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Abstract
In this paper the numerical method for solving Abel’s integral equation this method
is based on point interpolation meshless method. Also Radial basis function, zeros
of the shifted Legendre polynomial as the collocation points utilized to apply for
solving Abel,s integral equation of the first and second kind the result of numerical
experiment show that the numerical scheme is very effective and convenient of this
method.

1. Introduction

Abel’s integral equation an important tool for modeling an numerous phenomena in ba-

sic for engineering sciences such as chemistry, physics, biology, mechanics and electronic.

Abel’s integral equation appearing in two form the first and second kind as follows:

f(x) =
∫ x

0

y(t)√
x− t

dt

and
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y(x) = f(x) +
∫ x

0

y(t)√
x− t

dt.

In general

y(x) = f(x) +
∫ x

0
K(x, t, y(t))dt (1)

where K(x, t, y(t)) = y(t)√
x−t

, f(x) is continuous function, 0 ≤ x, t ≤ c, c is constant. Our

main aim is offering a new approach for solving these cases.

Able’s integral equation with singularity property causes hard and heavy computation,

different methods solving this equation but only some of them are efficient [1,2,7].

A point interpolation method (PIM) was proposed to address above two issues [5, 6].

The (PIM) seems attractive several way, first its approximation function passes through

each node in an influence domain, second, its shape function are simple compared with

any other method, third, is shape function and derivatives are easily developed only if

basis function are selected.

This paper proposes a point interpolation meshless method based on radial basis func-

tion for the solution of Able’s integral equation. This forms a radial PIM, particularly,

multiquadric radial basis function are applied in the radial PIM. For convenience the

solution we use radial with {xj}Nj=1 nodes which are the zeros of the shifted Legendre

polynomial LN (x), 0 ≤ x ≤ 1. The shifted Legendre polynomial Li(x) are defined on

the interval [0,1] and satisfy the following formulae [8].

L0(x) = 1, Li(x) = 2x− 1

Li+1(x) =
2i
i+ 1

(2x− 1)Li(x)− i

i+ 1
Li−1(x), i = 1, 2, 3, · · ·

Finally, by using the collocation method we obtain the system of linear equation.

The paper it following way: in section 2, we describe the properties of radial(PIM) func-

tion. In section 3 we combined point interpolation technique, radial basis function and

collocation method for solving Able’s integral equation. Some examples are investigated

in section 4, the numerical result show the accuracy of the method. The conclusions are

discussed in the final section.
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2. Radial Basis Functions

2.1 Definition of Radial Basis Function

Let R+ = {x ∈ R, x ≥ 0} be the non-negative half-line and let B : R+ → R be a

continuous function with B(0) ≥ 0. A radial basis functions on Rd is a function of the

form B(‖X −Xi‖), where X,Xi ∈ Rd and ‖ · ‖ denotes the Euclidean distance between

X and Xs
i . If one chooses N points {x}Nj=1 in Rd then by custom

θ(X) =
N∑

i=1

λiB(‖X −Xi‖); λi ∈ R,

is called a radial basis functions as well [3].

The multiquadrics function (MQ) define√
r2 + c2, ‘ r = ‖X −Xi‖, c > 0.

2.2 Point Interpolation Based on Radial Basis Function

Consider an approximation function y(x) in an influence domain that has a set of

arbitrarily distributed nodes Pi(x)(i = 1, 2, · · · , n). n is the number of nodes in the

influence domain of x. Nodal function value is assumed to be yi at the node xi. Radial

PIM constructs the approximation function y(x) to pass through all these node points

using radial basis function Bi(x) and polynomial basis function pj(x) [6]

y(x) = B(x)ai + P (x)bj = BT (x)a+ P T (x)b (2)

where ai is the coefficient for Bi(x) and bj the coefficient for pi(x) (usually, m < n).

The vectors are defined a

aT = [a1, a2, · · · , an]

bT = [b1, b2, · · · , bm]

BT = [B1(x) B2(x) · · ·Bn(x)]

P T = [P1(x) P2(x) · · ·Pm(x)].

(3)

A polynomial basis function has the following monomial terms as:

P T (x) = [1, x, x2, x3, · · · ]. (4)
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The coefficients ai and bj in Equation (2) are determined by enforcing the interpolation

pass through all n scattered nodal points within the influence domain. The interpolation

at the kth point has

yk(x) =
n∑

i=1

aiBi(xk) +
m∑

j=1

bjPj(xk), k = 1, 2, · · · , n. (5)

The polynomial term is an extra-requirement that guarantees unique approximation [3].

Following constraints are usually imposed: It is expressed in matrix form as follows: B0 P0

P T
0 0

 
a

b

 ==


ye

0

 or G


a

b

 =


ye

0

 (6)

where the vector for function values is defined as

ye = [y1, y2, · · · , yn]T . (7)

The coefficient matrix B0 on unknowns a is

B0 =


B1(x1) · · · Bn(x1)

...
. . .

...

B1(xn) · · · Bn(xn)

 (8)

The coefficient matrix P0 on unknowns b is

P0 =


P1(x1) · · · Pm(x1)

...
. . .

...

P1(xn) · · · Pn(xn)

 (9)

Because the distance is directionless, there is Bk(xi) = Bi(xk), which means that the

matrix B0 is symmetric. Unique solution is obtained if the inverse of matrix B0 exists,
a

b

 = G−1


ye

0

 .

The interpolation is finally expressed as

y(x) = [BT (x) P T (x)]G−1


ye

0

 = Φ(x)Λ
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where the matrix of shape functions Φ(x) is defined by

Φ(x) = [Φ1(x),Φ2(x), · · · ,Φn(x)]

in which

Φk(x) =
n∑

i=1

Bi(x)G−i,k +
m∑

j=1

Pj(x)G−n+j,k

where G−i,k is the (i; k) element of matrix G−1. After radial basis functions are deter-

mined, shape functions depend only upon the position of scattered nodes. Once the

inverse of matrix G is obtained.

The results of this section can be summarized in the following algorithm.

Algorithm

The algorithm works in the following manner:

Choose N center point {xj}Nj=1 from the domain set [a, b].

1. Approximate y(x) as yN (x) = ΦT (x)Λ.

2. Substitute yN (x) into the main problem and creat residual function Res(x).

3. Substitute collocation points {xj}Nj=1 into the Res(x) and create the N equations.

4. Solve the N equations with N unknown coefficients of members of Λ and find the

numerical solution.

3. Description of the Method

In the present method, the closed form PIM approximating function Eq. (1) is first

obtained from a set of training points, as follows:

y(x) = yN (x) =
N∑

i=1

λiφi(x) = ΦT (x)Λ. (10)

Then, from substituting Eq. (11) into Eq. (1), we have

ΦT (x)Λ = f(x) +
∫ x

0
k(x, t,ΦT (t)Λ)dt. (11)

We now collocate Eq. (11) at points {xi}Ni=1 as

ΦT (xi)Λ = f(xi) +
∫ xi

0
K(xi, t,ΦT (t)Λ)dt (12)
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Res(xi) = −ΦT (xi)Λ + f(xi) +
∫ xi

0
K(xi, t,ΦT (t)Λ)dt. (13)

The set of equations for obtaining the coefficients {λi}Ni=1 come from equalizing Eq. (13)

to zero at N interpolate nodes. Behavior of the MQ-RBF method, we applied the law

root of mean square error (RMSR)

RMSR =

√√√√√ N∑
i=1

(y(xi)− yn(xi))

N
.

4. Numerical Results

In order to illustrate the performance of radial point interpolation meshless method in

solving Able’s integral equation and justify the accuracy and efficiency of our method,

we consider the following examples. We use multiquadrics (MQ) RBF.

Example 4.1 : Consider the following Abel’s integral equation [9]∫ x

0

y(t)√
x− t

dt =
2

105
√
x(105− 56x2 + 48x3), x = [0, 1]. (14)

With the exact solution y(x) = x. Applied present method and solve eq. (14). RMSR

value is 1.5483 ∗ 10−14 by using m = 5 and n = 7 multiquadrics function.

Example 4.2 : Consider the following Abel’s integral equation [9]

y(t) = x2 +
16
15
x

5
2 −

∫ x

0

y(t)√
x− t

dt‘ x = [0, 1]. (15)

With the exact solution y(x) = x3−x2 + 1. Applied present method and solve eq. (15).

RMSR value is 1.4675 ∗ 10−14 by using m=5 and n=7 multiquadrics function.

Example 4.3 : Consider the following Abel’s integral equation [4]

y(t) = x− 4
3
x

3
2 +

∫ x

0

y(t)√
x− t

dt x = [0, 1]. (16)

With the exact solution y(x) = x. Applied present method and solve eq. (16). RMSR

value is 1.001 ∗ 10−15 by using m = 5 and n = 7 multiquadrics function.

5. Conclusion

In this method numerical scheme to solve Ablel’s integral equation using collocation

points and approximation the solution using the multiqudric (MQ) radial a point in-

terpolation meshless method. We note that this method is easy to computation and
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through the comparison with exact solution we show that the method is good accuracy

and efficiency.
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