International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 231-240

PRINCIPAL k-LEFT IDEALS IN THE MATRIX SEMIRING $M_{n}(\mathfrak{B})$

L. JOHN 1 AND HARITA VIJAY ${ }^{2}$
1,2 Department of Mathematics, University of Kerala, Trivandrum, India

Abstract

Let $\mathfrak{B}=\{0,1\}$. Here the two operations of ' + ' and ' ${ }^{\prime}$ ' on \mathfrak{B} are defined as follows: $0+0=0,0+1=1,1+0=1,1+1=1,0.0=0,0.1=0,1.0=0,1.1=1$. Then $(\mathfrak{B},+,$.$) is a semiring called the Boolean semiring. The set of all n \times n$ matrices over the Boolean semiring \mathfrak{B} form a semiring under the operations of matrix addition and matrix multiplication and is denoted by $M_{n}(\mathfrak{B})$, where n is a positive integer. In this paper we study the principal left ideals generated by the matrices in the semiring $M_{n}(\mathfrak{B}),(n>1)$ and characterise the principal k-left ideals of $M_{n}(\mathfrak{B})$.

1. Introduction

The concept of semiring was introduced by H.S.Vandiver [5] in 1934. A semiring is a nonempty set S on which the operations of ' + ' and '.' have been defined such that the following conditions are satisfied :

Key Words : Boolean semiring, Principal left ideal, Permutation matrix, Row space, k-ideals.
AMS Subject Classification : 16Y60.

1. $(S,+)$ is a commutative monoid with identity element 0 .
2. $(S,$.$) is a monoid with identity element 1$.
3. Multiplication '.' distributes over addition '+'from either side.
4. $0 . s=0=s .0$, for all $s \in S$.

Here after S denotes the semiring $(S,+,$.$) and s a$ denotes $s . a$ for $s, a \in S$.Here $1 \neq 0$, to avoid the trivial case. Again 0 is the only absorbing zero. For, if $z \in S$ with $z s=z=s z$, for all $s \in S$ then $0=0 z=z$. A subset $A \neq \phi$ of a semiring S is called a left (right) ideal of S if $a+b \in A$ and $s a \in A(a s \in A)$, for all $a, b \in A$ and $s \in S$. An ideal in a semiring S is a nonempty subset which is both a left and right ideal. A principal left ideal generated by $a \in S$ is the left ideal $S a=\{s a: s \in S\}$. A principal right ideal generated by $a \in S$ is the right ideal $a S=\{a s: s \in S\}$. Throughtout this paper we use the notation $<a>_{L}$ to denote the principal left ideal generated by $a \in S$ and $<a>_{R}$ to denote the principal right ideal generated by $a \in S$. Any two elements of a semiring S are said to be \mathscr{L}-equivalent if they generate the same principal left ideal of S. \mathscr{R} equivalence is defined dually. In 1958, Henriksen [1] defined a more restricted class of ideals in a semiring which he called a k-ideal. An ideal A of a semiring S is called a k-deal if $a, a+b \in A$ implies that $b \in A$,for all $a, b \in S$. This ideal is also called a subtractive ideal. Both $\{0\}$ and S are k-deals of the semiring S. For the terminology regarding semirings used in this paper refer [2] and [3].

1.1Boolean Semiring

We denote the Boolean semiring by $(\mathfrak{B},+,$.$) where \mathfrak{B}=\{0,1\}$ and the operations of + and . are defined as follows:

$$
0+0=0,0+1=1,1+0=1,1+1=1,0.0=0,0.1=0,1.0=0,1.1=1
$$

Throughout this paper \mathfrak{B} refers to the Boolean semiring $(\mathfrak{B},+,$.

1.2 Boolean Vector Space

We have the following from K. H. Kim [4]. Let V_{n} denote the set of all n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ over the Boolean semiring \mathfrak{B}. An element of V_{n} is called a Boolean vector of dimension n. The system V_{n} together with the operations of componentwise
addition and scalar multiplication is called the Boolean vector space of dimension n. Let $V^{n}=\left\{v^{T}: v \in V_{n}\right\}$, where v^{T} means the column vector. Let e_{i} be the n-tuple with 1 as the $i^{\text {th }}$ coordinate and 0 otherwise. Further, we define $e^{i}=e_{i}^{T}$. A subset B of a vectorspace V is said to be a basis of V if B is linearly independent and B generates V. Here $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is the basis of V_{n} and $\left\{e_{1}{ }^{T}, e_{2}{ }^{T}, \ldots, e_{n}{ }^{T}\right\}$ is the basis of V^{n}.

1.3 Matrices over a Boolean Semiring

The set of all $n \times n$ matrices over the Boolean semiring \mathfrak{B} form a semiring under the operations of matrix addition and matrix multiplication and is denoted by $M_{n}(\mathfrak{B})$, where n is a positive integer. In this paper, by a matrix we mean a matrix in $M_{n}(\mathfrak{B})$, where $n>1$, unless otherwise stated.

Let $A=\left[a_{i j}\right] \in M_{n}(\mathfrak{B})$. Then the element $a_{i j}$ is called the $(i, j)^{t h}$ entry of A. The $i^{t h}$ row vector of A is $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ and the $j^{\text {th }}$ column vector of A is $\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)^{T}$. The zero matrix O_{n} is the matrix, all of whose entries are zero. The identity matrix I_{n} is the matrix $\left[\delta_{i j}\right]$, such that $\delta_{i j}=1$, if $i=j$ and $\delta_{i j}=0$, if $i \neq j$. The matrix $E_{i j}$ is the matrix whose $(i, j)^{t h}$ entry is 1 and 0 otherwise. A matrix is called a permutation matrix if every row and every column contains exactly one 1 . A matrix is said to be a partial permutation matrix if every row and every column of it contains atmost one 1. The row space of a matrix A is the span of the set of all rows of A. A column space is dually defined. Let $R(A)(C(A))$ denote the row (column) space of a matrix A. For any matrix $A \in M_{n}(\mathfrak{B}), R(A)$ is a subspace of V_{n} and $C(A)$ is a subspace of V^{n}. The following result from [4] is used in this paper.
Proposition 1.1 [4]: Two matrices $A, B \in M_{n}(\mathfrak{B})$ are \mathscr{L}-equivalent if and only if they have the same row space.

2. Principal Left Ideals of $M_{n}(\mathfrak{B})$

Here we determine the principal left ideals and the principal k-left ideals of $M_{n}(\mathfrak{B})$.
Proposition 2.1: The row space of each matrix in the principal left ideal generated by a matrix $B \in M_{n}(\mathfrak{B})$ is contained in the row space of B.

Proof: Suppose that $B=\left[b_{i j}\right]$. We know that the matrices in the principal left ideal generated by the matrix B will be products of the form $A B$, where $A \in M_{n}(\mathfrak{B})$. If
$A=\left[a_{i j}\right]$, then the $(i, j)^{t h}$ element of $A B$ is $\sum_{k=1}^{n} a_{i k} b_{k j}$. Hence the $i^{\text {th }}$ row vector of $A B$ $=\left(a_{i 1} b_{11}+a_{i 2} b_{21}+\cdots+a_{i n} b_{n 1}, a_{i 1} b_{12}+a_{i 2} b_{22}+\cdots+a_{i n} b_{n 2}, \cdots\right.$,

$$
\left.a_{i 1} b_{1 n}+a_{i 2} b_{2 n}+\cdots+a_{i n} b_{n n}\right)
$$

$=\left(a_{i 1} b_{11}, a_{i 1} b_{12}, \cdots, a_{i 1} b_{1 n}\right)+\left(a_{i 2} b_{21}, a_{i 2} b_{22}, \ldots, a_{i 2} b_{2 n}\right)+\cdots+\left(a_{i n} b_{n 1}, a_{i n} b_{n 2}, \ldots, a_{i n} b_{n n}\right)$
$=a_{i 1}\left(b_{11}, b_{12}, \ldots, b_{1 n}\right)+a_{i 2}\left(b_{21}, b_{22}, \ldots, b_{2 n}\right)+\cdots+a_{i n}\left(b_{n 1}, b_{n 2}, \ldots, b_{n n}\right)$
$=a_{i 1} b_{1}+a_{i 2} b_{2}+\cdots+a_{i n} b_{n}$,
where $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)$ is the $k^{\text {th }}$ row vector of B.
That is, the $i^{\text {th }}$ row of $A B$ is of the form $\sum_{k=1}^{n} a_{i k} b_{k}$, where b_{k} represents the $k^{\text {th }}$ row vector of B. In other words the $i^{\text {th }}$ row of the product $A B$ is a linear combination of the rows of B where the scalars for the $i^{\text {th }}$ row are $a_{i k}$, for $k=1,2, \ldots, n$ which is either 0 or 1 . Hence we see that the rows of $A B$ are finite sums of the row vectors of B. Now $R(B)$ is the span of the row vectors of B. That is, $R(B)$ is the set of all finite sums of the rows of B. Thus the row space of each matrix in the principal left ideal generated by a matrix $B \in M_{n}(\mathfrak{B})$ is contained in the row space of B.
Remark 2.2: Let $_{L}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$. Then each row of B_{j}, for $j=$ $1,2, \ldots, m$ is a finite sum of the rows of B.
Theorem 2.3: If $_{L}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ then $R\left(B_{1}\right) \cup R\left(B_{2}\right) \cup \ldots \cup R\left(B_{m}\right)=$ $R(B)$.
Proof: Let $B=\left[b_{i j}\right] \in M_{n}(\mathfrak{B})$ and $_{L}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$. Then by Proposition 2.1, $R\left(B_{1}\right) \subseteq R(B), R\left(B_{2}\right) \subseteq R(B), \ldots, R\left(B_{m}\right) \subseteq R(B)$. Hence $R\left(B_{1}\right) \cup R\left(B_{2}\right) \cup \ldots \cup$ $R\left(B_{m}\right) \subseteq R(B)$.

On the other hand, let $x \in R(B)$. Then $x=a_{i 1} b_{1}+a_{i 2} b_{2}+\cdots+a_{i n} b_{n}$, where $a_{i k}=0$ or 1 , for $k=1,2, \ldots, n$ and $b_{k}=\left(b_{k 1}, b_{k 2}, \ldots, b_{k n}\right)$ is the $k^{t h}$ row vector of B. Now consider the matrix $A=\left[c_{r s}\right]$, where $c_{r s}=a_{i k}$, if $r=i, s=k$ and 0 otherwise. Then $A \in M_{n}(\mathfrak{B})$ and

$$
A B=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
b_{i 1} & b_{i 2} & \cdots & b_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

Hence the $i^{\text {th }}$ row vector of $A B$

$$
\begin{aligned}
& =\left(a_{i 1} b_{11}+a_{i 2} b_{21}+\cdots+a_{i n} b_{n 1}, a_{i 1} b_{12}+a_{i 2} b_{22}+\cdots+a_{i n} b_{n 2}, \cdots,\right. \\
& \\
& =\left(a_{i 1} b_{11}, a_{i 1} b_{12}, \ldots, a_{i 1} b_{1 n}\right)+\left(a_{i 2} b_{21}, a_{i 2} b_{22}, \ldots, a_{i 2} b_{2 n}\right) \\
& \quad \quad \quad+\cdots+\left(a_{i n} b_{n 1}, a_{i n} b_{n 2}, \ldots, a_{i n} b_{n n}\right) \\
& = \\
& =a_{i 1}\left(b_{11}, b_{12}, \ldots, b_{1 n}\right)+a_{i 2}\left(b_{21}, b_{22}, \ldots, b_{2 n}\right)+\cdots+a_{i n}\left(b_{n 1}, b_{n 2}, \ldots, b_{n n}\right) \\
& = \\
& =a_{i 1} b_{1}+a_{i 2} b_{2}+\cdots+a_{i n} b_{n} \\
& =x
\end{aligned}
$$

This shows that $x \in R(A B)$, where $A B=B_{j}$, for some $j=1,2, \ldots, m$. Therefore $R(B) \subseteq R\left(B_{1}\right) \cup R\left(B_{2}\right) \cup \ldots \cup R\left(B_{m}\right)$. Thus we have $R\left(B_{1}\right) \cup R\left(B_{2}\right) \cup \ldots \cup R\left(B_{m}\right)=R(B)$.

Remark 2.4: The principal left ideal generated by O_{n} is $\{0\}$ and it is a k-ideal.
Theorem 2.5 : The row space of a matrix $A \in M_{n}(\mathfrak{B})$ is V_{n} if and only if A is a permutation matrix.

Proof : Let $A \in M_{n}(\mathfrak{B})$. First assume that $R(A)=V_{n}$. Then $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is the basis for $V_{n}=R(A)$. Thus $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ form the n row vectors of A. Therefore A is a permutation matrix. Conversely assume that A is a permutation matrix. By definition we know that the rows of A are precisely $e_{1}, e_{2}, \ldots, e_{n}$ in some order. Since these vectors form the basis for V_{n}, the row space of A is V_{n}. Thus the result.

Theorem 2.6: The principal left ideal generated by a matrix B is $M_{n}(\mathfrak{B})$ if and only if B is a permutation matrix.
Suppose that the principal left ideal generated by B is $M_{n}(\mathfrak{B})$. Then by Theorem 2.3, the row space of B is V_{n}. Hence by Theorem $2.5, B$ is a permutation matrix.

Conversely suppose that B is a permutation matrix. Then by Theorem 2.5 , the row space of B is V_{n}. Consider the identity matrix $I_{n} \in M_{n}(\mathfrak{B})$. Since it is also a permutation matrix, by Theorem 2.5, the row space of I_{n} is V_{n}. By Proposition 1.1, we know that matrices with the same row space are \mathscr{L}-equivalent. That is, they generate the same principal left ideal. We know that the principal left ideal generated by I_{n} is $M_{n}(\mathfrak{B})$ itself. Therefore the principal left ideal generated by B is $M_{n}(\mathfrak{B})$.

Remark 2.7 : The principal left ideal generated by a permutation matrix is a k-ideal, since $M_{n}(\mathfrak{B})$ is a k-ideal.

Theorem 2.8 : Each matrix in the principal left ideal generated by a matrix B having exactly one column zero, has that corresponding column zero.
Proof: Let $B=\left[b_{k l}\right] \in M_{n}(\mathfrak{B})$ be a matrix in which the $j^{\text {th }}$ column is the only zero column. Then $b_{k j}=0, \forall k=1,2, \ldots, n$. We know that the matrices in the principal left ideal generated by B will be products of the form $A B$, where $A=\left[a_{i k}\right]$ is any matrix in $M_{n}(\mathfrak{B})$. Then for $i=1,2, \ldots, n$ the $(i, j)^{t h}$ element of $A B=\sum_{k=1}^{n} a_{i k} b_{k j}=0$, since $b_{k j}=0, \forall k=1,2, \ldots, n$. This means that the $(1, j)^{t h},(2, j)^{t h}, \ldots,(n, j)^{t h}$ elements are zero. Therefore the $j^{\text {th }}$ column of $A B$ is 0 . Thus a matrix in which exactly one column is zero will generate a principal left ideal in which each matrix has that corresponding column zero.
Corollary 2.9 : Each matrix in the principal left ideal generated by a matrix B having more than one column zero, has those corresponding columns zero.
Proof: Follows directly from Theorem 2.8.
Remark 2.10 : Every permutation matrix is a partial permutation matrix. But the converse need not be true. For example, the matrix $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ is a partial permutation matrix but not a permutation matrix.

Theorem 2.11: The principal left ideal generated by a partial permutation matrix is a k-ideal.
Proof : Let $B \in M_{n}(\mathfrak{B})$ be a partial permutation matrix. Then from the definition of a partial permutation matrix we know that the rows of B will be any n vectors from the set $\left\{e_{1}, e_{2}, \ldots, e_{n}, 0\right\}$, without the repetition of the basis row vectors $e_{i}, i=1,2, \ldots, n$.
Case 1: Let the rows of B be $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in some order. Then B is a permutation matrix. Hence by Remark 2.7, the principal left ideal generated by B is a k-ideal.
Case 2: Let B be a partial permutation matrix in which the $j^{t h}$ column is the only zero column and the rows of B are the $(n-1)$ basis vectors $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j+1}, \ldots, e_{n}$ and 0 in some order. Now by Theorem 2.3, we see that the rows of the matrices in the principal left ideal generated by B will have all possible finite sums of the rows of B. Since the rows of B contain all the basis vectors $e_{1}, e_{2}, \ldots, e_{n}$ except e_{j}, the rows of the matrices in the principal left ideal generated by B will be all the rows with the $j^{\text {th }}$
entry zero. Thus the principal left ideal generated by B will have all the matrices with the $j^{\text {th }}$ column zero.

Now, to prove that the principal left ideal generated by B is a k-ideal, let $X, X+$ $Y \in_{L}$ where $X=\left[x_{p q}\right]$ and $Y=\left[y_{p q}\right]$.Hence $X+Y=\left[x_{p q}+y_{p q}\right]$, where $p=$ $1,2, \ldots, n, q=1,2, \ldots, n$. Since $X, X+Y \in_{L}$ we have $x_{p j}=0$, for $p=1,2, \ldots, n$ and also $x_{p j}+y_{p j}=0$, for $p=1,2, \ldots, n$.Hence $y_{p j}=0$, for $p=1,2, \ldots, n$. Thus $Y \in_{L}$. Hence the principal left ideal generated by B is a k-ideal.

Case 3 : Let B be a partial permutation matrix having $r(\neq 0,1)$ zero columns (say $\left.j_{1}, j_{2}, \ldots, j_{r}\right)$ and the rows of B are the $(n-r)$ basis vectors of the set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}-$ $\left\{e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right\}$ and zero vector in some order without the repetition of basis row vectors. Then as in case 2 we can prove that the principal left ideal generated by B will be a k-ideal.

Definition 2.12: A matrix is said to be a row partial permutation matrix if every row contains atmost one 1.
Remark 2.13 : Every partial permutation matrix is a row partial permutation matrix. But the converse need not be true. For example, the matrix $A=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$ is a row partial permutation matrix but not a partial permutation matrix.
Theorem 2.14 : The principal left ideal generated by a row partial permutation matrix is a k-ideal.

Proof : Let $B \in M_{n}(\mathfrak{B})$ be a row partial permutation matrix. Then from definition ??, we know that the rows of B will be any n vectors from the set $\left\{e_{1}, e_{2}, \ldots, e_{n}, 0\right\}$.
Case 1: Let the rows of B be $e_{1}, e_{2}, \ldots, e_{n}$ in some order. Then B is a permutation matrix. Hence by Remark 2.7, the principal left ideal generated by B is a k-ideal.

Case 2: Let the rows of B be any n vectors from the set $\left\{e_{1}, e_{2}, \ldots, e_{n}, 0\right\}$, without the repetition of the basis row vectors $e_{i}, i=1,2, \ldots, n$. Then B is a partial permutation matrix. Hence by Theorem 2.11, the principal left ideal generated by B is a k-ideal.
Case 3: Let $B \in M_{n}(\mathfrak{B})$ be a row partial permutation matrix in which the $j^{\text {th }}$ column is the only zero column and the rows of B are from the $(n-1)$ basis vectors $e_{1}, e_{2}, \ldots, e_{j-1}, e_{j+1}, \ldots, e_{n}$ with repetition in some order. Now by Theorem 2.3, we know that the rows of the matrices in the principal left ideal generated by B will have
all possible finite sums of the rows of B. Since the rows of B are from the basis vectors $e_{1}, e_{2}, \ldots, e_{n}$ except e_{j}, the rows of the matrices in the principal left ideal generated by B will be all the rows with the $j^{\text {th }}$ entry zero. Thus the principal left ideal generated by B will have all the matrices with the $j^{t h}$ column zero.

Now, to prove that the principal left ideal generated by B is a k-ideal, let $X, X+$ $Y \in_{L}$ where $X=\left[x_{p q}\right]$ and $Y=\left[y_{p q}\right]$. Hence $X+Y=\left[x_{p q}+y_{p q}\right]$, where $p=1,2, \ldots, n, q=1,2, \ldots, n$. Since $X, X+Y \in_{L}$ we have $x_{p j}=0$, for $p=$ $1,2, \ldots, n$ and also $x_{p j}+y_{p j}=0$, for $p=1,2, \ldots, n$. Hence $y_{p j}=0$, for $p=1,2, \ldots, n$. Thus $Y \in_{L}$. Hence the principal left ideal generated by B is a k-ideal.
Case 4 : Let B be a row partial permutation matrix having $r(\neq 0,1)$ zero columns (say $j_{1}, j_{2}, \ldots, j_{r}$) and the rows of B are from the $(n-r)$ basis vectors of the set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}-\left\{e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right\}$ with repetition in some order. Then as in case 3 we can prove that the principal left ideal generated by B is a k-ideal.
Case 5 : Let B be a row partial permutation matrix having $r(\neq 0,1)$ zero columns (say $j_{1}, j_{2}, \ldots, j_{r}$) and the rows of B are from the $(n-r)$ basis vectors of the set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}-\left\{e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{r}}\right\}$ and zero vector with repetition in some order. Then as in case 3 we can prove that the principal left ideal generated by B is a k-ideal.

Till now we have considered matrices having atmost one non-zero element in every row. Now let us look at the case of matrices having rows with more than one non-zero element.

Theorem 2.15 : Let $B=\left[b_{i j}\right]$ be a non-zero matrix in $M_{n}(\mathfrak{B})$. Suppose that B has rows having more than one non-zero elements and it contains basis row vector e_{k}, whenever $b_{i k}=1$. Then the principal left ideal generated by B is a k-ideal.

Proof : Consider a non-zero matrix $B=\left[b_{i j}\right] \in M_{n}(\mathfrak{B})$, having rows with more than one non-zero element and having the row e_{k}, whenever $b_{i k}=1$. By Remark 2.2, we see that $_{L}$ will contain those matrices whose rows are finite sums of the rows of B. Let $B_{1} \in_{L}$. Then the rows of B_{1} are finite sums of the rows of B. Let $B_{2} \in M_{n}(\mathfrak{B})$ such that $B_{1}+B_{2} \in_{L}$. Then the rows of $B_{1}+B_{2}$ are finite sums of the rows of B. Therefore the rows of B_{2} has non-zero elements only in those positions where the rows of B has non-zero elements. Hence the rows of B_{2} are also finite sums of the rows of B under the stated conditions of B. Therefore $B_{2} \in_{L}$. Thus the principal left ideal generated by B is a k-ideal.

Definition 2.16 : If the principal left ideal generated by a matrix B is a k-ideal then it is called a principal k -left ideal of $M_{n}(\mathfrak{B})$. It is denoted by $\langle B\rangle_{L_{k}}$.

In the following theorem we characterize the principal k -left ideals of $M_{n}(\mathfrak{B})$.
Theorem 2.17 : Consider a non-zero matrix $B=\left[b_{i j}\right]$ in $M_{n}(\mathfrak{B})$. Then $_{L}$ is a k - ideal if and only if B contains basis row vector e_{k} whenever $b_{i k}=1$.
Proof : Consider a non-zero matrix $B=\left[b_{i j}\right]$ in $M_{n}(\mathfrak{B})$. Assume that $_{L}$ is a k-ideal. Suppose that B is a row partial permutation matrix. Then, by Defintion 2.12, B contains basis row vector e_{k} whenever $b_{i k}=1$. Hence the theorem is true in this case. Next we consider the case where B is not a row partial permutation matrix. Then B has rows with more than one non-zero element. Without loss of generality assume that for $i=1, b_{i j}=1$, for $j=1,2$ and $b_{i j}=0$ otherwise. Without loss of generality also assume that B has e_{1} as one of the rows and it does not have any row of the form e_{2}. Then, by Remark 2.2, the principal left ideal $_{L}$ will contain matrices with rows which are finite sums of the rows of B. Then the matrices in the principal left ideal will contain rows with more than one non-zero elements (ie., in the $1^{\text {st }}$ and $2^{\text {nd }}$ positions respectively). But this principal left ideal $_{L}$ will not have matrices with the row e_{2}. Then the principal left ideal generated by B will not be a k-ideal, which is a contradiction. For, we have $B \in_{L}$. Also, $B+E_{12}=B \in_{L}$. But $E_{12} \notin_{L}$, showing that $_{L}$ is not a k-ideal. Hence our assumption that B does not contain the basis row vector e_{2} is wrong. Thus B contains the basis row vector e_{k} whenever $b_{i k}=1$.

Conversely assume that B contains basis row vector e_{k}, whenever $b_{i k}=1$. Then B is either a row partial permutation matrix or a matrix having rows with more than one non-zero elements. If B is a row partial permutation matrix then by Theorem 2.14, $_{L}$ is a k-ideal. On the other hand if B is a matrix having rows with more than one non-zero element, then by Theorem 2.15, $\left\langle B>_{L}\right.$ is a k-ideal.

References

[1] Henriksen M., Ideals in semiring with commutative addition, Amer. Math. Soc. Notices, 6 (1958), 321.
[2] Hebisch U., Weinert H. J., Semirings: Algebraic Theory and Applications in

Computer Science, Series in Algebra, 5. World Scientific Publishing Co., Inc., River Edge, NJ, (1998).
[3] Jonathan S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, (1999).
[4] Kim K. H., Boolean Matrix Theory and Applications, Marcel Dekker Inc., New York, (1982).
[5] Vandiver H. S., Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914-920.

