International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 19-30

FIXED POINT THEOREMS FOR (α, ψ, ξ)-CONTRACTIVE MULTIVALUED MAPPINGS

DR. U. KARUPPIAH ${ }^{1}$ AND A. LEEMA MARIA PRAKASAM ${ }^{2}$
${ }^{1}$ St.Joseph's College (Autonomous), Trichy-620 002, India
${ }^{2}$ Department of Mathematics, Holy Cross College (Autonomous), Trichy-620 002, India

Abstract

We prove fixed point theorems for (α, ψ, ξ)-contractive multivalued mappings by changing the contractive conditions which generalize the results of Seong-Hoon Cho [10].

1. Introduction and Preliminaries

In 2012, Samet et al. [1] introduced the notions of $\alpha-\psi$ contractive mapping and α-admissible mappings in metric spaces and obtained corresponding fixed point results, which are generalizations of ordered fixed point results (see [1]). Since then, by using

Key Words : Common fixed point, Multi-valued maps, α-admissible.
AMS Subject Classification : Primary 47h10,Secondary 54h25.
(C) http: //www.ascent-journals.com
their idea, some authors investigated fixed point results in the field. Asl et al.[2] extended some of results in [1] to multivalued mappings by introducing the notions of $\alpha_{*}-\psi$ contractive mapping and α_{*}-admissible mapping.
Recently, Salimi et al. [3] modified the notions of $\alpha-\psi$ contractive mapping and α-admissible mappings by introducing another function η and then, they gave generalizations of the results of Samet et al.[1] and Karapinar and Samet [4]. Hussain et al.[5] extended these modified notions to multivalued mappings. That is, they introduced the notion of $\alpha-\eta$ contractive multifunctions and gave fixed point results for these multifunctions.
Very recently, Ali et al.[6] generalized and extended the notion of $\alpha-\psi$ contractive mappings by introducing the notion of (α, ψ, ξ)-contractive multivalued mappings and obtained fixed point theorems for these mappings in complete metric spaces.
Let (X, d) be a metric space. We denote by $C B(X)$ the class of nonempty closed and bounded subsets of X and by $C L(X)$ the class of nonempty closed subsets of X. Let $H(\cdot, \cdot)$ be the generalized Hausdorff distance on $C L(X)$, that is, for all $A, B \in C L(X)$,

$$
H(A, B)=\left\{\begin{array}{l}
\underset{\alpha \in A}{\max \left\{\sup _{\alpha \in} d(a, B) \sup _{b \in B} d(b, A),\right. \text { if the maximum exists, }} \tag{1}\\
\infty, \quad \text { otherwise }
\end{array}\right.
$$

where $d(a, B)=\inf \{d(a, b: b \in B\}$ is the distance from point a to subset B. For $A, B \in C L(X)$, let $D(A, B)=\sup _{x \in A} \inf _{y \in B} d(x, y)$. Then, we have $D(A, B) \leq H(A, B)$ for all $A, B \in C L(X)$.
From now on, we denote by

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}\right\} \tag{2}
\end{equation*}
$$

for a multivalued map $T: X \rightarrow C L(X)$ and $x, y \in X$.
We denote by Ξ the class of all functions $\xi:[0, \infty) \rightarrow[0, \infty)$ such that
(1) ξ is continuous;
(2) ξ is nondecreasing on $[0, \infty)$;
(3) $\xi(t)=0$ if and only if $t=0$;
(4) ξ is subadditive.

Also, we denote by Ψ the family of all nondecreasing functions $\Psi:[0, \infty) \rightarrow[0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^{n}(t)<\infty$ for each $t>0$, where ψ^{n} is the n-th iterate of ψ.
Note that if $\Psi \in \Psi$, then $\Psi(0)=0$ and $0<\Psi(t)<t$ for all $t>0$.
Let (X, d) be a metric space, and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function.
We consider the following conditions:
(1) For any sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \aleph$ and $\lim _{n \rightarrow \infty} x_{n}=x$, we have

$$
\begin{equation*}
\alpha\left(x_{n}, x\right) \geq 1 \quad \forall n \in \aleph \tag{3}
\end{equation*}
$$

(2) for any sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \aleph$ and a cluster point x of $\left\{x_{n}\right\}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \alpha\left(x_{n}, x\right) \geq 1 \tag{4}
\end{equation*}
$$

(3) for any sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \aleph$ and a cluster point x of $\left\{x_{n}\right\}$, there exists a subsequence $\left\{x_{n}(k)\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\alpha\left(x_{n(k)}, x\right) \geq 1 \quad \forall k \in \aleph \tag{5}
\end{equation*}
$$

Remark 1 : (1) imples (2) and (2) implies (1).
Note that if (X, d) is a metric space and $\xi \in \Xi$, then $(X, \xi \circ d)$ is a metric space.
Let (X, d) be a metric space, and let $T: X \rightarrow C L(X)$ be a multivalued mapping. Then, we say that
(1) T is called α_{*}-admissible [2] if

$$
\begin{equation*}
\alpha(x, y) \geq 1 \quad \text { implies } \quad \alpha_{*}(T x, T y) \geq 1 \tag{6}
\end{equation*}
$$

where $\alpha_{*}(T x, T y)=\inf \{\alpha(a, b): a \in T x, b \in T y\} ;$
(2) T is called α-admissible [7] if, for each $x \in X$ and $y \in T x$ with $\alpha(x, y) \geq 1$, we have $\alpha(y, z) \geq 1$ for all $z \in T y$.

Lemma 1.1 (see[10]) : Let (X, d) be a metric space and let $T: X \rightarrow C L(X)$ be a multivalued mapping. If T is α_{*}-admissible, then it is α-admissible.
Proof : Suppose that T is α_{*}-admissible mapping.

Let $x \in X$ and $y \in T x$ be such that $\alpha(x, y) \geq 1$.
Let $z \in T y$ be given.
Since T is α_{*}-admissible, $\alpha(y, z) \geq \alpha_{*}(T x, T y) \geq 1$.
Lemma 1.2 (see[10]) : Let (X, d) be a metric space and let $\xi \in \Xi$ and $B \in C L(X)$.
If $a \in X$ and $\xi(d(a, B))<c$, then there exists $b \in B$ such that $\xi(d(a, b))<c$.
Proof: Let $\epsilon=c-\xi(d(a, B))$.
Since $\xi(d(a, B))<c$ and $\xi \circ d$ is metric on X, there exists $b \in B$ such that $\xi(d(a, b))<$ $\xi(d(a, B))+\epsilon$ by definition of infimum. Hence, $\xi(d(a, b))<c$.
Let (X, d) be a metric space.
A function $f: X \rightarrow[0, \infty)$ is called upper semicontinuous if, for each $x \in X$ and $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} x_{n}=x$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq f(x)$.
A function $f: X \rightarrow[0, \infty)$ is called lower semicontinuous if, for each $x \in X$ and $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} x_{n}=x$, we have $f(x) \leq \lim _{n \rightarrow \infty} f\left(x_{n}\right)$.
For a multivalued map $T: X \rightarrow C L(X)$, let $f_{T}: X \rightarrow[0, \infty)$ be a function defined by $f_{T}(x)=d(x, T x)$.

2. Fixed Point Theorems

Theorem 2.1 (see[10]) : Let (X, d) be a complete metric space and let $\alpha: X \times X \rightarrow$ $[0, \infty)$ be a function. Suppose that a multivalued mapping $T: X \rightarrow C L(X)$ is α admissible.

Assume that, for all $x, y \in X, \alpha(x, y) \geq 1$ implies

$$
\xi(H(T x, T y)) \leq \psi(\xi(\xi(M(x, y)))+L \xi(d(y, T x))
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}\{d(x, T y)+d(y, T x)\}\right\}
$$

where $L \geq 0, \xi \in \Xi$ and $\psi \in \Psi$ is strictly increasing.
Also, suppose that the following are satisfied:
(1) there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(2) either T is continuous or f_{T} is lower semicontinuous.

Then T has a fixed point in X.
Theorem 2.2: Let (X, d) be a complete metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. Suppose that a multivalued mapping $T: X \rightarrow C L(X)$ is α-admissible.

Assume that, for all $x, y \in X, \alpha(x, y) \geq 1$ implies

$$
\begin{gather*}
\xi(H(T x, T y)) \leq \psi(\xi(M(x, y)))+L \xi(d(y, T x)) \tag{7}\\
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}\right\}
\end{gather*}
$$

where $L \geq 0, \xi \in \Xi$ and $\psi \in \Psi$ is strictly increasing.
Also, suppose that the following are satisfied:
(1) there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(2) either T is continuous or f_{T} is lower semicontinuous.

Then T has a fixed point in X.
Proof : Let $x_{0} \in X$ and $x_{1} \in T x_{0}$ be such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$. Let c be a real number with $\xi\left(d\left(x_{0}, x_{1}\right)\right)<\xi(c)$.
If $x_{0}=x_{1}$, then x_{1} is a fixed point. Let $x_{0} \neq x_{1}$.
If $x_{1} \in T x_{1}$, then x_{1} is a fixed point.
Let $x_{1} \notin T x_{1}$. Then $d\left(x_{1}, T x_{1}\right)>0$.
From (7) we obtain

$$
\begin{align*}
0 & \leq \xi\left(d\left(x_{1}, T x_{1}\right)\right) \\
& \leq \xi\left(H\left(T x_{0}, T x_{1}\right)\right. \\
& \leq \psi\left(\xi\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, T x_{0}\right), d\left(x_{1}, T x_{1}\right), \frac{d\left(x_{0}, T x_{0}\right) \cdot d\left(x_{1}, T x_{1}\right)}{1+d\left(x_{0}, x_{1}\right)}\right\}\right)\right)+L \xi\left(d\left(x_{0}, x_{1}\right)\right) \\
& \leq \psi\left(\xi\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right), \frac{d\left(x_{0}, x_{1}\right) \cdot d\left(x_{1}, T x_{1}\right)}{1+d\left(x_{0}, x_{1}\right)}\right\}\right)\right)+L \xi\left(d\left(x_{1}, x_{1}\right)\right) \\
& \leq \psi\left(\xi\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right)\right\}\right)\right) . \tag{8}
\end{align*}
$$

If $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right)\right\}=d\left(x_{1}, T x_{1}\right)$, then we have

$$
0<\xi\left(d\left(x_{1}, T x_{1}\right)\right) \leq \psi\left(\xi\left(d\left(x_{1}, T x_{1}\right)\right)\right)<\xi\left(d\left(x_{1}, T x_{1}\right)\right)
$$

which is a contraction.

Thus, $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right)\right\}=d\left(x_{0}, x_{1}\right)$, and hence we have

$$
\begin{equation*}
0<\cdots<\psi(\xi(c)) \tag{9}
\end{equation*}
$$

Hence,there exists $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
\xi\left(d\left(x_{1}, x_{2}\right)\right)<\psi(\xi(c)) \tag{10}
\end{equation*}
$$

Since T is α-admissible, from condition (1)and $x_{2} \in T x_{1}$, we have

$$
\begin{equation*}
\alpha\left(x_{1}, x_{2}\right) \geq 1 \tag{11}
\end{equation*}
$$

If $x_{2} \in T x_{2}$, then x_{2} is a fixed point. Let $x_{2} \notin T x_{2}$.
Then $d\left(x_{2}, T x_{2}\right)>0$ and so $\xi\left(d\left(x_{2}, T x_{2}\right)\right)>0$.
From (7) we obtain

$$
\begin{align*}
0 & <\xi\left(d\left(x_{2}, T x_{2}\right)\right) \\
& \leq \xi\left(H\left(T x_{1}, T x_{2}\right)\right. \\
& \leq \psi\left(\xi\left(\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{1}, T x_{1}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}, T x_{1}\right) \cdot d\left(x_{2}, T x_{2}\right)}{1+d\left(x_{1}, x_{2}\right)}\right\}\right)\right) \leq \cdots+L \xi\left(d\left(x_{2}, x_{1}\right)\right) \\
& \leq \psi\left(\xi\left(\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}, x_{2}\right) \cdot d\left(x_{2}, T x_{2}\right)}{1+d\left(x_{1}, x_{2}\right)}\right\}\right)\right)+L \xi\left(d\left(x_{2}, x_{2}\right)\right) \\
& \leq \psi\left(\xi\left(\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\}\right)\right) . \tag{12}
\end{align*}
$$

If $\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\}=d\left(x_{2}, T x_{2}\right)$, then we have

$$
\xi\left(d\left(x_{2}, T x_{2}\right)\right) \leq \psi\left(\xi\left(d\left(x_{2}, T x_{2}\right)\right)\right)<\xi\left(d\left(x_{2}, T x_{2}\right)\right)
$$

which is a contraction.
Thus, $\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\}=d\left(x_{1}, x_{2}\right)$, and hence we have

$$
\begin{equation*}
\xi\left(d\left(x_{2}, T x_{2}\right)\right) \leq \psi\left(\xi\left(d\left(x_{1}, x_{2}\right)\right)\right)<\psi^{2}(\xi(c)) \tag{13}
\end{equation*}
$$

Hence, there exists $x_{3} \in T x_{2}$ such that

$$
\begin{equation*}
\xi\left(d\left(x_{2}, x_{3}\right)\right)<\psi^{2}(\xi(c)) \tag{14}
\end{equation*}
$$

Since T is α-admissible, from $x_{3} \in T x_{2}$, we have

$$
\begin{equation*}
\alpha\left(x_{2}, x_{3}\right) \geq 1 \tag{15}
\end{equation*}
$$

FIXED POINT THEOREMS FOR $(\alpha, \psi, \xi)-\ldots$

By induction, we obtain a sequence $\left\{x_{n}\right\} \subset X$ such that, for all $n \in \aleph \cup\{0\}, \alpha\left(x_{n}, x_{n+1}\right) \geq$ $1, x_{n+1} \in T x_{n}, x_{n} \neq x_{n+1}$

$$
\begin{equation*}
\xi\left(d\left(x_{n}, x_{n+1}\right)\right)<\psi^{n}(\xi(c)) \tag{16}
\end{equation*}
$$

Let $\epsilon>0$ be given.
Since $\sum_{n=0}^{\infty} \psi^{n}(\xi(e p))<\xi(\epsilon) \infty$, there exists $N \in \aleph$ such that

$$
\begin{equation*}
\sum_{n \geq N} \psi^{n}(\xi(c))<\xi(\epsilon) \tag{17}
\end{equation*}
$$

For all $m>n \geq N$, we have

$$
\begin{equation*}
\xi\left(d\left(x_{n}, x_{m}\right)\right) \leq \sum_{k=n}^{m-1} \psi^{k}(\xi(c))<\sum_{n \geq N} \psi^{n}(\xi(c))<\xi(\epsilon) \tag{18}
\end{equation*}
$$

which implies $d\left(x_{n}, x_{m}\right)<\epsilon, \forall m>n \geq N$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in X. It follows from the completeness of X that there exists

$$
\begin{equation*}
x_{*}=\lim _{n \rightarrow \infty} x_{n} \in X \tag{19}
\end{equation*}
$$

Suppose that T is continuous. We have

$$
\begin{equation*}
d\left(x_{*}, T x_{*}\right) \leq d\left(x_{*}, x_{n+1}\right)+d\left(x_{n+1}, T x_{*}\right) \leq d\left(x_{*}, x_{n+1}\right)+H\left(x_{n}, T x_{*}\right) \tag{20}
\end{equation*}
$$

By letting $n \rightarrow \alpha$ in the above inequality, we obtain $d\left(x_{*}, T x_{*}\right)=0$ and so $x_{*} \in T x_{*}$. Assume that f_{T} is lower semicontinous. Then, $f_{T}\left(x_{*}\right) \leq \lim _{n \rightarrow \alpha} f_{T}\left(x_{n}\right)$. Hence

$$
d\left(x_{*}, T x_{*}\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

Thus, $x_{*} \in T x_{*}$.
Corollary 2.1 : Let (X, d) be a complete metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. Suppose that a multivalued mapping $T: X \rightarrow C L(X)$ is α-admissible.
Assume that, for all $x, y \in X, \alpha(x, y) \geq 1$ implies

$$
\begin{gather*}
\xi(\alpha(x, y))(H(T x, T y)) \leq \psi(\xi(M(x, y)))+L \xi(d(y, T x)) \tag{21}\\
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x)(d(y, T y))}{1+d(x, y)}\right\}
\end{gather*}
$$

where $L \geq 0, \xi \in \Xi$ and $\psi \in \Psi$ is strictly increasing. Also, suppose that conditions (1) and (2) of Theorem 2.2 are satisfied.

Then T has a fixed point in X.
Remark 2.1: If we have $\xi(t)=t$ for all $t>0, L=0$,

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}\{d(x, T y)+d(y, T x)\}\right\}
$$

and T is continuous, then Corollary 2.1 reduces to Theorem 3.4 of [7].
Theorem 2.3 (see [10]) : Let (X, d) be a complete metric space and let $\alpha: X \times X \rightarrow$ $[0, \infty)$ be a function. Suppose that a multivalued mapping $T: X \rightarrow C L(X)$ is α admissible.
Assume that, for all $x, y \in X, \alpha(x, y) \geq 1$ implies

$$
\begin{gather*}
\xi(H(T x, T y)) \leq \psi(\xi(M(x, y)))+L \xi(d(y, T x)) \tag{22}\\
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}\{d(x, T y)+d(y, T x)\}\right\}
\end{gather*}
$$

where $L \geq 0, \xi \in \Xi, \psi \in \Psi$ and is strictly increasing and upper semicontinuous function. Also, suppose that the following are satisfied.
(1) there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(2) for a sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ forall $n \in \mathcal{\aleph} \cup\{0\}$ and a cluster point x of $\left\{x_{n}\right\}$, there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that, for all, $k \in \aleph \cup\{0\}$,

$$
\begin{equation*}
\alpha\left(x_{n(k)}, x\right) \geq 1 \tag{23}
\end{equation*}
$$

Then T has a fixed point in X.
Theorem 2.4: Let (X, d) be a complete metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. Suppose that a multivalued mapping $T: X \rightarrow C L(X)$ is α-admissible.
Assume that, for all $x, y \in X, \alpha(x, y) \geq 1$ implies

$$
\begin{gather*}
\xi(H(T x, T y)) \leq \psi(\xi(M(x, y)))+L \xi(d(y, T x)) \tag{24}\\
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x) \cdot d(y, T y)}{1+d(x, y)}\right\}
\end{gather*}
$$

where $L \geq 0, \xi \in \Xi, \psi \in \Psi$ is strictly increasing and upper semicontinuous function. Also, suppose that the following are satisfied.
(1) there exists $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(2) for a sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ forall $n \in \mathcal{\aleph} \cup\{0\}$ and a cluster point x of $\left\{x_{n}\right\}$, there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that, for all $k \in \mathcal{\aleph} \cup\{0\}$,

$$
\begin{equation*}
\alpha\left(x_{n(k)}, x\right) \geq 1 \tag{25}
\end{equation*}
$$

Then T has a fixed point in X.
Proof : Following the proof of Theorem 2.2, we obtain a sequence $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} x_{n}=x_{*} \in X$ such that, for all $n \in \mathcal{\aleph} \cup\{0\}$,

$$
\begin{equation*}
x_{n+1} \in T x_{n}, x_{n} \neq x_{n+1}, \alpha\left(x_{n}, x_{n+1}\right) \geq 1 \tag{26}
\end{equation*}
$$

From (2) there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\left(x_{n(k)}, x_{*}\right) \geq 1 \tag{27}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\xi\left(d\left(x_{n(k)+1}, T x_{*}\right)\right)=\xi\left(H\left(T_{x n(k)}, T x_{*}\right)\right) \leq \psi\left(\xi\left(M\left(x_{n(k)}, x_{*}\right)\right)\right)+L \xi\left(d\left(x_{*}, x_{n(k)+1}\right)\right) \tag{28}
\end{equation*}
$$

where
$M\left(x_{n(k)}, x_{*}\right)=\max \left\{d\left(x_{n(k)}, x_{*}\right), d\left(x_{n(k)}, x_{n(k)+1}\right), d\left(x_{*}, T x_{*}\right), \frac{d\left(x_{n(k)}, x_{n(k)+1}\right) \cdot d\left(x_{*}, T x_{*}\right)}{1+d\left(x_{n(k)}, x_{*}\right)}\right\}$
we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M\left(x_{n(k)}, x_{*}\right)=d\left(x_{*}, T x_{*}\right) \tag{30}
\end{equation*}
$$

and so

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \xi\left(M\left(x_{n(k)}, x_{*}\right)\right)=\xi\left(d\left(x_{*}, T x_{*}\right)\right) . \tag{31}
\end{equation*}
$$

Suppose that $d\left(x_{*}, T x_{*}\right) \neq 0$.
Since ψ is upper semicontinuous.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \psi\left(\xi\left(M\left(x_{n(k)}, x_{*}\right)\right)\right) \leq \psi\left(\xi\left(d\left(x_{*}, T x_{*}\right)\right)\right) \tag{32}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in inequality (27) and using continuity of ξ, we obtain

$$
\begin{align*}
0<\xi\left(d\left(x_{*}, T x_{*}\right)\right) & & \\
& \leq & \lim _{k \rightarrow \infty} \psi\left(\xi\left(M\left(x_{n+k}, x_{*}\right)\right)\right)+\lim _{n \rightarrow \infty} L \xi\left(d\left(x_{*}, x_{n(k)+1}\right)\right) \tag{33}\\
& \leq & \psi \xi\left(d\left(x_{*}, T x_{*}\right)\right)<\xi\left(d\left(x_{*}, T x_{*}\right)\right)
\end{align*}
$$

which is a contraction. Hence, $d\left(x_{*}, T x_{*}\right)=0$, and hence x_{*} is a fixed point of T.
The following example shows that upper semicontinuity of ψ cannot be dropped in Theorem 2.4.
Example : Let $X=[0, \infty)$ and let $d(x, y)=|x-y|$ for all $x, y \geq 0$.
Define a mapping $T: X \rightarrow C L(X)$ by

$$
T x= \begin{cases}\left\{\frac{2}{3}, 1\right\} & (x=0) \tag{34}\\ \left\{\frac{5}{6} x\right\} & (0<x \leq 1) \\ \{3 x\} & (x>1)\end{cases}
$$

Let $\xi(t)=t$ for all $t \geq 0$, and let

$$
\psi(t)= \begin{cases}\left\{\frac{6}{7} t\right\} & (t \geq 1) \tag{35}\\ \left\{\frac{4}{5} t\right\} & (0 \leq t<1) .\end{cases}
$$

Then $\xi \in \Xi$ and $\psi \in \Psi$ is a strictly increasing function.
Let $\alpha, \eta: X \times X \rightarrow[0, \infty]$ be defined by

$$
\alpha(x, y)= \begin{cases}6, & 0 \leq x, y \leq 1 \tag{36}\\ 0, & \text { otherwise }\end{cases}
$$

Obviously condition (2)of Theorem 2.4 is satisfied. Condition (1) of Theorem 2.4 is satisfied with $x_{0}=\frac{1}{6}$ we show that (7) is stisfied.
Let $x, y \in X$ be such that $\alpha(x, y) \geq 1$. Then $0 \leq x, y \leq 1$.
If $x=0$ then obviously (7) is satisfied.
Let $x \neq y$. If $x=0$ and $0<y \leq 1$, then we obtain

$$
\begin{equation*}
\xi(H(T x, T y))=H\left(\left\{\frac{2}{3}, 1\right\}, \frac{5}{6} y\right) \leq \frac{1}{6} \leq \psi(d(x, T x)) \leq \psi(\xi(M(x, y))) \tag{37}
\end{equation*}
$$

Let $0<x \leq 1$ and $0<y \leq 1$. Then, we have

$$
\begin{aligned}
\xi(H(T x, T y)) & =d(T x, T y)=d\left(\frac{5}{6} x, \frac{5}{6} y\right) \\
& =\frac{5}{6}|x-y| \\
& =\psi(\xi(M(x, y))) \\
& \leq \psi(\xi(M(x, y)) .
\end{aligned}
$$

We now show that T is α-admissible.
Let $x \in X$ be given and let $y \in T x$ be such that $\alpha(x, y) \geq 1$. Then $0 \leq x, y \leq 1$.
Obviously $\alpha(y, z) \geq 1$ for all $z \in T y$ whenever $0<y \leq 1$.
If $y=0$, then $T y=\left\{\frac{2}{3}, 1\right\}$. Hence, for all $z \in T y, \alpha(y, z) \geq 1$. Hence, T is α admisible. Thus, all hypothesis of Theorem 2.4 are satisfied. However, T has no fixed points.
Note that ψ is not upper semicontinuous.
Corollary 2.2 : Let (X, d) be a complete metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. Suppose that a multivalued mapping $T: X \rightarrow C L(X)$ is α-admissible.
Assume that, for all $x, y \in X, \alpha(x, y) \geq 1$ implies

$$
\begin{gather*}
\xi(H(T x, T y)) \leq \psi(\xi(M(x, y)))+L \xi(d(y, T x)) \tag{38}\\
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}\right\}
\end{gather*}
$$

where $L \geq 0, \xi \in \Xi, \psi \in \Psi$ is strictly increasing and upper semicontinuous function. Also, suppose that conditions (1)and (2) of Theorem 2.4 are satisfied. Then T has a fixed point in X.

References

[1] Samet B., Vetro C. and Vetro P., Fixed point theorems for $\alpha-\psi$ contractive type mapping,Nonlinear Analysis : Theory, Methods and Applications. 75(4) (2012), 2154-2165.
[2] Asl A., Rezapour S. and Shahzad N., On fixed points of $\alpha-\psi$ contractive multifunctions,Fixed Point Theory and Applications, article 212 (2012).
[3] Salimi P., Latif A. and Hussain N., Modified $\alpha-\psi$ contractive mappings with applications,Fixed Point Theory and Applications, article 151 (2013).
[4] Karapinar E. and Samet B., Generalized $\alpha-\psi$ contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, Article ID 793486, 17 pages, (2012).
[5] Hussain N., Salimi P. and Ladif A., Fixed point results for single and set-valued $\alpha-\eta-\psi$ contractive conditions, Fixed Point Theory and Applications, article 212 (2013).
[6] Ali M. U., Kamran T. and Karapinar E., (α, ψ, ξ)-contractive multivalued mappings,Fixed Point Theory and Applications, article 7 (2014).
[7] Mohammadi B., Rezapour S. and Shahzad N., Some results on fixed points of $\alpha-\psi$-Ciric generalized multifunctions, Fixed Point Theory and Application, article 24 (2013).
[8] Berinde V., Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian journal of Mathematics, 25(2) (2009), 157-162.
[9] Agarwal R. P., El-Gebeily M. A. and Regan D. O.,Generalized contractions in partially ordered metric spaces, Applicable Analysis, 87(1) (2008), 109-116.
[10] Seong-Hoon Cho, Fixed Point Theorems for Ciric-Berinde Type Contractive Multivalued Mappings,Abstract and Applied Analysis, Article ID 768238, 1-6, (2015).

