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Abstract

In this paper, we introduce the concept of minimum dominating Harary energy of
a graph, HED(G) and compute the minimum dominating Harary energy HED(G)
of few families of graphs. Also, established the bounds for minimum dominating
Harary energy.

1. Introduction

Let G be a simple graph of order n with vertex set V = v1, v2, v3, ..., vn and edge set E.

The distance between the vertices vi and vj , denoted by di,j = d(vi, vj) is the length of
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shortest path joining them. The Harary matrix of a graph G is an n× n matrix (aij),

in which

hij =

{
1

dij
if i 6= j,

0 otherwise

A subset D ⊆ V is a dominating set if D is a dominating set and every vertex of V −D
is adjacent to at least one vertex in D. Any dominating set with minimum cardinal-

ity is called a minimum dominating set. Let D be a minimum dominating set of a

graph G. The minimum dominating Harary matrix of G is the n× n matrix defined by

HD(G) = (aij) where

aij =


1 if i = j and vi ∈ D,
0 if i = j and vi /∈ D,
1

dij
otherwise,

The characteristic polynomial of HD(G) is denoted by fn(G,λ) = det(λI − HD(G)).

The minimum dominating Harary eigenvalues of the graph G are the eigenvalues of

HD(G).

Since HD(G) is real and symmetric, its eigenvalues are real numbers and are labelled in

non-increasing order λ1 ≥ λ2 ≥ λ3.... ≥ λn. The minimum dominating Harary energy

of G is defined as

HED(G) =
n∑

i=1

|λi| (1)

2. Minimum Dominating Harary Energy of Some Standard Graphs

Theorem 2.1 : If Kn is the complete graph with n vertices has HED(Kn) = (n− 2) +
√
n2 − 2n+ 5.

Proof : Let Kn be the complete graph with vertex set V = {v1, v2, · · · , vn}. The

minimum dominating set = D = {v1}.

HD(Kn) =



1 1 1 · · · 1 1
1 0 1 · · · 1 1
1 1 0 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 0 1
1 1 1 · · · 1 0


n×n

.

characteristic polynomial is

[λ+ 1]n−2[λ2 − (n− 1)λ− 1]
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Minimum dominating Harary eigenvalues are

specD(Kn) =

(
−1 n−1+

√
(n2−2n+5)

2

n−1−
√

(n2−2n+5)

2
n− 2 1 1

)
.

Minimum dominating Harary energy for complete graph is

HED(Kn) = | − 1|(n− 2) + |
(n− 1) +

√
(n2 − 2n+ 5)
2

|

+|
(n− 1)−

√
(n2 − 2n+ 5)
2

|

= (n− 2) +
√

(n2 − 2n+ 5)

HED(Kn) = (n− 2) +
√

(n2 − 2n+ 5)

2

Theorem 2.2 : If K1,n−1 is a star graph of order n, then

HED(K1,n−1) = 1
2 [(n− 2) +

√
n2 + 8n] for n ≥ 3..

Proof : Let K1,n−1 be a graph with minimum dominating set is D = {v0}. Then we

have

AD(K1,n−1)



1 1 1 · · · 1 1
1 0 1

2 · · · 1
2

1
2

1 1
2 0 · · · 1

2
1
2

...
...

...
. . .

...
...

1 1
2

1
2 · · · 0 1

2
1 1

2
1
2 · · · 1

2 0


n×n

.

Characteristic equation for n ≥ 3 is (2λ+ 1)n−2
(
λ2 − (n

2 )λ− (n
2 )
)

= 0

Minimum dominating Harary eigenvalues for n ≥ 3 are(
−1
2

n
2
+

√
n2

4
+2n

2

n
2
−
√

n2

4
+2n

2
n− 2 1 1

)
.

Minimum dominating Harary energy is

HED(K1,n−1) = |−1
2
|(n− 2) +

1
2
|n
2

+

√
n2

4
+ 2n|

+
1
2
|n
2
−
√
n2

4
+ 2n|

=
1
2

[(n− 2) +
√
n2 + 8n]
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∴ HED(K1,n−1) =
1
2

[(n− 2) +
√
n2 + 8n].

2

Definition 2.3 : The cocktail party graph, denoted by Kn×2, is graph having vertex

set V =
⋃n

i=1{ui, vi} and edge set E = {uiuj , vivj , uivj , viuj : 1 ≤ i < j ≤ n}. This

graph is also called as complete n-partite graph.

Theorem 2.4 : If Kn×2 is a cocktail party graph of order 2n, then

HED(Kn×2) = (2n− 3) +
√

(4n2 − 4n+ 9).

Proof : Let Kn×2 be a cocktail party graph of order 2n with

V (Kn×2) = {v1, v2, . . . , vn, u1, u2, . . . , un}. The minimum dominating set = D = {u1, v1}.
Then

HD(Kn×2) =



1 1
2 1 1 · · · 1 1 1 1

1
2 1 1 1 · · · 1 1 1 1
1 1 0 1

2 · · · 1 1 1 1
1 1 1

2 0 · · · 1 1 1 1
...

...
...

...
. . .

...
...

...
...

1 1 1 1 · · · 0 1
2 1 1

1 1 1 1 · · · 1
2 0 1 1

1 1 1 1 · · · 1 1 0 1
2

1 1 1 1 · · · 1 1 1
2 0


2n×2n

.

Characteristic equation is [λ+ 1.5]n−2[λ+ 0.5]n−1[λ− 0.5][λ2 − (2n− 2)λ− (n+ 5
4)]

minimum dominating Harary eigenvalues are

=

(
−1.5 −0.5 0.5 2n−2+

√
(4n2−4n+9)

2

2n−2−
√

(4n2−4n+9)

2
n− 2 n− 1 1 1 1

)
.

minimum dominating Harary energy,

HED(Kn×2) = | − 1.5|(n− 2) + | − 0.5|(n− 1) + |0.5|+ |
2n− 2 +

√
(4n2 − 4n+ 9)
2

|

+|
2n− 2−

√
(4n2 − 4n+ 9)
2

|

= (2n− 3) +
√

(4n2 − 4n+ 9).

2
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Definition 2.5 : The friendship graph, denoted by F
(n)
3 , is the graph obtained by

taking n copies of the cycle graph C3 with a vertex in common.

Theorem 2.6 : If F (n)
3 is a friendship graph, then HED(F (n)

3 ) = n+
√

(n2 + 6n+ 1).

Proof : Let F (n)
3 be a friendship graph with V (F (n)

3 ) = {v0, v1, v2, . . . , vn}. The mini-

mum dominating set = D = {v3}. Then

HD(F (n)
3 ) =



0 1 1 1
2 · · · 1

2
1
2

1 0 1 1
2 · · · 1

2
1
2

1 1 1 1 · · · 1 1
1
2

1
2 1 0 · · · 1

2
1
2

...
...

...
...

. . .
...

...
1
2

1
2 1 1 · · · 0 1

1
2

1
2 1 1 · · · 1 0


(2n+1)×(2n+1)

.

Characteristic equation is λn−1[λ+ 1]n[λ2 − (n+ 1)λ− n)]

minimum dominating Harary eigenvalues are

=

(
−1 0 (n+1)+

√
(n2+6n+1)

2

(n+1)−
√

(n2+6n+1)

2
n n− 1 1 1

)
minimum dominating Harary energy,

HED(F (n)
3 ) = | − 1|n+ 0(n− 1) + |

(n+ 1) +
√

(n2 + 6n+ 1)
2

|

+|
(n+ 1)−

√
(n2 + 6n+ 1)
2

|

= n+
√

(n2 + 6n+ 1).

2

3. Properties of Minimum Dominating Harary Energy of a Graph

Theorem 3.1 : Let |λI−HD| = a0λ
n +a1λ

n−1 +a2λ
n−2 + ....+anbe the charecterastic

polynomial of HD. Then

(i) a0 = 1,

(ii) a1 = −|D|,

(iii) a2 = (|D|2)−
n∑

i<j

1
d(vi, vj)

2 ,
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Proof :

(i) It follows from the definition, PD(G,λ) = det(λI −AD(G)), that a0 = 1.

(ii) The sum of determinants of all 1 × 1 principal submatrices of HD is equal to the

trace of HD.

⇒ a1 = (−1)1 trace of [HD(G)] = −|D|.

(iii) The sum of determinants of all the 2× 2 principal submatrices of [HD(G)] is

a2 = (−1)2
∑

1≤i<j≤n

∣∣∣∣aii aij

aji ajj

∣∣∣∣ =
∑

1≤i<j≤n

(aiiajj − aijaji)

=
∑

1≤i<j≤n

aiiajj −
∑

1≤i<j≤n

ajiaij

= (D|2)−
n∑

i<j

1
d(vi, vj)

2

2

Theorem 3.2 : If λ1, λ2, . . . , λn are eigenvalues of HD(G),

then
n∑

i=1

λi = |D| and
n∑

i=1

λ2
i = |D|+ 2

n∑
i<j

1
d(vi, vj)

2 .

Proof : We know that the sum of the eigenvalues of AD(G) is the trace of AD(G)

=
n∑

i=1

λi =
n∑

i=1

aii = |D|

Consider

n∑
i=1

λ2
i =

n∑
i=1

n∑
j=1

aijaji =
n∑

i=1

(aii)2 +
∑
i 6=j

aijaji

=
n∑

i=1

(aii)2 + 2
∑
i<j

(aij)2

=
n∑

i=1

λ2
i = |D|+ 2

n∑
i<j

1
d(vi, vj)

2 .

2
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Theorem 3.3 : Let G be graph with n vertices m edges and minimum dominating set

D . Then

√√√√√
|D|+ 2

 n∑
i<j

1
d(vi, vj)

2

+ n(n− 1)|detAD(G)|
2
n

≤ HED(G) ≤

√√√√√n

|D|+ 2
n∑

i<j

1
d(vi, vj)

2

.
Theorem 3.4 : If λ1(G) is the largest minimum dominating Harary eigen value of

HD(G), then λ1 ≥

2

n∑
i<j

1
d(vi, vj)

+ |D|

n , where |D| is the cardinality of minimum domi-

nating set.

Proof : Let X be any nonzero vector. Then by [2], We have

λ1(HD) = max
X 6=0

X
′
HDX

X ′X

= λ1(HD) ≥ J
′
HDJ

J ′J

=

2
n∑

i<j

1
d(vi, vj)

+ |D|

n
,

where J is a unit matrix. 2

Theorem 3.5 : Let G be a graph with a minimum dominating set D. If the minimum

dominating Harary energy HED(G) is a rational number, then HED(G) ≡ |D|(mod2).

Proof : Proof is similar to Theorem 3.7 of [1]. 2
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