q_{2 p^{2}} \times C_{5}(g) \mid}}{\left|C_{H}(g)\right|} \varphi(g)=\frac{20 p^{2}}{20} .1=p^{2}=\Phi_{l+1}(g)$ since $H \cap C L(g)=\{g\}$ and $\varphi(g)=1$.
(iii) If $g \neq\left(x^{p^{2}}, I\right)$ and $g \in H$, i.e. $g=\left\{(y, I),(y, z),\left(y, z^{2}\right),\left(y, z^{3}\right),\left(y, z^{4}\right)\right\}$ or $g=$ $\left.\left(y^{3}, I\right),\left(y^{3}, z\right),\left(y^{3}, z^{2}\right),\left(y^{3}, z^{3}\right),\left(y^{3}, z^{4}\right)\right\}$

$$
\Phi_{(l+1,2)}(g)=\frac{\mid C_{Q_{2 p^{2} \times C_{5}(g)} \mid}}{\left|C_{H}(g)\right|}=\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{10}{20}(1+1)=1=\Phi_{j+1}(y)
$$

since $H \cap C L(g)=\left\{g, g^{-1}\right\}$ and $\varphi(g)=\varphi\left(g^{-1}\right)=1$.
Otherwise $\Phi_{(l+1,2)}(g)=0$ since $H \cap C L(g)=\phi$.
Example 4.3: To construct $\operatorname{Ar}\left(Q_{98} \times C_{5}\right)=\operatorname{Ar}\left(Q_{2.7}^{2} \times C_{5}\right), p=7$, we use Theorem
3.5 as the following :
$\operatorname{Ar}\left(\mathrm{Q}_{98}\right)=$

Γ-Classes	$[1]$	$\left[x^{14}\right]$	$\left[x^{2}\right]$	$\left[x^{49}\right]$	$\left[x^{7}\right]$	$[x]$	$[y]$
$\left\|\mathrm{CL}_{a}\right\|$	1	2	2	1	2	2	98
$\left\|\mathrm{C}_{6}\left(\mathrm{CL}_{a}\right)\right\|$	196	98	98	98	98	98	196
Φ_{1}	196	0	0	0	0	0	0
Φ_{2}	28	28	0	0	0	0	0
Φ_{3}	4	4	4	0	0	0	0
Φ_{4}	98	0	0	98	0	0	0
Φ_{5}	14	14	0	14	14	0	0
Φ_{6}	2	2	2	2	2	2	0
Φ_{7}	49	0	0	49	0	0	1

Table $(4,3)$

$\mathrm{Ar}\left(\mathrm{Q}_{98} \times \mathrm{C}_{5}\right)$														
Γ-Classes	[1,I]	$\left[x^{1 / 4}+1\right]$	$\left[x^{2}-20\right]$	$\left[x^{42}\right.$ in ${ }^{\text {c }}$	$\left[x^{7}\right.$ 明]	[M, O]	Y 2×10	[1,z]		$\left[x^{2}-2\right]^{2}$	$1 \mathrm{x}^{+3}-2 \mid$	$x^{3}-20$	120	\| 220
$\mid \mathrm{CL}_{\mathrm{a}}$ \|	1	2	2	1	2	2	98	1	2	2	1	2	2	98
$\mathrm{C}_{6}\left(\mathrm{CL}_{\alpha}\right) \mid$	980	490	490	980	490	490	10	980	490	490	980	490	490	10
$\Phi_{(1,1)}$	980	0	0		0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,1)}$	140	140	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,1)}$	20	20	20	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(4,1)}$	490	0	0	490	0	0	0	0	0	0	0	0	0	0
$\Phi_{(5,1)}$	60	60	0	60	60	0	0	0	0	0	0	0	0	0
$\Phi_{(6,1)}$	10	10	10	10	10	10	0	0	0	0	0	0	0	0
$\Phi_{(7,1)}$	245	0	0	245	0	0	5	0	0	0	0	0	0	0
$\Phi_{(1,2)}$	196	0	0	0	0	0	0	196	0	0	0	0	0	0
$\Phi_{(2,2]}$	28	28	0	0	0	0	0	28	28	0	0	0	0	0
$\Phi_{(3,2)}$	4	4	4	0	0	0	0	4	4	4	0	0	0	0
$\Phi_{(4,2)}$	98	0	0	98	0	0	0	98	0	0	98	0	0	0
$\Phi_{(5,2)}$	14	14	0	14	14	0	0	14	14	0	14	14	0	0
$\Phi_{(6,2)}$	2	2	2	2	2	2	0	2	2	2	2	2	2	0
$\Phi_{(7,2)}$	49	0	0	49	0	0	1	49	0	0	49	0	0	1

Table(4,4)

Then by using Theorem 4.2 Artin characters table of the group $\left(Q_{98} \times C_{5}\right)$ is :

References

[1] Abdul-Munem A. H., On Artin Cokernel of the Quaternion Group $Q_{2 m}$ when m is an Odd Number, M.Sc. thesis, University of Kufa, (2008).
[2] Abid A. S., Artin's Characters Table of Dihedral Group for Odd Number, M.Sc. thesis, University of Kufa, (2006).
[3] Curits C. and Reiner I., Methods of Representation Theory with Application to Finite Groups and Order, John willy and Sons, New York, (1981).
[4] Isaacs I. M., On Character Theory of Finite Groups, Academic Press, New york, (1976).

