International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 231-240

PRINCIPAL k-LEFT IDEALS IN THE MATRIX SEMIRING $M_n(\mathfrak{B})$

L. JOHN¹ AND HARITA VIJAY²

^{1,2} Department of Mathematics, University of Kerala, Trivandrum, India

Abstract

Let $\mathfrak{B} = \{0, 1\}$. Here the two operations of '+' and '.' on \mathfrak{B} are defined as follows: 0+0=0, 0+1=1, 1+0=1, 1+1=1, 0.0=0, 0.1=0, 1.0=0, 1.1=1. Then $(\mathfrak{B}, +, .)$ is a semiring called the Boolean semiring. The set of all $n \times n$ matrices over the Boolean semiring \mathfrak{B} form a semiring under the operations of matrix addition and matrix multiplication and is denoted by $M_n(\mathfrak{B})$, where n is a positive integer. In this paper we study the principal left ideals generated by the matrices in the semiring $M_n(\mathfrak{B}), (n > 1)$ and characterise the principal k-left ideals of $M_n(\mathfrak{B})$.

1. Introduction

The concept of semiring was introduced by H.S.Vandiver [5] in 1934. A semiring is a nonempty set S on which the operations of '+' and '.' have been defined such that the following conditions are satisfied :

Key Words : Boolean semiring, Principal left ideal, Permutation matrix, Row space, k-ideals. AMS Subject Classification : 16Y60.

© http://www.ascent-journals.com

- 1. (S, +) is a commutative monoid with identity element 0.
- 2. (S, .) is a monoid with identity element 1.
- 3. Multiplication '.' distributes over addition '+'from either side.
- 4. 0.s = 0 = s.0, for all $s \in S$.

Here after S denotes the semiring (S, +, .) and sa denotes s.a for $s, a \in S$. Here $1 \neq 0$, to avoid the trivial case. Again 0 is the only absorbing zero. For, if $z \in S$ with zs = z = sz, for all $s \in S$ then 0 = 0z = z. A subset $A \neq \phi$ of a semiring S is called a left (right) ideal of S if $a + b \in A$ and $sa \in A(as \in A)$, for all $a, b \in A$ and $s \in S$. An ideal in a semiring S is a nonempty subset which is both a left and right ideal. A principal left ideal generated by $a \in S$ is the left ideal $Sa = \{sa : s \in S\}$. A principal right ideal generated by $a \in S$ is the right ideal $aS = \{sa : s \in S\}$. A principal right ideal to denote the principal right ideal generated by $a \in S$ and $\langle a \rangle_R$ to denote the principal right ideal generated by $a \in S$ and $\langle a \rangle_R$ equivalence is defined dually. In 1958, Henriksen [1] defined a more restricted class of ideals in a semiring which he called a k-ideal. An ideal A of a semiring S is called a k-deal if $a, a + b \in A$ implies that $b \in A$, for all $a, b \in S$. This ideal is also called a subtractive ideal. Both $\{0\}$ and S are k-deals of the semiring S. For the terminology regarding semirings used in this paper refer [2] and [3].

1.1Boolean Semiring

We denote the Boolean semiring by $(\mathfrak{B}, +, .)$ where $\mathfrak{B} = \{0, 1\}$ and the operations of + and . are defined as follows:

$$0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1, 0.0 = 0, 0.1 = 0, 1.0 = 0, 1.1 = 1, 0.0 = 0, 0.1 = 0, 0.$$

Throughout this paper \mathfrak{B} refers to the Boolean semiring $(\mathfrak{B}, +, .)$

1.2 Boolean Vector Space

We have the following from K. H. Kim [4]. Let V_n denote the set of all *n*-tuples $(a_1, a_2, ..., a_n)$ over the Boolean semiring \mathfrak{B} . An element of V_n is called a Boolean vector of dimension *n*. The system V_n together with the operations of componentwise

addition and scalar multiplication is called the Boolean vector space of dimension n. Let $V^n = \{v^T : v \in V_n\}$, where v^T means the column vector. Let e_i be the *n*-tuple with 1 as the i^{th} coordinate and 0 otherwise. Further, we define $e^i = e_i^T$. A subset B of a vectorspace V is said to be a basis of V if B is linearly independent and B generates V. Here $\{e_1, e_2, \ldots, e_n\}$ is the basis of V_n and $\{e_1^T, e_2^T, \ldots, e_n^T\}$ is the basis of V^n .

1.3 Matrices over a Boolean Semiring

The set of all $n \times n$ matrices over the Boolean semiring \mathfrak{B} form a semiring under the operations of matrix addition and matrix multiplication and is denoted by $M_n(\mathfrak{B})$, where n is a positive integer. In this paper, by a matrix we mean a matrix in $M_n(\mathfrak{B})$, where n > 1, unless otherwise stated.

Let $A = [a_{ij}] \in M_n(\mathfrak{B})$. Then the element a_{ij} is called the $(i, j)^{th}$ entry of A. The i^{th} row vector of A is $(a_{i1}, a_{i2}, \ldots, a_{in})$ and the j^{th} column vector of A is $(a_{1j}, a_{2j}, \ldots, a_{nj})^T$. The zero matrix O_n is the matrix, all of whose entries are zero. The identity matrix I_n is the matrix $[\delta_{ij}]$, such that $\delta_{ij} = 1$, if i = j and $\delta_{ij} = 0$, if $i \neq j$. The matrix E_{ij} is the matrix whose $(i, j)^{th}$ entry is 1 and 0 otherwise. A matrix is called a permutation matrix if every row and every column contains exactly one 1. A matrix is said to be a partial permutation matrix if every row and every row and every column of it contains atmost one 1. The row space of a matrix A is the span of the set of all rows of A. A column space is dually defined. Let R(A)(C(A)) denote the row (column) space of a matrix A. For any matrix $A \in M_n(\mathfrak{B})$, R(A) is a subspace of V_n and C(A) is a subspace of V^n . The following result from [4] is used in this paper.

Proposition 1.1 [4]: Two matrices $A, B \in M_n(\mathfrak{B})$ are \mathscr{L} -equivalent if and only if they have the same row space.

2. Principal Left Ideals of $M_n(\mathfrak{B})$

Here we determine the principal left ideals and the principal k-left ideals of $M_n(\mathfrak{B})$.

Proposition 2.1: The row space of each matrix in the principal left ideal generated by a matrix $B \in M_n(\mathfrak{B})$ is contained in the row space of B.

Proof: Suppose that $B = [b_{ij}]$. We know that the matrices in the principal left ideal generated by the matrix B will be products of the form AB, where $A \in M_n(\mathfrak{B})$. If

$$A = [a_{ij}], \text{ then the } (i, j)^{th} \text{ element of } AB \text{ is } \sum_{k=1}^{n} a_{ik}b_{kj}. \text{ Hence the } i^{th} \text{ row vector of } AB$$
$$= (a_{i1}b_{11} + a_{i2}b_{21} + \dots + a_{in}b_{n1}, a_{i1}b_{12} + a_{i2}b_{22} + \dots + a_{in}b_{n2}, \dots, a_{i1}b_{1n} + a_{i2}b_{2n} + \dots + a_{in}b_{nn})$$
$$= (a_{i1}b_{11}, a_{i1}b_{12}, \dots, a_{i1}b_{1n}) + (a_{i2}b_{21}, a_{i2}b_{22}, \dots, a_{i2}b_{2n}) + \dots + (a_{in}b_{n1}, a_{in}b_{n2}, \dots, a_{in}b_{nn})$$
$$= a_{i1}(b_{11}, b_{12}, \dots, b_{1n}) + a_{i2}(b_{21}, b_{22}, \dots, b_{2n}) + \dots + a_{in}(b_{n1}, b_{n2}, \dots, b_{nn})$$
$$= a_{i1}b_1 + a_{i2}b_2 + \dots + a_{in}b_n, \text{ where } b_k = (b_{k1}, b_{k2}, \dots, b_{kn}) \text{ is the } k^{th} \text{ row vector of } B.$$
That is , the i^{th} row of AB is of the form $\sum_{k=1}^{n} a_{ik}b_k$, where b_k represents the k^{th} row vector of B . In other words the i^{th} row are a_{ik} , for $k = 1, 2, \dots, n$ which is either 0 or 1. Hence we see that the rows of AB are finite sums of the row vectors of B . Now $R(B)$ is the span of the row vectors of B . That is, $R(B)$ is the span of the row space of each matrix in the principal left ideal generated

by a matrix $B \in M_n(\mathfrak{B})$ is contained in the row space of B. \square **Remark 2.2** : Let $\langle B \rangle_L = \{B_1, B_2, \dots, B_m\}$. Then each row of B_j , for j =

1, 2, ..., m is a finite sum of the rows of B. **Theorem 2.3**: If $\langle B \rangle_L = \{B_1, B_2, ..., B_m\}$ then $R(B_1) \cup R(B_2) \cup ... \cup R(B_m) =$

R(B).

Proof: Let $B = [b_{ij}] \in M_n(\mathfrak{B})$ and $\langle B \rangle_L = \{B_1, B_2, \ldots, B_m\}$. Then by Proposition 2.1, $R(B_1) \subseteq R(B), R(B_2) \subseteq R(B), \ldots, R(B_m) \subseteq R(B)$. Hence $R(B_1) \cup R(B_2) \cup \ldots \cup R(B_m) \subseteq R(B)$.

On the other hand, let $x \in R(B)$. Then $x = a_{i1}b_1 + a_{i2}b_2 + \cdots + a_{in}b_n$, where $a_{ik} = 0$ or 1, for $k = 1, 2, \ldots, n$ and $b_k = (b_{k1}, b_{k2}, \ldots, b_{kn})$ is the k^{th} row vector of B. Now consider the matrix $A = [c_{rs}]$, where $c_{rs} = a_{ik}$, if r = i, s = k and 0 otherwise. Then $A \in M_n(\mathfrak{B})$ and

$$AB = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Hence the
$$i^{th}$$
 row vector of AB
= $(a_{i1}b_{11} + a_{i2}b_{21} + \dots + a_{in}b_{n1}, a_{i1}b_{12} + a_{i2}b_{22} + \dots + a_{in}b_{n2}, \dots, a_{i1}b_{1n} + a_{i2}b_{2n} + \dots + a_{in}b_{nn})$
= $(a_{i1}b_{11}, a_{i1}b_{12}, \dots, a_{i1}b_{1n}) + (a_{i2}b_{21}, a_{i2}b_{22}, \dots, a_{i2}b_{2n})$
 $+ \dots + (a_{in}b_{n1}, a_{in}b_{n2}, \dots, a_{in}b_{nn})$
= $a_{i1}(b_{11}, b_{12}, \dots, b_{1n}) + a_{i2}(b_{21}, b_{22}, \dots, b_{2n}) + \dots + a_{in}(b_{n1}, b_{n2}, \dots, b_{nn})$
= $a_{i1}b_{1} + a_{i2}b_{2} + \dots + a_{in}b_{n}$
= x .

This shows that $x \in R(AB)$, where $AB = B_j$, for some j = 1, 2, ..., m. Therefore $R(B) \subseteq R(B_1) \cup R(B_2) \cup ... \cup R(B_m)$. Thus we have $R(B_1) \cup R(B_2) \cup ... \cup R(B_m) = R(B)$.

Remark 2.4 : The principal left ideal generated by O_n is $\{0\}$ and it is a k-ideal.

Theorem 2.5: The row space of a matrix $A \in M_n(\mathfrak{B})$ is V_n if and only if A is a permutation matrix.

Proof: Let $A \in M_n(\mathfrak{B})$. First assume that $R(A) = V_n$. Then $\{e_1, e_2, \ldots, e_n\}$ is the basis for $V_n = R(A)$. Thus $\{e_1, e_2, \ldots, e_n\}$ form the *n* row vectors of *A*. Therefore *A* is a permutation matrix. Conversely assume that *A* is a permutation matrix. By definition we know that the rows of *A* are precisely e_1, e_2, \ldots, e_n in some order. Since these vectors form the basis for V_n , the row space of *A* is V_n . Thus the result. \Box

Theorem 2.6: The principal left ideal generated by a matrix B is $M_n(\mathfrak{B})$ if and only if B is a permutation matrix.

Suppose that the principal left ideal generated by B is $M_n(\mathfrak{B})$. Then by Theorem 2.3, the row space of B is V_n . Hence by Theorem 2.5, B is a permutation matrix.

Conversely suppose that B is a permutation matrix. Then by Theorem 2.5, the row space of B is V_n . Consider the identity matrix $I_n \in M_n(\mathfrak{B})$. Since it is also a permutation matrix, by Theorem 2.5, the row space of I_n is V_n . By Proposition 1.1, we know that matrices with the same row space are \mathscr{L} -equivalent. That is, they generate the same principal left ideal. We know that the principal left ideal generated by I_n is $M_n(\mathfrak{B})$ itself. Therefore the principal left ideal generated by B is $M_n(\mathfrak{B})$. \Box

Remark 2.7: The principal left ideal generated by a permutation matrix is a k-ideal, since $M_n(\mathfrak{B})$ is a k-ideal.

Theorem 2.8: Each matrix in the principal left ideal generated by a matrix B having exactly one column zero, has that corresponding column zero.

Proof: Let $B = [b_{kl}] \in M_n(\mathfrak{B})$ be a matrix in which the j^{th} column is the only zero column. Then $b_{kj} = 0, \forall k = 1, 2, ..., n$. We know that the matrices in the principal left ideal generated by B will be products of the form AB, where $A = [a_{ik}]$ is any matrix in $M_n(\mathfrak{B})$. Then for i = 1, 2, ..., n the $(i, j)^{th}$ element of $AB = \sum_{k=1}^{n} a_{ik}b_{kj} = 0$, since $b_{kj} = 0, \forall k = 1, 2, ..., n$. This means that the $(1, j)^{th}, (2, j)^{th}, ..., (n, j)^{th}$ elements are zero. Therefore the j^{th} column of AB is 0. Thus a matrix in which exactly one column is zero will generate a principal left ideal in which each matrix has that corresponding column zero.

Corollary 2.9: Each matrix in the principal left ideal generated by a matrix B having more than one column zero, has those corresponding columns zero.

Proof : Follows directly from Theorem 2.8.

Remark 2.10: Every permutation matrix is a partial permutation matrix. But the converse need not be true. For example, the matrix $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is a partial

permutation matrix but not a permutation matrix.

Theorem 2.11 : The principal left ideal generated by a partial permutation matrix is a k-ideal.

Proof: Let $B \in M_n(\mathfrak{B})$ be a partial permutation matrix. Then from the definition of a partial permutation matrix we know that the rows of B will be any n vectors from the set $\{e_1, e_2, \ldots, e_n, 0\}$, without the repetition of the basis row vectors $e_i, i = 1, 2, \ldots, n$. **Case 1**: Let the rows of B be $\{e_1, e_2, \ldots, e_n\}$ in some order. Then B is a permutation matrix. Hence by Remark 2.7, the principal left ideal generated by B is a k-ideal.

Case 2: Let *B* be a partial permutation matrix in which the j^{th} column is the only zero column and the rows of *B* are the (n-1) basis vectors $e_1, e_2, \ldots, e_{j-1}, e_{j+1}, \ldots, e_n$ and 0 in some order. Now by Theorem 2.3, we see that the rows of the matrices in the principal left ideal generated by *B* will have all possible finite sums of the rows of *B*. Since the rows of *B* contain all the basis vectors e_1, e_2, \ldots, e_n except e_j , the rows of the matrices in the principal left ideal generated by *B* will be all the rows with the j^{th}

entry zero. Thus the principal left ideal generated by B will have all the matrices with the j^{th} column zero.

Now, to prove that the principal left ideal generated by B is a k-ideal, let $X, X + Y \in \langle B \rangle_L$ where $X = [x_{pq}]$ and $Y = [y_{pq}]$. Hence $X + Y = [x_{pq} + y_{pq}]$, where p = 1, 2, ..., n, q = 1, 2, ..., n. Since $X, X + Y \in \langle B \rangle_L$ we have $x_{pj} = 0$, for p = 1, 2, ..., n and also $x_{pj} + y_{pj} = 0$, for p = 1, 2, ..., n. Hence $y_{pj} = 0$, for p = 1, 2, ..., n. Thus $Y \in \langle B \rangle_L$. Hence the principal left ideal generated by B is a k-ideal.

Case 3: Let *B* be a partial permutation matrix having $r \neq 0, 1$ zero columns (say j_1, j_2, \ldots, j_r) and the rows of *B* are the (n-r) basis vectors of the set $\{e_1, e_2, \ldots, e_n\} - \{e_{j_1}, e_{j_2}, \ldots, e_{j_r}\}$ and zero vector in some order without the repetition of basis row vectors. Then as in case 2 we can prove that the principal left ideal generated by *B* will be a k-ideal.

Definition 2.12 : A matrix is said to be a row partial permutation matrix if every row contains atmost one 1.

Remark 2.13 : Every partial permutation matrix is a row partial permutation matrix.

But the converse need not be true. For example, the matrix $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ is a row partial permutation matrix but not a partial permutation matrix.

row partial permutation matrix but not a partial permutation matrix.

Theorem 2.14 : The principal left ideal generated by a row partial permutation matrix is a k- ideal.

Proof: Let $B \in M_n(\mathfrak{B})$ be a row partial permutation matrix. Then from definition ??, we know that the rows of B will be any n vectors from the set $\{e_1, e_2, \ldots, e_n, 0\}$.

Case 1: Let the rows of *B* be e_1, e_2, \ldots, e_n in some order. Then *B* is a permutation matrix. Hence by Remark 2.7, the principal left ideal generated by *B* is a k-ideal.

Case 2: Let the rows of *B* be any n vectors from the set $\{e_1, e_2, \ldots, e_n, 0\}$, without the repetition of the basis row vectors $e_i, i = 1, 2, \ldots, n$. Then *B* is a partial permutation matrix. Hence by Theorem 2.11, the principal left ideal generated by *B* is a k-ideal.

Case 3 : Let $B \in M_n(\mathfrak{B})$ be a row partial permutation matrix in which the j^{th} column is the only zero column and the rows of B are from the (n-1) basis vectors $e_1, e_2, \ldots, e_{j-1}, e_{j+1}, \ldots, e_n$ with repetition in some order. Now by Theorem 2.3, we know that the rows of the matrices in the principal left ideal generated by B will have

all possible finite sums of the rows of B. Since the rows of B are from the basis vectors e_1, e_2, \ldots, e_n except e_j , the rows of the matrices in the principal left ideal generated by B will be all the rows with the j^{th} entry zero. Thus the principal left ideal generated by B will have all the matrices with the j^{th} column zero.

Now, to prove that the principal left ideal generated by B is a k-ideal, let $X, X + Y \in \langle B \rangle_L$ where $X = [x_{pq}]$ and $Y = [y_{pq}]$. Hence $X + Y = [x_{pq} + y_{pq}]$, where p = 1, 2, ..., n, q = 1, 2, ..., n. Since $X, X + Y \in \langle B \rangle_L$ we have $x_{pj} = 0$, for p = 1, 2, ..., n and also $x_{pj} + y_{pj} = 0$, for p = 1, 2, ..., n. Hence $y_{pj} = 0$, for p = 1, 2, ..., n. Thus $Y \in \langle B \rangle_L$. Hence the principal left ideal generated by B is a k-ideal.

Case 4: Let *B* be a row partial permutation matrix having $r \neq 0, 1$ zero columns $(\text{say } j_1, j_2, \ldots, j_r)$ and the rows of *B* are from the (n - r) basis vectors of the set $\{e_1, e_2, \ldots, e_n\} - \{e_{j_1}, e_{j_2}, \ldots, e_{j_r}\}$ with repetition in some order. Then as in case 3 we can prove that the principal left ideal generated by *B* is a k-ideal.

Case 5: Let *B* be a row partial permutation matrix having $r \neq 0, 1$ zero columns $(\text{say } j_1, j_2, \ldots, j_r)$ and the rows of *B* are from the (n - r) basis vectors of the set $\{e_1, e_2, \ldots, e_n\} - \{e_{j_1}, e_{j_2}, \ldots, e_{j_r}\}$ and zero vector with repetition in some order. Then as in case 3 we can prove that the principal left ideal generated by *B* is a k-ideal. Till now we have considered matrices having atmost one non-zero element in every row. Now let us look at the case of matrices having rows with more than one non-zero element.

Theorem 2.15 : Let $B = [b_{ij}]$ be a non-zero matrix in $M_n(\mathfrak{B})$. Suppose that B has rows having more than one non-zero elements and it contains basis row vector e_k , whenever $b_{ik} = 1$. Then the principal left ideal generated by B is a k-ideal.

Proof : Consider a non-zero matrix $B = [b_{ij}] \in M_n(\mathfrak{B})$, having rows with more than one non-zero element and having the row e_k , whenever $b_{ik} = 1$. By Remark 2.2, we see that $\langle B \rangle_L$ will contain those matrices whose rows are finite sums of the rows of B. Let $B_1 \in \langle B \rangle_L$. Then the rows of B_1 are finite sums of the rows of B. Let $B_2 \in M_n(\mathfrak{B})$ such that $B_1 + B_2 \in \langle B \rangle_L$. Then the rows of $B_1 + B_2$ are finite sums of the rows of B. Therefore the rows of B_2 has non-zero elements only in those positions where the rows of B has non-zero elements. Hence the rows of B_2 are also finite sums of the rows of B under the stated conditions of B. Therefore $B_2 \in \langle B \rangle_L$. Thus the principal left ideal generated by B is a k-ideal. \Box

239

Definition 2.16: If the principal left ideal generated by a matrix B is a k-ideal then it is called a principal k-left ideal of $M_n(\mathfrak{B})$. It is denoted by $\langle B \rangle_{L_k}$.

In the following theorem we characterize the principal k-left ideals of $M_n(\mathfrak{B})$.

Theorem 2.17: Consider a non-zero matrix $B = [b_{ij}]$ in $M_n(\mathfrak{B})$. Then $\langle B \rangle_L$ is a k- ideal if and only if B contains basis row vector e_k whenever $b_{ik} = 1$.

Proof: Consider a non-zero matrix $B = [b_{ij}]$ in $M_n(\mathfrak{B})$. Assume that $\langle B \rangle_L$ is a k-ideal. Suppose that B is a row partial permutation matrix. Then, by Definition 2.12, B contains basis row vector e_k whenever $b_{ik} = 1$. Hence the theorem is true in this case. Next we consider the case where B is not a row partial permutation matrix. Then Bhas rows with more than one non-zero element. Without loss of generality assume that for $i = 1, b_{ij} = 1$, for j = 1, 2 and $b_{ij} = 0$ otherwise. Without loss of generality also assume that B has e_1 as one of the rows and it does not have any row of the form e_2 . Then, by Remark 2.2, the principal left ideal $\langle B \rangle_L$ will contain matrices with rows which are finite sums of the rows of B. Then the matrices in the principal left ideal will contain rows with more than one non-zero elements (ie., in the 1^{st} and 2^{nd} positions respectively). But this principal left ideal $\langle B \rangle_L$ will not have matrices with the row e_2 . Then the principal left ideal generated by B will not be a k-ideal, which is a contradiction. For, we have $B \in B >_L$. Also, $B + E_{12} = B \in B >_L$. But $E_{12} \notin \langle B \rangle_L$, showing that $\langle B \rangle_L$ is not a k-ideal. Hence our assumption that B does not contain the basis row vector e_2 is wrong. Thus B contains the basis row vector e_k whenever $b_{ik} = 1$.

Conversely assume that B contains basis row vector e_k , whenever $b_{ik} = 1$. Then B is either a row partial permutation matrix or a matrix having rows with more than one non-zero elements. If B is a row partial permutation matrix then by Theorem 2.14, $\langle B \rangle_L$ is a k-ideal. On the other hand if B is a matrix having rows with more than one non-zero element, then by Theorem 2.15, $\langle B \rangle_L$ is a k-ideal. \Box

References

- Henriksen M., Ideals in semiring with commutative addition, Amer. Math. Soc. Notices, 6 (1958), 321.
- [2] Hebisch U., Weinert H. J., Semirings: Algebraic Theory and Applications in

Computer Science, Series in Algebra, 5. World Scientific Publishing Co., Inc., River Edge, NJ, (1998).

- [3] Jonathan S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, (1999).
- [4] Kim K. H., Boolean Matrix Theory and Applications, Marcel Dekker Inc., New York, (1982).
- [5] Vandiver H. S., Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914-920.