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Abstract

We prove fixed point theorems for (α,ψ, ξ)-contractive multivalued mappings by
changing the contractive conditions which generalize the results of Seong-Hoon Cho
[10].

1. Introduction and Preliminaries

In 2012, Samet et al. [1] introduced the notions of α − ψ contractive mapping and

α-admissible mappings in metric spaces and obtained corresponding fixed point results,

which are generalizations of ordered fixed point results (see [1]). Since then, by using
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their idea, some authors investigated fixed point results in the field. Asl et al.[2] extended

some of results in [1] to multivalued mappings by introducing the notions of α∗ − ψ-

contractive mapping and α∗-admissible mapping.

Recently, Salimi et al. [3] modified the notions of α − ψ contractive mapping and

α-admissible mappings by introducing another function η and then, they gave general-

izations of the results of Samet et al.[1] and Karapinar and Samet [4]. Hussain et al.[5]

extended these modified notions to multivalued mappings. That is, they introduced

the notion of α − η contractive multifunctions and gave fixed point results for these

multifunctions.

Very recently, Ali et al.[6] generalized and extended the notion of α − ψ contractive

mappings by introducing the notion of (α,ψ, ξ)-contractive multivalued mappings and

obtained fixed point theorems for these mappings in complete metric spaces.

Let (X, d) be a metric space. We denote by CB(X) the class of nonempty closed and

bounded subsets of X and by CL(X) the class of nonempty closed subsets of X. Let

H(·, ·) be the generalized Hausdorff distance on CL(X), that is, for all A,B ∈ CL(X),

H(A,B) =


max{sup

α∈A
d(a,B) sup

b∈B
d(b, A), if the maximum exists,

∞, otherwise

(1)

where d(a,B) = inf{d(a, b : b ∈ B} is the distance from point a to subset B. For

A,B ∈ CL(X), let D(A,B) = sup
x∈A

inf
y∈B

d(x, y). Then, we have D(A,B) ≤ H(A,B) for

all A,B ∈ CL(X).

From now on, we denote by

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)

1 + d(x, y)

}
(2)

for a multivalued map T : X → CL(X) and x, y ∈ X.

We denote by Ξ the class of all functions ξ : [0,∞)→ [0,∞) such that

(1) ξ is continuous;

(2) ξ is nondecreasing on [0,∞);

(3) ξ(t) = 0 if and only if t = 0;

(4) ξ is subadditive.
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Also, we denote by Ψ the family of all nondecreasing functions Ψ : [0,∞)→ [0,∞) such

that
∞∑
n=1

ψn(t) <∞ for each t > 0, where ψn is the n-th iterate of ψ.

Note that if Ψ ∈ Ψ, then Ψ(0) = 0 and 0 < Ψ(t) < t for all t > 0.

Let (X, d) be a metric space, and let α : X ×X → [0,∞) be a function.

We consider the following conditions:

(1) For any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ ℵ and lim
n→∞

xn = x,

we have

α(xn, x) ≥ 1 ∀ n ∈ ℵ (3)

(2) for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ ℵ and a cluster point

x of {xn}, we have

lim
n→∞

inf α(xn, x) ≥ 1; (4)

(3) for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ ℵ and a cluster point

x of {xn}, there exists a subsequence {xn(k)} of {xn} such that

α(xn(k), x) ≥ 1 ∀ k ∈ ℵ. (5)

Remark 1 : (1) imples (2) and (2) implies (1).

Note that if (X, d) is a metric space and ξ ∈ Ξ, then (X, ξ ◦ d) is a metric space.

Let (X, d) be a metric space, and let T : X → CL(X) be a multivalued mapping. Then,

we say that

(1) T is called α∗-admissible [2] if

α(x, y) ≥ 1 implies α∗(Tx, Ty) ≥ 1, (6)

where α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty};

(2) T is called α-admissible [7] if, for each x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we

have α(y, z) ≥ 1 for all z ∈ Ty.

Lemma 1.1 (see[10]) : Let (X, d) be a metric space and let T : X → CL(X) be a

multivalued mapping. If T is α∗-admissible, then it is α-admissible.

Proof : Suppose that T is α∗-admissible mapping.
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Let x ∈ X and y ∈ Tx be such that α(x, y) ≥ 1.

Let z ∈ Ty be given.

Since T is α∗-admissible, α(y, z) ≥ α∗(Tx, Ty) ≥ 1.

Lemma 1.2 (see[10]) : Let (X, d) be a metric space and let ξ ∈ Ξ and B ∈ CL(X).

If a ∈ X and ξ(d(a,B)) < c, then there exists b ∈ B such that ξ(d(a, b)) < c.

Proof : Let ε = c− ξ(d(a,B)).

Since ξ(d(a,B)) < c and ξ ◦ d is metric on X, there exists b ∈ B such that ξ(d(a, b)) <

ξ(d(a,B)) + ε by definition of infimum. Hence, ξ(d(a, b)) < c.

Let (X, d) be a metric space.

A function f : X → [0,∞) is called upper semicontinuous if, for each x ∈ X and

{xn} ⊂ X with lim
n→∞

xn = x, we have lim
n→∞

f(xn) ≤ f(x).

A function f : X → [0,∞) is called lower semicontinuous if, for each x ∈ X and

{xn} ⊂ X with lim
n→∞

xn = x, we have f(x) ≤ lim
n→∞

f(xn).

For a multivalued map T : X → CL(X), let fT : X → [0,∞) be a function defined by

fT (x) = d(x, Tx).

2. Fixed Point Theorems

Theorem 2.1 (see[10]) : Let (X, d) be a complete metric space and let α : X ×X →
[0,∞) be a function. Suppose that a multivalued mapping T : X → CL(X) is α-

admissible.

Assume that, for all x, y ∈ X,α(x, y) ≥ 1 implies

ξ(H(Tx, Ty)) ≤ ψ(ξ(ξ(M(x, y))) + Lξ(d(y, Tx))

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
{d(x, Ty) + d(y, Tx)}

}
where L ≥ 0, ξ ∈ Ξ and ψ ∈ Ψ is strictly increasing.

Also, suppose that the following are satisfied:

(1) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

(2) either T is continuous or fT is lower semicontinuous.
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Then T has a fixed point in X.

Theorem 2.2 : Let (X, d) be a complete metric space and let α : X ×X → [0,∞) be

a function. Suppose that a multivalued mapping T : X → CL(X) is α-admissible.

Assume that, for all x, y ∈ X,α(x, y) ≥ 1 implies

ξ(H(Tx, Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(d(y, Tx)) (7)

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)

1 + d(x, y)

}
where L ≥ 0, ξ ∈ Ξ and ψ ∈ Ψ is strictly increasing.

Also, suppose that the following are satisfied:

(1) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

(2) either T is continuous or fT is lower semicontinuous.

Then T has a fixed point in X.

Proof : Let x0 ∈ X and x1 ∈ Tx0 be such that α(x0, x1) ≥ 1. Let c be a real number

with ξ(d(x0, x1)) < ξ(c).

If x0 = x1, then x1 is a fixed point. Let x0 6= x1.

If x1 ∈ Tx1, then x1 is a fixed point.

Let x1 6∈ Tx1. Then d(x1, Tx1) > 0.

From (7) we obtain

0 ≤ ξ(d(x1, Tx1))

≤ ξ(H(Tx0, Tx1)

≤ ψ(ξ(max{d(x0, x1), d(x0, Tx0), d(x1, Tx1),
d(x0, Tx0) · d(x1, Tx1)

1 + d(x0, x1)
})) + Lξ(d(x0, x1))

≤ ψ(ξ(max{d(x0, x1), d(x0, x1), d(x1, Tx1),
d(x0, x1) · d(x1, Tx1)

1 + d(x0, x1)
})) + Lξ(d(x1, x1))

≤ ψ(ξ(max{d(x0, x1), d(x1, Tx1)})). (8)

If max{d(x0, x1), d(x1, Tx1)} = d(x1, Tx1), then we have

0 < ξ(d(x1, Tx1)) ≤ ψ(ξ(d(x1, Tx1))) < ξ(d(x1, Tx1))

which is a contraction.
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Thus, max{d(x0, x1), d(x1, Tx1)} = d(x0, x1), and hence we have

0 < · · · < ψ(ξ(c)) (9)

Hence,there exists x2 ∈ Tx1 such that

ξ(d(x1, x2)) < ψ(ξ(c)) (10)

Since T is α-admissible, from condition (1)and x2 ∈ Tx1, we have

α(x1, x2) ≥ 1. (11)

If x2 ∈ Tx2, then x2 is a fixed point. Let x2 6∈ Tx2.
Then d(x2, Tx2) > 0 and so ξ(d(x2, Tx2)) > 0.

From (7) we obtain

0 < ξ(d(x2, Tx2))

≤ ξ(H(Tx1, Tx2)

≤ ψ(ξ(max{d(x1, x2), d(x1, Tx1), d(x2, Tx2),
d(x1, Tx1) · d(x2, Tx2)

1 + d(x1, x2)
})) ≤ · · ·+ Lξ(d(x2, x1))

≤ ψ(ξ(max{d(x1, x2), d(x1, x2), d(x2, Tx2),
d(x1, x2) · d(x2, Tx2)

1 + d(x1, x2)
})) + Lξ(d(x2, x2))

≤ ψ(ξ(max{d(x1, x2), d(x2, Tx2)})). (12)

If max{d(x1, x2), d(x2, Tx2)} = d(x2, Tx2), then we have

ξ(d(x2, Tx2)) ≤ ψ(ξ(d(x2, Tx2))) < ξ(d(x2, Tx2))

which is a contraction.

Thus, max{d(x1, x2), d(x2, Tx2)} = d(x1, x2), and hence we have

ξ(d(x2, Tx2)) ≤ ψ(ξ(d(x1, x2))) < ψ2(ξ(c)) (13)

Hence, there exists x3 ∈ Tx2 such that

ξ(d(x2, x3)) < ψ2(ξ(c)) (14)

Since T is α-admissible, from x3 ∈ Tx2, we have

α(x2, x3) ≥ 1 (15)
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By induction, we obtain a sequence {xn} ⊂ X such that, for all n ∈ ℵ∪{0}, α(xn, xn+1) ≥
1, xn+1 ∈ Txn, xn 6= xn+1

ξ(d(xn, xn+1)) < ψn(ξ(c)). (16)

Let ε > 0 be given.

Since
∞∑
n=0

ψn(ξ(ep)) < ξ(ε)∞, there exists N ∈ ℵ such that

∑
n≥N

ψn(ξ(c)) < ξ(ε). (17)

For all m > n ≥ N , we have

ξ(d(xn, xm)) ≤
m−1∑
k=n

ψk(ξ(c)) <
∑
n≥N

ψn(ξ(c)) < ξ(ε) (18)

which implies d(xn, xm) < ε, ∀ m > n ≥ N . Hence {xn} is a Cauchy sequence in X.

It follows from the completeness of X that there exists

x∗ = lim
n→∞

xn ∈ X. (19)

Suppose that T is continuous. We have

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx∗) ≤ d(x∗, xn+1) +H(xn, Tx∗). (20)

By letting n→ α in the above inequality, we obtain d(x∗, Tx∗) = 0 and so x∗ ∈ Tx∗.
Assume that fT is lower semicontinous. Then, fT (x∗) ≤ lim

n→α
fT (xn). Hence

d(x∗, Tx∗) ≤ lim
n→∞

d(xn, Txn) ≤ lim
n→∞

d(xn, xn+1) = 0.

Thus, x∗ ∈ Tx∗. 2

Corollary 2.1 : Let (X, d) be a complete metric space and let α : X ×X → [0,∞) be

a function. Suppose that a multivalued mapping T : X → CL(X) is α-admissible.

Assume that, for all x, y ∈ X,α(x, y) ≥ 1 implies

ξ(α(x, y))(H(Tx, Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(d(y, Tx)) ((21)

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)(d(y, Ty))

1 + d(x, y)

}
where L ≥ 0, ξ ∈ Ξ and ψ ∈ Ψ is strictly increasing. Also, suppose that conditions (1)

and (2)of Theorem 2.2 are satisfied.
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Then T has a fixed point in X.

Remark 2.1 : If we have ξ(t) = t for all t > 0, L = 0,

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
{d(x, Ty) + d(y, Tx)}

}
and T is continuous, then Corollary 2.1 reduces to Theorem 3.4 of [7].

Theorem 2.3 (see [10]) : Let (X, d) be a complete metric space and let α : X ×X →
[0,∞) be a function. Suppose that a multivalued mapping T : X → CL(X) is α-

admissible.

Assume that, for all x, y ∈ X,α(x, y) ≥ 1 implies

ξ(H(Tx, Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(d(y, Tx)) (22)

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
{d(x, Ty) + d(y, Tx)}

}
where L ≥ 0, ξ ∈ Ξ, ψ ∈ Ψ and is strictly increasing and upper semicontinuous function.

Also, suppose that the following are satisfied.

(1) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

(2) for a sequence {xn} in X with α(xn, xn+1) ≥ 1 forall n ∈ ℵ ∪ {0} and a cluster

point x of {xn}, there exists a subsequence {xn(k)} of {xn} such that, for all,

k ∈ ℵ ∪ {0},
α(xn(k), x) ≥ 1. (23)

Then T has a fixed point in X.

Theorem 2.4 : Let (X, d) be a complete metric space and let α : X ×X → [0,∞) be

a function. Suppose that a multivalued mapping T : X → CL(X) is α-admissible.

Assume that, for all x, y ∈ X,α(x, y) ≥ 1 implies

ξ(H(Tx, Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(d(y, Tx)) (24)

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx) · d(y, Ty)

1 + d(x, y)

}
where L ≥ 0, ξ ∈ Ξ, ψ ∈ Ψ is strictly increasing and upper semicontinuous function.

Also, suppose that the following are satisfied.

(1) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
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(2) for a sequence {xn} in X with α(xn, xn+1) ≥ 1 forall n ∈ ℵ∪{0} and a cluster point

x of {xn}, there exists a subsequence {xn(k)} of {xn} such that, for all k ∈ ℵ∪{0},

α(xn(k), x) ≥ 1. (25)

Then T has a fixed point in X.

Proof : Following the proof of Theorem 2.2, we obtain a sequence {xn} ⊂ X with

lim
n→∞

xn = x∗ ∈ X such that, for all n ∈ ℵ ∪ {0},

xn+1 ∈ Txn, xn 6= xn+1, α(xn, xn+1) ≥ 1. (26)

From (2) there exists a subsequence {xn(k)} of {xn} such that

(xn(k), x∗) ≥ 1. (27)

Thus, we have

ξ(d(xn(k)+1, Tx∗)) = ξ(H(Txn(k), Tx∗)) ≤ ψ(ξ(M(xn(k), x∗))) + Lξ(d(x∗, xn(k)+1))

((28)

where

M(xn(k), x∗) = max

{
d(xn(k), x∗), d(xn(k), xn(k)+1), d(x∗, Tx∗),

d(xn(k), xn(k)+1) · d(x∗, Tx∗)

1 + d(xn(k), x∗)

}
(29)

we have

lim
k→∞

M(xn(k), x∗) = d(x∗, Tx∗) (30)

and so

lim
k→∞

ξ(M(xn(k), x∗)) = ξ(d(x∗, Tx∗)). (31)

Suppose that d(x∗, Tx∗) 6= 0.

Since ψ is upper semicontinuous.

lim
k→∞

ψ(ξ(M(xn(k), x∗))) ≤ ψ(ξ(d(x∗, Tx∗))). (32)

Letting k →∞ in inequality (27) and using continuity of ξ, we obtain

0 < ξ(d(x∗, Tx∗))

≤ lim
k→∞

ψ(ξ(M(xn+k, x∗))) + lim
n→∞

Lξ(d(x∗, xn(k)+1))

≤ ψξ(d(x∗, Tx∗)) < ξ(d(x∗, Tx∗))

(33)
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which is a contraction. Hence, d(x∗, Tx∗) = 0, and hence x∗ is a fixed point of T .

The following example shows that upper semicontinuity of ψ cannot be dropped in

Theorem 2.4.

Example : Let X = [0,∞) and let d(x, y) = |x− y| for all x, y ≥ 0.

Define a mapping T : X → CL(X) by

Tx =



{
2
3 , 1
}

(x = 0),{
5
6x
}

(0 < x ≤ 1),

{3x} (x > 1).

(34)

Let ξ(t) = t for all t ≥ 0, and let

ψ(t) =


{
6
7 t
}

(t ≥ 1),{
4
5 t
}

(0 ≤ t < 1).
(35)

Then ξ ∈ Ξ and ψ ∈ Ψ is a strictly increasing function.

Let α, η : X ×X → [0,∞] be defined by

α(x, y) =


6, 0 ≤ x, y ≤ 1,

0, otherwise
(36)

Obviously condition (2)of Theorem 2.4 is satisfied. Condition (1) of Theorem 2.4 is

satisfied with x0 = 1
6 we show that (7) is stisfied.

Let x, y ∈ X be such that α(x, y) ≥ 1. Then 0 ≤ x, y ≤ 1.

If x = 0 then obviously (7) is satisfied.

Let x 6= y. If x = 0 and 0 < y ≤ 1, then we obtain

ξ(H(Tx, Ty)) = H({2

3
, 1}, 5

6
y) ≤ 1

6
≤ ψ(d(x, Tx)) ≤ ψ(ξ(M(x, y))). (37)

Let 0 < x ≤ 1 and 0 < y ≤ 1. Then, we have

ξ(H(Tx, Ty)) = d(Tx, Ty) = d(
5

6
x,

5

6
y)

=
5

6
|x− y|

= ψ(ξ(M(x, y)))

≤ ψ(ξ(M(x, y)).
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We now show that T is α-admissible.

Let x ∈ X be given and let y ∈ Tx be such that α(x, y) ≥ 1. Then 0 ≤ x, y ≤ 1.

Obviously α(y, z) ≥ 1 for all z ∈ Ty whenever 0 < y ≤ 1.

If y = 0, then Ty = {23 , 1}. Hence, for all z ∈ Ty, α(y, z) ≥ 1. Hence, T is α-

admisible. Thus, all hypothesis of Theorem 2.4 are satisfied. However, T has no fixed

points.

Note that ψ is not upper semicontinuous.

Corollary 2.2 : Let (X, d) be a complete metric space and let α : X ×X → [0,∞) be

a function. Suppose that a multivalued mapping T : X → CL(X) is α-admissible.

Assume that, for all x, y ∈ X,α(x, y) ≥ 1 implies

ξ(H(Tx, Ty)) ≤ ψ(ξ(M(x, y))) + Lξ(d(y, Tx)) (38)

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)

1 + d(x, y)

}
where L ≥ 0, ξ ∈ Ξ, ψ ∈ Ψ is strictly increasing and upper semicontinuous function.

Also, suppose that conditions (1)and (2) of Theorem 2.4 are satisfied. Then T has a

fixed point in X.
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