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Abstract

In this paper, we discuss some properties of a strongly P − η−proximal mapping of
a δ-strongly maximal P − η−monotone mapping and prove that it is single-valued
and Lipschitz continuous. Further, we consider a multi-valued variational-like in-
clusion problem (in short, MVLIP) in real Hilbert space and construct an iterative
algorithm for MVLIP. Using strongly P −η−proximal mapping approach, we prove
the existence of solution and discuss the convergence analysis of iterative algorithm
for MVLIP. The technique and results presented in this paper can be viewed as
extension of the techniques and corresponding results given in [2-8,10,13,14].

1. Introduction

In 1968, Brezis [1] initiated the study of the existence theory of a class of variational
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inequalities later known as variational inclusions, using proximal point mappings due

to Moreau [11], have been widely studied in recent years. One of the most interesting

and important problems in the theory of variational inclusions is the development of

efficient and implementable iterative algorithms. Variational inclusions include varia-

tional, quasi-variational, variational-like inequalities as special cases. For application

of variational inclusions, we refer to [1,6,9-12]. Various kinds of iterative method have

been studied to find the approximate solutions for variational inclusions. Among these

method, the proximal mapping method for solving variational inclusions has been widely

used by many authors, see for example [2-8,10,13,14].

In 1994, Hassouni and Moudafi [6] introduced and studied a class of variational inclusions

and developed a perturbed iterative algorithm for the variational inclusions. In recent

years, a number of researchers namely, Chang et al. [2], Ding and Luo [4], Fang and

Huang [5], Huang [7], Kazmi [9] and Noor [13] have obtained some important extensions

of the results of Hassouni and Moudafi [6]. Recently, Chidume et al. [3], Huang and

Fang [8], Kazmi and Khan [10] and Noor [14] have studied existence and convergence

analysis of solutions for various classes of variational (-like) inclusions using P--proximal

mappings and their generalizations.

Inspired by the work above, in this paper, we discuss some properties of a strongly

P −η−proximal mapping of a δ-strongly maximal P −η−monotone mapping and prove

that it is single-valued and Lipschitz continuous. Further, we consider a multi-valued

variational-like inclusion problem (in short, MVLIP) in real Hilbert space and construct

an iterative algorithm for MVLIP. Using strongly P − η−proximal mapping approach,

we prove the existence of solution and discuss the convergence analysis of iterative algo-

rithm for MVLIP. The results presented in this paper generalize and improve the results

given in [2-8,10,13,14].

2. Strongly P − η−proximal Mapping

First, we need the following known concepts and results, which shall be used in the

sequel.

Definition 2.1 [5, 8-10] : Let η : H ×H → H be a single-valued mapping. Then a

multi-valued mapping M : H → 2H is said to be:
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(i) η-monotone, if

〈u− v, η(x, y)〉 ≥ 0, ∀ x, y ∈ H, ∀ u ∈M(x), ∀ v ∈M(y);

(ii) strictly η-monotone, if

〈u− v, η(x, y)〉 ≥ 0, ∀ x, y ∈ H, ∀ u ∈M(x), ∀ v ∈M(y),

and equality holds if and only if x = y.

(iii) δ-strongly η-monotone, if there exists a constant δ > 0 such that

〈u− v, η(x, y)〉 ≥ δ‖x− y‖2,∀ x, y ∈ H, ∀ u ∈M(x), ∀ v ∈M(y);

(iv) maximal η-monotone, if M is η-monotone and (I + ρM)(H) = H for any ρ > 0,

where I is an identity mapping.

Definition 2.2 [8-10] : A mapping η : H×H → H is said to be ψ-Lipschitz continuous,

if there exists a constant ψ > 0 such that

‖η(x, y)‖ ≤ ψ‖x− y‖, ∀ x, y ∈ H.

Definition 2.3 [5,8-10] : Let η : H × H → H and P : H → H be single-valued

mappings. Then a multi-valued mapping M : H → 2H is said to be maximal P −
η−monotone, if M is η-monotone and (P + ρM)(H) = H for any ρ > 0.

Definition 2.4 [5,8-10] : Let η : H × H → H and P : H → H be single-valued

mappings. A multi-valued mapping M : H → 2H is said to be δ-strongly maximal

P − η-monotone, if M is δ-strongly η-monotone and (P + ρM)H = H for any ρ > 0.

Now, we state the following theorem which gives some properties of δ- strongly maximal

P−η-monotone mapping and the proof of the theorem is on similar lines as the Theorem

2.1 is proved in [5,8-10].

Theorem 2.1 [8-10,14] : Let η : H × H → H be a single-valued mapping and

P : H → H be a strictly η-monotone mapping [see, 9-10]. Let M : H → 2H be a

δ-strongly maximal P − η-monotone multi-valued mapping. Then

(a) 〈u − v, η(x, y) ≥ 0, ∀ (v, y) ∈ Graph(M) implies (u, x) ∈ Graph(M) where

Graph(M) = {(u, x) ∈ H ×H : u ∈M(x)};
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(b) the mapping (P + ρM)−1 is single-valued for all ρ > 0.

By Theorem 2.1, we define strongly P − η-proximal mapping for a δ-strongly maximal

P − η-monotone mapping M as follows:

RMP,η(z) = (P + ρM)−1, ∀ z ∈ H, (2.1)

where ρ > 0 is a constant and P : H → H is a strictly η-monotone mapping.

Next, we state an important theorem which shows that strongly P − η− proximal

mapping is Lipschitz continuous.

Theorem 2.2 [8-10,13] : Let P : H → H be a δ-strongly η-monotone and η : H×H →
H be a ψ-Lipschitz continuous mappings. Let M : H → 2H be a δ-strongly maximal

P − η-monotone multi-valued mapping. Then strongly P − η−proximal mapping RMP,η
of M is ψ

κ+ρδ -Lipschitz continuous, that is,

‖RMP,η(x)−RMP,η(y)‖ ≤ ψ

κ+ ρδ
‖x− y‖, ∀ x, y ∈ H.

3. Multi-valued Variational-like Inclusion Problem

Let H be a real Hilbert space and CB(H) be the family of all nonempty, closed and

bounded subsets of H. Let P, g : H → H, η : H×H → H,N : H×H×H → H be single-

valued and T,A, S : H → CB(H) be multi-valued mappings. Let M : H ×H → 2H be

a multi-valued mapping such that for each z ∈ H,M(·, z) is δ-strongly maximal P − η-

monotone with domain M(·, z) ∩ g(H) 6= Ø. We consider the following multi-valued

variational-like inclusion problem (in short, MVLIP):

Find x ∈ H,u ∈ T (x), v ∈ A(x) and w ∈ S(x) such that

0 ∈ N(u, v, w) +M(g(x), x). (3.1)

We remark that for suitable choices of the mappings g, η,M,N, P, T,A, S and the space

H, MVLIP (3.1) reduces to various classes of variational inclusions as special cases, see

for example [4,5,9-14].

We need the following definition, which shall be used in the sequel.

Definition 3.1 : Let P, g : H → H be single valued and T,A, S : H → CB(H) be

multi-valued mappings. A mapping N : H ×H ×H → H is said to be:
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(i) s-strongly mixed P ◦g-monotone with respect to T,A and S, if there exists a constant

s > 0 such that

〈N(u1, v1, w1)−N(u2, v2, w2), P ◦ g(x)− P ◦ g(y)〉 ≥ s‖x− y‖2,

∀x, y ∈ H,u1 ∈ T (x), u2 ∈ T (y), v1 ∈ A(x), v2 ∈ A(y), w1 ∈ S(x), w2 ∈ S(y);

(ii) (α, β, γ)-mixed Lipschitz continuous, if there exist constants α, β, γ > 0 such that

‖N(x1, y1, z1)−N(x2, y2, z2)‖ ≤ α‖x1 − x2‖+ β‖y1 − y1‖+ γ‖z1 − z2‖,

∀ x1, x2, y1, y2, z1, z2 ∈ H.

Remark 3.1 : The concept of s-strongly mixed P ◦g-monotonicity with respect to T,A

and S and (α, β, γ)-mixed Lipschitz continuity of mapping N(·, ·, ·) are more general

than the concepts used in [9-14]. If T is ε−H-Lipschitz continuous, then s ≤ αε, where

H(·, ·) is the Hausdorff metric on CB(H).

4. Iterative Algorithm and Convergence Analysis

First, we prove the following lemma, which will be used in the sequel, is an immediate

consequence of the definition of RM(·,x)
P,η .

Lemma 4.1 : (x, u, v, w) with x ∈ H,u ∈ T (x), v ∈ A(x) and w ∈ S(x) is a solution of

MVLIP (3.1) if and only if (x, u, v, w) satisfies the relation

g(x) = R
M(·,x)
P,η (P ◦ g(x)− ρN(u, v, w)), (4.1)

where RM(·,x)
P,η ≡ (P + ρM)(·, x))−1, P ◦ g denotes P composition g, and ρ > 0 is a

constant.

Proof : (x, u, v, w) is a solution of MVLIP (3.1) if and only if (x, u, v, w) satisfies

0 ∈ ρN(u, v, w) + ρM(g(x), x) for ρ > 0

⇔ P ◦ g(x) ∈ ρN(u, v, w) + P ◦ g(x) + ρM(g(x), x)

⇔ P ◦ g(x)− ρN(u, v, w) ∈ (P + ρM(·, x))g(x)

⇔ g(x) = R
M(·,x)
P,η (P ◦ g(x)− ρN(u, v, w)).

This completes the proof.
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By using Lemma 4.1 and Nadler’s technique [12], we suggest and analyze the following

iterative algorithm for finding the approximate solution of MVLIP (3.1):

Iterative Algorithm 4.1 : For given x0 ∈ H,u0 ∈ T (x0), v0 ∈ A(x0), w0 ∈ S(x0)

compute an approximate solution (xn, un, vn, wn) given by the iterative schemes:

xn+1 = (1− λ)xn + λ{xn − g(xn) +R
M(·,xn)
P,η (P ◦ g(xn)− ρN(un, vn, wn))}, (4.2)

un ∈ T (xn), ‖un+1 − un‖ ≤ (1 + (1 + n)−1)H(T (xn+1), T (xn)), (4.3)

vn ∈ A(xn), ‖vn+1 − vn‖ ≤ (1 + (1 + n)−1)H(A(xn+1), A(xn)), (4.4)

wn ∈ S(xn), ‖wn+1 − wn‖ ≤ (1 + (1 + n)−1)H(S(xn+1), S(xn)), (4.4)

where n = 0, 1, 2, · · · , 0 < λ < 1 is a relaxation parameter, and ρ > 0 is a constant.

Next, we prove the existence of solution of MVLIP (3.1) and discuss the convergence

analysis of Iterative Algorithm 4.1.

Theorem 4.1 : Let η : H ×H → H be ψ-Lipschitz continuous mapping; let T,A, S :

H → CB(H) be ε − H-Lipschitz continuous, µ − H-Lipschitz continuous and ξ − H-

Lipschitz continuous mappings, respectively; let g : H → H be ν- strongly monotone

and σ-Lipschitz continuous mapping; let P : H → H be κ-strongly η-monotone and

P ◦ g be ω-Lipschitz continuous mappings; let the mapping N : H ×H ×H → H be s-

strongly mixed P ◦g-monotone with respect to T,A and S and (α, β, γ)-mixed Lipschitz

continuous. Let the mapping M : H × H → 2H be such that for each fixed x ∈ H,

M(·, x) is δ-strongly maximal P −η-monotone and suppose that there exists τ > 0 such

that

‖RM(·,x1)
P,η (z)−RM(·,x2)

P,η (z)‖ ≤ τ‖x1 − x2‖, ∀ x1, x2, z ∈ H, (4.6)

and ρ > 0 satisfies the following condition:

τ +
√

1− 2ν + σ2 +
ψ

κ+ ρδ

√
ω2 − 2ρs+ ρ2(αε+ βµ+ γξ)2 < 1. (4.7)

Then the sequences {xn}, {un}, {vn} and {wn} generated by Iterative Algorithm 4.1

converge strongly to x ∈ H,u ∈ T (x), v ∈ A(x) and w ∈ S(x), respectively, and

(x, u, v, w) is a solution of MVLIP (3.1).
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Proof : By using Assumption (4.6), Iterative Algorithm 4.1 and Theorem 2.2, we

estimate:

‖xn+2 − xn+1‖ = (1− λ)‖xn+1 − xn‖+ λ‖xn+1 − xn − (g(xn+1)− g(xn))‖

+λ‖RM(·,xn+1)
P,η [P ◦ g(xn+1)− ρN(un+1, vn+1, wn+1)]

−RM(·,xn)
P,η [p ◦ g(xn)− ρN(un, vn, wn)]‖

≤ (1− λ)‖xn+1 − xn‖+ λ‖xn+1 − xn − (g(xn+1)− g(xn))‖

+λ‖RM(·,xn+1)
P,η [P ◦ g(xn+1)− ρN(un+1, vn+1, wn+1)]

−RM(·,xn)
P,η [P ◦ g(xn+1)− ρN(un+1, vn+1, wn+1)]‖

+λ‖RM(·,xn)
P,η [P ◦ g(xn+1)− ρN(un+1, vn+1, wn+1)]

−RM(·,xn)
P,η [P ◦ g(xn)− ρN(un, vn, wn)]‖

≤ (1− λ)‖xn+1 − xn‖+ λ‖xn+1 − xn − (g(xn+1 − g(xn))‖+ λτ‖xn+1 − xn‖

+
λψ

κ+ ρδ
‖P ◦ g(xn+1)− P ◦ g(xn)− ρ(N(un+1, vn+1, wn+1)−N(un, vn, wn))‖. (4.8)

Since g is ν-strongly monotone and σ-Lipschitz continuous, then we have

‖n+1 − xn − (g(xn+1 − g(xn))‖2 = ‖xn+1 − xn‖2 − 2〈g(xn+1)− g(xn), xn+1 − xn〉

+‖g(xn+1)− g(xn)‖2

≤ (1− 2ν + σ2)‖‖xn+1 − xn‖2. (4.9)

Since N is s-strongly mixed P ◦ g-monotone with respect to T,A and S and (α, β, γ)-

mixed Lipschitz continuous; T,A and S are ε−H-Lipschitz continuous, µ−H-Lipschitz

continuous and ξ−H-Lipschitz continuous, respectively; P ◦g is ω-Lipschitz continuous,

we have the following estimates:

‖N(un+1, vn+1, wn+1)−N(un, vn, wn)‖

≤ α‖un+1 − un‖+ β‖vn+1 − vn‖+ γ‖wn+1 − wn‖

≤ (1 + (1 + n)−1)[αH(T (xn+1), T (xn)) + βH(A(xn+1), A(xn)) + γH(S(xn+1), S(xn))]

≤ (1 + (1 + n)−1)(αε+ βµ+ γξ)‖xn+1 − xn‖, (4.10)
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and

‖P ◦ g(xn+1)− P ◦ g(xn)− ρ(N(un+1, vn+1, wn+1)−N(un, vn, wn))‖2

= ‖P ◦ g(xn+1)− P ◦ g(xn)‖2 − 2ρ〈N(un+1, vn+1, wn+1)−N(un, vn, wn),

P ◦ g(xn+1)− P ◦ g(xn)〉+ ρ2‖N(un+1, vn+1, wn+1)−N(un, vn, wn)‖2

≤ ω2‖xn+1 − xn‖2 − ρs‖xn+1 − xn‖2 + ρ2(1 + (1 + n)−1)2(αε+ βµ+ γξ)2‖xn+1 − xn‖2

= (ω2 − 2ρs+ ρ2(1 + (1 + n)−1)2(αε+ βµ+ γξ)2)‖xn+1 − xn‖2. (4.11)

From (4.8)-(4.11), we have

‖xn+2 − xn+1‖ ≤
{

(1− λ) + λ((1− 2ν + σ2)1/2 + τ +
ψ

κ+ ρδ
(ω2 − 2ρs+

+ρ2(1 + (1 + n)−1)2(αε+ βµ+ γξ)2)1/2)
}
‖xn+1 − xn‖.

Hence, we can write

‖xn+2 − xn+1‖ ≤ (1− λ(1− θn)‖xn+1 − xn‖, (4.12)

where

θn = τ +
√

1− 2ν + σ2 +
ψ

κ+ ρδ

√
ω2 − 2ρs+ ρ2(1 + (1 + n)−1)2(αε+ βµ+ γξ)2.

(4.13)

Letting θn → θ as n→∞, where

θ := τ +
√

1− 2ν + σ2 +
ψ

κ+ ρδ

√
ω2 − 2ρs+ ρ2(αε+ βµ+ γξ)2. (4.14)

By condition (4.7), it follows that θ ∈ (0, 1). Hence θn < 1 for sufficiently large n.

Therefore (4.12) implies that {xn} is a Cauchy sequence in H and hence there exists

x ∈ H such that xn → x as n → ∞. By ε −H-Lipschitz continuity of T and Iterative

Algorithm 4.1, we have

‖un+1 − un‖ ≤ (1 + (1 + n)−1)H(T (xn+1), T (xn))

≤ (1 + (1 + n)−1)ε‖xn+1 − xn‖. (4.15)

Since {xn} is a Cauchy sequence in H, it follows from (4.15) that {un} is a Cauchy

sequence in H and hence there exists u ∈ H such that {un} → u as n→∞. Similarly,

Lipschitz continuity of A,S, g implies that {vn}, {wn} and {g(xn)} are Cauchy sequences
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in H and hence there exist v, w and g(x) in H such that vn → v, wn → w and g(xn)→
g(x) as n→∞.

Next, we claim that u ∈ T (x). Since un ∈ T (xn), we have

d(u, T (x)) ≤ ‖u− un‖+ d(un, T (xn)) +H(T (xn), T (x))

≤ ‖u− un‖+ ε‖xn − x‖ → 0 as n→∞

and hence u ∈ T (x). Similarly, we can show that v ∈ A(x) and w ∈ S(x). Further,

Lipschitz continuity of the mappings g, P ◦ g, N(·, ·, ·), RM(·,x)
P,η , Assumption 4.6 and

Iterative Algorithm 4.1 gives that

x = (1− λ)x+ λ[x− g(x) +R
M(·,x)
P,η (P ◦ g(x)− ρN(u, v, w))],

that is

g(x) = R
M(·,x)
P,η (P ◦ g(x)− ρN(u, v, w)),

and hence, from Lemma 4.1, it follows that (x, u, v, w) is a solution of MVLIP (3.1).

This completes the proof.

Remark 4.1 : For ρ > 0, it is clear that s ≤ αε;σ >
√

2ν − 1; 2ρs < ω2; κ + ρδ 6= 0.

Further, θ ∈ (0, 1) and condition (4.7) of Theorem 4.1 can be easily verified by giving

some suitable values of constants.
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