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Abstract

Let B = {0, 1}. Here the two operations of ‘+’ and ‘.’ on B are defined as fol-
lows : 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 1, 0.0 = 0, 0.1 = 0, 1.0 = 0, 1.1 = 1.
Then (B,+, .) is a semiring called the Boolean semiring. The set of all n × n ma-
trices over the Boolean semiring B form a semiring under the operations of matrix
addition and matrix multiplication and is denoted by Mn(B) , where n is a positive
integer. In this paper we study the principal left ideals generated by the matrices in
the semiring Mn(B), (n > 1) and characterise the principal k-left ideals of Mn(B).

1. Introduction

The concept of semiring was introduced by H.S.Vandiver [5] in 1934. A semiring is a

nonempty set S on which the operations of ‘+’ and ‘.’ have been defined such that the

following conditions are satisfied :
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1. (S,+) is a commutative monoid with identity element 0.

2. (S, .) is a monoid with identity element 1.

3. Multiplication ‘.’ distributes over addition ‘+’from either side.

4. 0.s = 0 = s.0, for all s ∈ S.

Here after S denotes the semiring (S,+, .) and sa denotes s.a for s, a ∈ S.Here 1 6= 0, to

avoid the trivial case. Again 0 is the only absorbing zero. For, if z ∈ S with zs = z = sz,

for all s ∈ S then 0 = 0z = z. A subset A 6= φ of a semiring S is called a left (right)

ideal of S if a + b ∈ A and sa ∈ A(as ∈ A), for all a, b ∈ A and s ∈ S. An ideal in a

semiring S is a nonempty subset which is both a left and right ideal. A principal left

ideal generated by a ∈ S is the left ideal Sa = {sa : s ∈ S}. A principal right ideal

generated by a ∈ S is the right ideal aS = {as : s ∈ S}. Throughtout this paper we use

the notation < a >L to denote the principal left ideal generated by a ∈ S and < a >R

to denote the principal right ideal generated by a ∈ S. Any two elements of a semiring

S are said to be L -equivalent if they generate the same principal left ideal of S. R-

equivalence is defined dually. In 1958, Henriksen [1] defined a more restricted class of

ideals in a semiring which he called a k-ideal. An ideal A of a semiring S is called a

k-deal if a, a + b ∈ A implies that b ∈ A,for all a, b ∈ S. This ideal is also called a

subtractive ideal. Both {0} and S are k-deals of the semiring S. For the terminology

regarding semirings used in this paper refer [2] and [3].

1.1Boolean Semiring

We denote the Boolean semiring by (B,+, .) where B = {0, 1} and the operations of +

and . are defined as follows:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1, 0.0 = 0, 0.1 = 0, 1.0 = 0, 1.1 = 1.

Throughout this paper B refers to the Boolean semiring (B,+, .)

1.2 Boolean Vector Space

We have the following from K. H. Kim [4]. Let Vn denote the set of all n-tuples

(a1, a2, ..., an) over the Boolean semiring B. An element of Vn is called a Boolean

vector of dimension n. The system Vn together with the operations of componentwise
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addition and scalar multiplication is called the Boolean vector space of dimension n.

Let V n = {vT : v ∈ Vn}, where vT means the column vector. Let ei be the n-tuple

with 1 as the ith coordinate and 0 otherwise. Further, we define ei = ei
T . A subset

B of a vectorspace V is said to be a basis of V if B is linearly independent and B gen-

erates V . Here {e1, e2, . . . , en} is the basis of Vn and {e1T , e2
T , ..., en

T } is the basis of V n.

1.3 Matrices over a Boolean Semiring

The set of all n × n matrices over the Boolean semiring B form a semiring under the

operations of matrix addition and matrix multiplication and is denoted by Mn(B) ,

where n is a positive integer. In this paper, by a matrix we mean a matrix in Mn(B),

where n > 1, unless otherwise stated.

Let A = [aij ] ∈ Mn(B). Then the element aij is called the (i, j)th entry of A. The ith

row vector of A is (ai1, ai2, . . . , ain) and the jth column vector of A is (a1j , a2j , . . . , anj)T .

The zero matrix On is the matrix, all of whose entries are zero. The identity matrix In
is the matrix [δij ] , such that δij = 1, if i = j and δij = 0, if i 6= j. The matrix Eij is

the matrix whose (i, j)th entry is 1 and 0 otherwise. A matrix is called a permutation

matrix if every row and every column contains exactly one 1. A matrix is said to be a

partial permutation matrix if every row and every column of it contains atmost one 1.

The row space of a matrix A is the span of the set of all rows of A. A column space

is dually defined. Let R(A) (C(A)) denote the row (column) space of a matrix A. For

any matrix A ∈ Mn(B), R(A) is a subspace of Vn and C(A) is a subspace of V n. The

following result from [4] is used in this paper.

Proposition 1.1 [4] : Two matrices A,B ∈ Mn(B) are L -equivalent if and only if

they have the same row space.

2. Principal Left Ideals of Mn(B)

Here we determine the principal left ideals and the principal k-left ideals of Mn(B).

Proposition 2.1 : The row space of each matrix in the principal left ideal generated

by a matrix B ∈Mn(B) is contained in the row space of B.

Proof : Suppose that B = [bij ]. We know that the matrices in the principal left ideal

generated by the matrix B will be products of the form AB, where A ∈ Mn(B). If
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A = [aij ], then the (i, j)th element of AB is
n∑

k=1

aikbkj . Hence the ith row vector of AB

= (ai1b11 + ai2b21 + · · ·+ ainbn1, ai1b12 + ai2b22 + · · ·+ ainbn2, · · · ,
ai1b1n + ai2b2n + · · ·+ ainbnn)

= (ai1b11, ai1b12, · · · , ai1b1n)+(ai2b21, ai2b22, . . . , ai2b2n)+· · ·+(ainbn1, ainbn2, . . . , ainbnn)

= ai1(b11, b12, . . . , b1n) + ai2(b21, b22, . . . , b2n) + · · ·+ ain(bn1, bn2, . . . , bnn)

= ai1b1 + ai2b2 + · · ·+ ainbn,

where bk = (bk1, bk2, . . . , bkn) is the kth row vector of B.

That is , the ith row of AB is of the form
n∑

k=1

aikbk, where bk represents the kth row

vector of B. In other words the ith row of the product AB is a linear combination of

the rows of B where the scalars for the ith row are aik, for k = 1, 2, . . . , n which is either

0 or 1. Hence we see that the rows of AB are finite sums of the row vectors of B. Now

R(B) is the span of the row vectors of B. That is, R(B) is the set of all finite sums of

the rows of B. Thus the row space of each matrix in the principal left ideal generated

by a matrix B ∈Mn(B) is contained in the row space of B. 2

Remark 2.2 : Let < B >L= {B1, B2, . . . , Bm}. Then each row of Bj , for j =

1, 2, . . . ,m is a finite sum of the rows of B.

Theorem 2.3 : If < B >L= {B1, B2, . . . , Bm} then R(B1) ∪ R(B2) ∪ . . . ∪ R(Bm) =

R(B).

Proof : Let B = [bij ] ∈Mn(B) and < B >L= {B1, B2, . . . , Bm}. Then by Proposition

2.1, R(B1) ⊆ R(B), R(B2) ⊆ R(B), . . . , R(Bm) ⊆ R(B). Hence R(B1) ∪ R(B2) ∪ . . . ∪
R(Bm) ⊆ R(B).

On the other hand, let x ∈ R(B). Then x = ai1b1 + ai2b2 + · · · + ainbn, where aik = 0

or 1, for k = 1, 2, . . . , n and bk = (bk1, bk2, . . . , bkn) is the kth row vector of B. Now

consider the matrix A = [crs], where crs = aik, if r = i, s = k and 0 otherwise. Then

A ∈Mn(B) and

AB =



0 0 · · · 0
0 0 · · · 0
...

...
...

...
ai1 ai2 ... ain
...

...
. . .

...
0 0 · · · 0





b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
...

...
bi1 bi2 ... bin
...

...
. . .

...
bn1 bn2 · · · bnn
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Hence the ith row vector of AB

= (ai1b11 + ai2b21 + · · ·+ ainbn1, ai1b12 + ai2b22 + · · ·+ ainbn2, · · · ,
ai1b1n + ai2b2n + · · ·+ ainbnn)

= (ai1b11, ai1b12, . . . , ai1b1n) + (ai2b21, ai2b22, . . . , ai2b2n)

+ · · ·+ (ainbn1, ainbn2, . . . , ainbnn)

= ai1(b11, b12, . . . , b1n) + ai2(b21, b22, . . . , b2n) + · · ·+ ain(bn1, bn2, . . . , bnn)

= ai1b1 + ai2b2 + · · ·+ ainbn

= x.

This shows that x ∈ R(AB), where AB = Bj , for some j = 1, 2, . . . ,m. Therefore

R(B) ⊆ R(B1)∪R(B2)∪. . .∪R(Bm). Thus we have R(B1)∪R(B2)∪. . .∪R(Bm) = R(B).

2

Remark 2.4 : The principal left ideal generated by On is {0} and it is a k-ideal.

Theorem 2.5 : The row space of a matrix A ∈ Mn(B) is Vn if and only if A is a

permutation matrix.

Proof : Let A ∈ Mn(B). First assume that R(A) = Vn. Then {e1, e2, . . . , en} is the

basis for Vn = R(A). Thus {e1, e2, . . . , en} form the n row vectors of A. Therefore

A is a permutation matrix. Conversely assume that A is a permutation matrix. By

definition we know that the rows of A are precisely e1, e2, . . . , en in some order. Since

these vectors form the basis for Vn, the row space of A is Vn. Thus the result. 2

Theorem 2.6 : The principal left ideal generated by a matrix B is Mn(B) if and only

if B is a permutation matrix.

Suppose that the principal left ideal generated by B is Mn(B). Then by Theorem 2.3,

the row space of B is Vn. Hence by Theorem 2.5, B is a permutation matrix.

Conversely suppose that B is a permutation matrix. Then by Theorem 2.5, the row

space of B is Vn. Consider the identity matrix In ∈ Mn(B). Since it is also a per-

mutation matrix, by Theorem 2.5, the row space of In is Vn. By Proposition 1.1, we

know that matrices with the same row space are L -equivalent. That is, they generate

the same principal left ideal. We know that the principal left ideal generated by In is

Mn(B) itself. Therefore the principal left ideal generated by B is Mn(B). 2

Remark 2.7 : The principal left ideal generated by a permutation matrix is a k-ideal,

since Mn(B) is a k-ideal.
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Theorem 2.8 : Each matrix in the principal left ideal generated by a matrix B having

exactly one column zero, has that corresponding column zero.

Proof : Let B = [bkl] ∈ Mn(B) be a matrix in which the jth column is the only zero

column. Then bkj = 0, ∀k = 1, 2, . . . , n. We know that the matrices in the principal left

ideal generated by B will be products of the form AB, where A = [aik] is any matrix

in Mn(B). Then for i = 1, 2, . . . , n the (i, j)th element of AB =
n∑

k=1

aikbkj = 0, since

bkj = 0,∀k = 1, 2, . . . , n. This means that the (1, j)th, (2, j)th, . . . , (n, j)th elements are

zero. Therefore the jth column of AB is 0. Thus a matrix in which exactly one column

is zero will generate a principal left ideal in which each matrix has that corresponding

column zero. 2

Corollary 2.9 : Each matrix in the principal left ideal generated by a matrix B having

more than one column zero, has those corresponding columns zero.

Proof : Follows directly from Theorem 2.8. 2

Remark 2.10 : Every permutation matrix is a partial permutation matrix. But the

converse need not be true. For example, the matrix A =


0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 1

 is a partial

permutation matrix but not a permutation matrix.

Theorem 2.11 : The principal left ideal generated by a partial permutation matrix is

a k-ideal.

Proof : Let B ∈Mn(B) be a partial permutation matrix. Then from the definition of

a partial permutation matrix we know that the rows of B will be any n vectors from the

set {e1, e2, . . . , en, 0}, without the repetition of the basis row vectors ei, i = 1, 2, . . . , n.

Case 1 : Let the rows of B be {e1, e2, . . . , en} in some order. Then B is a permutation

matrix. Hence by Remark 2.7, the principal left ideal generated by B is a k-ideal.

Case 2 : Let B be a partial permutation matrix in which the jth column is the only

zero column and the rows of B are the (n− 1) basis vectors e1, e2, . . . , ej−1, ej+1, . . . , en

and 0 in some order. Now by Theorem 2.3, we see that the rows of the matrices in the

principal left ideal generated by B will have all possible finite sums of the rows of B.

Since the rows of B contain all the basis vectors e1, e2, . . . , en except ej , the rows of

the matrices in the principal left ideal generated by B will be all the rows with the jth
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entry zero. Thus the principal left ideal generated by B will have all the matrices with

the jth column zero.

Now, to prove that the principal left ideal generated by B is a k-ideal, let X,X +

Y ∈< B >L where X = [xpq] and Y = [ypq].Hence X + Y = [xpq + ypq], where p =

1, 2, . . . , n, q = 1, 2, . . . , n. Since X,X+Y ∈< B >L we have xpj = 0, for p = 1, 2, . . . , n

and also xpj + ypj = 0, for p = 1, 2, . . . , n.Hence ypj = 0, for p = 1, 2, . . . , n. Thus

Y ∈< B >L. Hence the principal left ideal generated by B is a k-ideal.

Case 3 : Let B be a partial permutation matrix having r(6= 0, 1) zero columns (say

j1, j2, . . . , jr) and the rows of B are the (n− r) basis vectors of the set {e1, e2, . . . , en}−
{ej1 , ej2 , . . . , ejr} and zero vector in some order without the repetition of basis row

vectors. Then as in case 2 we can prove that the principal left ideal generated by B will

be a k-ideal. 2

Definition 2.12 : A matrix is said to be a row partial permutation matrix if every row

contains atmost one 1.

Remark 2.13 : Every partial permutation matrix is a row partial permutation matrix.

But the converse need not be true. For example, the matrix A =


0 0 1 0
1 0 0 0
0 0 0 0
1 0 0 0

 is a

row partial permutation matrix but not a partial permutation matrix.

Theorem 2.14 : The principal left ideal generated by a row partial permutation matrix

is a k- ideal.

Proof : Let B ∈ Mn(B) be a row partial permutation matrix. Then from definition

??, we know that the rows of B will be any n vectors from the set {e1, e2, . . . , en, 0}.

Case 1 : Let the rows of B be e1, e2, . . . , en in some order. Then B is a permutation

matrix. Hence by Remark 2.7, the principal left ideal generated by B is a k-ideal.

Case 2 : Let the rows of B be any n vectors from the set {e1, e2, . . . , en, 0}, without the

repetition of the basis row vectors ei, i = 1, 2, . . . , n. Then B is a partial permutation

matrix. Hence by Theorem 2.11, the principal left ideal generated by B is a k-ideal.

Case 3 : Let B ∈ Mn(B) be a row partial permutation matrix in which the jth

column is the only zero column and the rows of B are from the (n − 1) basis vectors

e1, e2, . . . , ej−1, ej+1, . . . , en with repetition in some order. Now by Theorem 2.3, we

know that the rows of the matrices in the principal left ideal generated by B will have
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all possible finite sums of the rows of B. Since the rows of B are from the basis vectors

e1, e2, . . . , en except ej , the rows of the matrices in the principal left ideal generated by

B will be all the rows with the jth entry zero. Thus the principal left ideal generated

by B will have all the matrices with the jth column zero.

Now, to prove that the principal left ideal generated by B is a k-ideal, let X,X +

Y ∈ < B >L where X = [xpq] and Y = [ypq]. Hence X + Y = [xpq + ypq], where

p = 1, 2, . . . , n, q = 1, 2, . . . , n. Since X,X + Y ∈ < B >L we have xpj = 0, for p =

1, 2, . . . , n and also xpj + ypj = 0, for p = 1, 2, . . . , n. Hence ypj = 0, for p = 1, 2, . . . , n.

Thus Y ∈ < B >L. Hence the principal left ideal generated by B is a k-ideal.

Case 4 : Let B be a row partial permutation matrix having r(6= 0, 1) zero columns

(say j1, j2, . . . , jr) and the rows of B are from the (n − r) basis vectors of the set

{e1, e2, . . . , en} − {ej1 , ej2 , . . . , ejr} with repetition in some order. Then as in case 3 we

can prove that the principal left ideal generated by B is a k-ideal.

Case 5 : Let B be a row partial permutation matrix having r(6= 0, 1) zero columns

(say j1, j2, . . . , jr) and the rows of B are from the (n − r) basis vectors of the set

{e1, e2, . . . , en}− {ej1 , ej2 , . . . , ejr} and zero vector with repetition in some order. Then

as in case 3 we can prove that the principal left ideal generated by B is a k-ideal. 2

Till now we have considered matrices having atmost one non-zero element in every

row. Now let us look at the case of matrices having rows with more than one non-zero

element.

Theorem 2.15 : Let B = [bij ] be a non-zero matrix in Mn(B). Suppose that B

has rows having more than one non-zero elements and it contains basis row vector ek,

whenever bik = 1. Then the principal left ideal generated by B is a k-ideal.

Proof : Consider a non-zero matrix B = [bij ] ∈ Mn(B), having rows with more than

one non-zero element and having the row ek, whenever bik = 1. By Remark 2.2, we

see that < B >L will contain those matrices whose rows are finite sums of the rows

of B. Let B1 ∈< B >L. Then the rows of B1 are finite sums of the rows of B. Let

B2 ∈Mn(B) such that B1 +B2 ∈< B >L. Then the rows of B1 +B2 are finite sums of

the rows of B. Therefore the rows of B2 has non-zero elements only in those positions

where the rows of B has non-zero elements. Hence the rows of B2 are also finite sums

of the rows of B under the stated conditions of B. Therefore B2 ∈< B >L. Thus the

principal left ideal generated by B is a k-ideal. 2
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Definition 2.16 : If the principal left ideal generated by a matrix B is a k-ideal then

it is called a principal k-left ideal of Mn(B). It is denoted by < B >Lk
.

In the following theorem we characterize the principal k-left ideals of Mn(B).

Theorem 2.17 : Consider a non-zero matrix B = [bij ] in Mn(B). Then < B >L is a

k- ideal if and only if B contains basis row vector ek whenever bik = 1.

Proof : Consider a non-zero matrix B = [bij ] in Mn(B). Assume that < B >L is a

k-ideal. Suppose that B is a row partial permutation matrix. Then, by Defintion 2.12,

B contains basis row vector ek whenever bik = 1. Hence the theorem is true in this case.

Next we consider the case where B is not a row partial permutation matrix. Then B

has rows with more than one non-zero element. Without loss of generality assume that

for i = 1, bij = 1, for j = 1, 2 and bij = 0 otherwise. Without loss of generality also

assume that B has e1 as one of the rows and it does not have any row of the form

e2. Then, by Remark 2.2, the principal left ideal < B >L will contain matrices with

rows which are finite sums of the rows of B. Then the matrices in the principal left

ideal will contain rows with more than one non-zero elements (ie., in the 1st and 2nd

positions respectively). But this principal left ideal < B >L will not have matrices with

the row e2. Then the principal left ideal generated by B will not be a k-ideal, which

is a contradiction. For, we have B ∈< B >L. Also, B + E12 = B ∈< B >L. But

E12 /∈< B >L, showing that < B >L is not a k-ideal. Hence our assumption that B

does not contain the basis row vector e2 is wrong. Thus B contains the basis row vector

ek whenever bik = 1.

Conversely assume that B contains basis row vector ek, whenever bik = 1. Then B is

either a row partial permutation matrix or a matrix having rows with more than one

non-zero elements. If B is a row partial permutation matrix then by Theorem 2.14,

< B >L is a k-ideal. On the other hand if B is a matrix having rows with more than

one non-zero element, then by Theorem 2.15, < B >L is a k-ideal. 2
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