International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 19-30

FIXED POINT THEOREMS FOR (α, ψ, ξ) -CONTRACTIVE MULTIVALUED MAPPINGS

DR. U. KARUPPIAH¹ AND A. LEEMA MARIA PRAKASAM²

 St.Joseph's College (Autonomous), Trichy-620 002, India
 ² Department of Mathematics, Holy Cross College (Autonomous), Trichy-620 002, India

Abstract

We prove fixed point theorems for (α, ψ, ξ) -contractive multivalued mappings by changing the contractive conditions which generalize the results of Seong-Hoon Cho [10].

1. Introduction and Preliminaries

In 2012, Samet et al. [1] introduced the notions of $\alpha - \psi$ contractive mapping and α -admissible mappings in metric spaces and obtained corresponding fixed point results, which are generalizations of ordered fixed point results (see [1]). Since then, by using

AMS Subject Classification : Primary 47h10, Secondary 54h25.

© http://www.ascent-journals.com

Key Words : Common fixed point, Multi-valued maps, α -admissible.

their idea, some authors investigated fixed point results in the field. Asl et al.[2] extended some of results in [1] to multivalued mappings by introducing the notions of $\alpha_* - \psi$ contractive mapping and α_* -admissible mapping.

Recently, Salimi et al. [3] modified the notions of $\alpha - \psi$ contractive mapping and α -admissible mappings by introducing another function η and then, they gave generalizations of the results of Samet et al.[1] and Karapinar and Samet [4]. Hussain et al.[5] extended these modified notions to multivalued mappings. That is, they introduced the notion of $\alpha - \eta$ contractive multifunctions and gave fixed point results for these multifunctions.

Very recently, Ali et al.[6] generalized and extended the notion of $\alpha - \psi$ contractive mappings by introducing the notion of (α, ψ, ξ) -contractive multivalued mappings and obtained fixed point theorems for these mappings in complete metric spaces.

Let (X, d) be a metric space. We denote by CB(X) the class of nonempty closed and bounded subsets of X and by CL(X) the class of nonempty closed subsets of X. Let $H(\cdot, \cdot)$ be the generalized Hausdorff distance on CL(X), that is, for all $A, B \in CL(X)$,

$$H(A,B) = \begin{cases} \max\{\sup_{\alpha \in A} d(a,B) \sup_{b \in B} d(b,A), \text{ if the maximum exists,} \\ \\ \infty, \text{ otherwise} \end{cases}$$
(1)

where $d(a, B) = \inf\{d(a, b : b \in B\}$ is the distance from point a to subset B. For $A, B \in CL(X)$, let $D(A, B) = \sup_{x \in A} \inf_{y \in B} d(x, y)$. Then, we have $D(A, B) \leq H(A, B)$ for all $A, B \in CL(X)$.

From now on, we denote by

$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Tx)d(y,Ty)}{1+d(x,y)}\right\}$$
(2)

for a multivalued map $T: X \to CL(X)$ and $x, y \in X$. We denote by Ξ the class of all functions $\xi: [0, \infty) \to [0, \infty)$ such that

- (1) ξ is continuous;
- (2) ξ is nondecreasing on $[0, \infty)$;
- (3) $\xi(t) = 0$ if and only if t = 0;
- (4) ξ is subadditive.

Also, we denote by Ψ the family of all nondecreasing functions $\Psi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each t > 0, where ψ^n is the *n*-th iterate of ψ . Note that if $\Psi \in \Psi$, then $\Psi(0) = 0$ and $0 < \Psi(t) < t$ for all t > 0. Let (X, d) be a metric space, and let $\alpha : X \times X \to [0, \infty)$ be a function.

We consider the following conditions:

(1) For any sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \aleph$ and $\lim_{n \to \infty} x_n = x$, we have

$$\alpha(x_n, x) \ge 1 \quad \forall \quad n \in \aleph \tag{3}$$

(2) for any sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$ and a cluster point x of $\{x_n\}$, we have

$$\lim_{n \to \infty} \inf \alpha(x_n, x) \ge 1; \tag{4}$$

(3) for any sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \aleph$ and a cluster point x of $\{x_n\}$, there exists a subsequence $\{x_n(k)\}$ of $\{x_n\}$ such that

$$\alpha(x_{n(k)}, x) \ge 1 \quad \forall \quad k \in \aleph.$$
(5)

Remark 1 : (1) imples (2) and (2) implies (1).

Note that if (X, d) is a metric space and $\xi \in \Xi$, then $(X, \xi \circ d)$ is a metric space. Let (X, d) be a metric space, and let $T : X \to CL(X)$ be a multivalued mapping. Then, we say that

(1) T is called α_* -admissible [2] if

$$\alpha(x,y) \ge 1$$
 implies $\alpha_*(Tx,Ty) \ge 1$, (6)

where $\alpha_*(Tx, Ty) = \inf\{\alpha(a, b) : a \in Tx, b \in Ty\};$

(2) T is called α -admissible [7] if, for each $x \in X$ and $y \in Tx$ with $\alpha(x, y) \ge 1$, we have $\alpha(y, z) \ge 1$ for all $z \in Ty$.

Lemma 1.1 (see[10]) : Let (X, d) be a metric space and let $T : X \to CL(X)$ be a multivalued mapping. If T is α_* -admissible, then it is α -admissible.

Proof : Suppose that T is α_* -admissible mapping.

Let $x \in X$ and $y \in Tx$ be such that $\alpha(x, y) \ge 1$.

Let $z \in Ty$ be given.

Since T is α_* -admissible, $\alpha(y, z) \ge \alpha_*(Tx, Ty) \ge 1$.

Lemma 1.2 (see[10]) : Let (X, d) be a metric space and let $\xi \in \Xi$ and $B \in CL(X)$. If $a \in X$ and $\xi(d(a, B)) < c$, then there exists $b \in B$ such that $\xi(d(a, b)) < c$. Proof : Let $\epsilon = c - \xi(d(a, B))$. Since $\xi(d(a, B)) < c$ and $\xi \circ d$ is metric on X, there exists $b \in B$ such that $\xi(d(a, b)) < \xi(d(a, B)) + \epsilon$ by definition of infimum. Hence, $\xi(d(a, b)) < c$. Let (X, d) be a metric space. A function $f : X \to [0, \infty)$ is called upper semicontinuous if, for each $x \in X$ and $\{x_n\} \subset X$ with $\lim_{n \to \infty} x_n = x$, we have $\lim_{n \to \infty} f(x_n) \leq f(x)$. A function $f : X \to [0, \infty)$ is called lower semicontinuous if, for each $x \in X$ and $\{x_n\} \subset X$ with $\lim_{n \to \infty} x_n = x$, we have $f(x) \leq \lim_{n \to \infty} f(x_n)$. For a multivalued map $T : X \to CL(X)$, let $f_T : X \to [0, \infty)$ be a function defined by $f_T(x) = d(x, Tx)$.

2. Fixed Point Theorems

Theorem 2.1 (see[10]) : Let (X, d) be a complete metric space and let $\alpha : X \times X \rightarrow [0, \infty)$ be a function. Suppose that a multivalued mapping $T : X \rightarrow CL(X)$ is α -admissible.

Assume that, for all $x, y \in X, \alpha(x, y) \ge 1$ implies

$$\xi(H(Tx,Ty)) \le \psi(\xi(\xi(M(x,y))) + L\xi(d(y,Tx)))$$

where

$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2}\{d(x,Ty) + d(y,Tx)\}\right\}$$

where $L \ge 0, \xi \in \Xi$ and $\psi \in \Psi$ is strictly increasing. Also, suppose that the following are satisfied:

- (1) there exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$;
- (2) either T is continuous or f_T is lower semicontinuous.

Then T has a fixed point in X.

Theorem 2.2: Let (X, d) be a complete metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Suppose that a multivalued mapping $T : X \to CL(X)$ is α -admissible. Assume that, for all $x, y \in X, \alpha(x, y) \ge 1$ implies

$$\xi(H(Tx, Ty)) \le \psi(\xi(M(x, y))) + L\xi(d(y, Tx))$$

$$M(x, y) = \max\left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Tx)d(y, Ty)}{1 + d(x, y)} \right\}$$
(7)

where $L \ge 0, \xi \in \Xi$ and $\psi \in \Psi$ is strictly increasing.

Also, suppose that the following are satisfied:

- (1) there exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$;
- (2) either T is continuous or f_T is lower semicontinuous.

Then T has a fixed point in X.

Proof: Let $x_0 \in X$ and $x_1 \in Tx_0$ be such that $\alpha(x_0, x_1) \ge 1$. Let c be a real number with $\xi(d(x_0, x_1)) < \xi(c)$.

If $x_0 = x_1$, then x_1 is a fixed point. Let $x_0 \neq x_1$.

If $x_1 \in Tx_1$, then x_1 is a fixed point.

Let $x_1 \notin Tx_1$. Then $d(x_1, Tx_1) > 0$.

From (7) we obtain

$$\begin{array}{rcl}
0 &\leq & \xi(d(x_{1},Tx_{1})) \\
&\leq & \xi(H(Tx_{0},Tx_{1})) \\
&\leq & \psi(\xi(\max\{d(x_{0},x_{1}),d(x_{0},Tx_{0}),d(x_{1},Tx_{1}),\frac{d(x_{0},Tx_{0})\cdot d(x_{1},Tx_{1})}{1+d(x_{0},x_{1})}\})) + L\xi(d(x_{0},x_{1})) \\
&\leq & \psi(\xi(\max\{d(x_{0},x_{1}),d(x_{0},x_{1}),d(x_{1},Tx_{1}),\frac{d(x_{0},x_{1})\cdot d(x_{1},Tx_{1})}{1+d(x_{0},x_{1})}\})) + L\xi(d(x_{1},x_{1})) \\
&\leq & \psi(\xi(\max\{d(x_{0},x_{1}),d(x_{1},Tx_{1})\})). \\
\end{array}$$
(8)

If $\max\{d(x_0, x_1), d(x_1, Tx_1)\} = d(x_1, Tx_1)$, then we have

$$0 < \xi(d(x_1, Tx_1)) \le \psi(\xi(d(x_1, Tx_1))) < \xi(d(x_1, Tx_1))$$

which is a contraction.

Thus, $\max\{d(x_0, x_1), d(x_1, Tx_1)\} = d(x_0, x_1)$, and hence we have

$$0 < \dots < \psi(\xi(c)) \tag{9}$$

Hence, there exists $x_2 \in Tx_1$ such that

$$\xi(d(x_1, x_2)) < \psi(\xi(c))$$
 (10)

Since T is α -admissible, from condition (1)and $x_2 \in Tx_1$, we have

$$\alpha(x_1, x_2) \ge 1. \tag{11}$$

If $x_2 \in Tx_2$, then x_2 is a fixed point. Let $x_2 \notin Tx_2$. Then $d(x_2, Tx_2) > 0$ and so $\xi(d(x_2, Tx_2)) > 0$. From (7) we obtain

$$0 < \xi(d(x_{2}, Tx_{2}))$$

$$\leq \xi(H(Tx_{1}, Tx_{2}))$$

$$\leq \psi(\xi(\max\{d(x_{1}, x_{2}), d(x_{1}, Tx_{1}), d(x_{2}, Tx_{2}), \frac{d(x_{1}, Tx_{1}) \cdot d(x_{2}, Tx_{2})}{1 + d(x_{1}, x_{2})}\})) \leq \dots + L\xi(d(x_{2}, x_{1}))$$

$$\leq \psi(\xi(\max\{d(x_{1}, x_{2}), d(x_{1}, x_{2}), d(x_{2}, Tx_{2}), \frac{d(x_{1}, x_{2}) \cdot d(x_{2}, Tx_{2})}{1 + d(x_{1}, x_{2})}\})) + L\xi(d(x_{2}, x_{2}))$$

$$\leq \psi(\xi(\max\{d(x_{1}, x_{2}), d(x_{2}, Tx_{2})\})).$$
(12)

If $\max\{d(x_1, x_2), d(x_2, Tx_2)\} = d(x_2, Tx_2)$, then we have

$$\xi(d(x_2, Tx_2)) \le \psi(\xi(d(x_2, Tx_2))) < \xi(d(x_2, Tx_2))$$

which is a contraction.

Thus, $\max\{d(x_1, x_2), d(x_2, Tx_2)\} = d(x_1, x_2)$, and hence we have

$$\xi(d(x_2, Tx_2)) \le \psi(\xi(d(x_1, x_2))) < \psi^2(\xi(c))$$
(13)

Hence, there exists $x_3 \in Tx_2$ such that

$$\xi(d(x_2, x_3)) < \psi^2(\xi(c)) \tag{14}$$

Since T is α -admissible, from $x_3 \in Tx_2$, we have

$$\alpha(x_2, x_3) \ge 1 \tag{15}$$

By induction, we obtain a sequence $\{x_n\} \subset X$ such that, for all $n \in \aleph \cup \{0\}$, $\alpha(x_n, x_{n+1}) \ge 1$, $x_{n+1} \in Tx_n, x_n \neq x_{n+1}$

$$\xi(d(x_n, x_{n+1})) < \psi^n(\xi(c)).$$
(16)

Let $\epsilon > 0$ be given. Since $\sum_{n=0}^{\infty} e^{i n \epsilon \epsilon} (\epsilon e^{n \epsilon})$

Since $\sum_{n=0}^{\infty} \psi^n(\xi(ep)) < \xi(\epsilon)\infty$, there exists $N \in \aleph$ such that

$$\sum_{n \ge N} \psi^n(\xi(c)) < \xi(\epsilon).$$
(17)

For all $m > n \ge N$, we have

$$\xi(d(x_n, x_m)) \le \sum_{k=n}^{m-1} \psi^k(\xi(c)) < \sum_{n \ge N} \psi^n(\xi(c)) < \xi(\epsilon)$$
(18)

which implies $d(x_n, x_m) < \epsilon$, $\forall m > n \ge N$. Hence $\{x_n\}$ is a Cauchy sequence in X. It follows from the completeness of X that there exists

$$x_* = \lim_{n \to \infty} x_n \in X.$$
⁽¹⁹⁾

Suppose that T is continuous. We have

$$d(x_*, Tx_*) \le d(x_*, x_{n+1}) + d(x_{n+1}, Tx_*) \le d(x_*, x_{n+1}) + H(x_n, Tx_*).$$
(20)

By letting $n \to \alpha$ in the above inequality, we obtain $d(x_*, Tx_*) = 0$ and so $x_* \in Tx_*$. Assume that f_T is lower semicontinous. Then, $f_T(x_*) \leq \lim_{n \to \alpha} f_T(x_n)$. Hence

$$d(x_*, Tx_*) \le \lim_{n \to \infty} d(x_n, Tx_n) \le \lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

Thus, $x_* \in Tx_*$.

Corollary 2.1: Let (X, d) be a complete metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Suppose that a multivalued mapping $T : X \to CL(X)$ is α -admissible. Assume that, for all $x, y \in X, \alpha(x, y) \ge 1$ implies

$$\xi(\alpha(x,y))(H(Tx,Ty)) \le \psi(\xi(M(x,y))) + L\xi(d(y,Tx))$$
((21)
$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Tx)(d(y,Ty))}{1+d(x,y)}\right\}$$

where $L \ge 0$, $\xi \in \Xi$ and $\psi \in \Psi$ is strictly increasing. Also, suppose that conditions (1) and (2) of Theorem 2.2 are satisfied.

Then T has a fixed point in X.

Remark 2.1 : If we have $\xi(t) = t$ for all t > 0, L = 0,

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} \{ d(x,Ty) + d(y,Tx) \} \right\}$$

and T is continuous, then Corollary 2.1 reduces to Theorem 3.4 of [7].

Theorem 2.3 (see [10]) : Let (X, d) be a complete metric space and let $\alpha : X \times X \rightarrow [0, \infty)$ be a function. Suppose that a multivalued mapping $T : X \rightarrow CL(X)$ is α -admissible.

Assume that, for all $x, y \in X, \alpha(x, y) \ge 1$ implies

$$\xi(H(Tx,Ty)) \le \psi(\xi(M(x,y))) + L\xi(d(y,Tx))$$
(22)
$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} \{ d(x,Ty) + d(y,Tx) \} \right\}$$

where $L \ge 0, \xi \in \Xi, \psi \in \Psi$ and is strictly increasing and upper semicontinuous function. Also, suppose that the following are satisfied.

- (1) there exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$;
- (2) for a sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \aleph \cup \{0\}$ and a cluster point x of $\{x_n\}$, there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that, for all, $k \in \aleph \cup \{0\}$,

$$\alpha(x_{n(k)}, x) \ge 1. \tag{23}$$

Then T has a fixed point in X.

Theorem 2.4: Let (X, d) be a complete metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Suppose that a multivalued mapping $T : X \to CL(X)$ is α -admissible. Assume that, for all $x, y \in X, \alpha(x, y) \ge 1$ implies

$$\xi(H(Tx, Ty)) \le \psi(\xi(M(x, y))) + L\xi(d(y, Tx))$$
(24)
$$M(x, y) = \max\left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Tx) \cdot d(y, Ty)}{1 + d(x, y)} \right\}$$

where $L \ge 0, \xi \in \Xi, \psi \in \Psi$ is strictly increasing and upper semicontinuous function. Also, suppose that the following are satisfied.

(1) there exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$;

(2) for a sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \aleph \cup \{0\}$ and a cluster point x of $\{x_n\}$, there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that, for all $k \in \aleph \cup \{0\}$,

$$\alpha(x_{n(k)}, x) \ge 1. \tag{25}$$

Then T has a fixed point in X.

Proof : Following the proof of Theorem 2.2, we obtain a sequence $\{x_n\} \subset X$ with $\lim_{n \to \infty} x_n = x_* \in X$ such that, for all $n \in \aleph \cup \{0\}$,

$$x_{n+1} \in Tx_n, x_n \neq x_{n+1}, \alpha(x_n, x_{n+1}) \ge 1.$$
(26)

From (2) there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

$$(x_{n(k)}, x_*) \ge 1.$$
 (27)

Thus, we have

$$\xi(d(x_{n(k)+1}, Tx_*)) = \xi(H(T_{xn(k)}, Tx_*)) \le \psi(\xi(M(x_{n(k)}, x_*))) + L\xi(d(x_*, x_{n(k)+1}))$$
((28)

where

$$M(x_{n(k)}, x_*) = \max\left\{ d(x_{n(k)}, x_*), d(x_{n(k)}, x_{n(k)+1}), d(x_*, Tx_*), \frac{d(x_{n(k)}, x_{n(k)+1}) \cdot d(x_*, Tx_*)}{1 + d(x_{n(k)}, x_*)} \right\}$$
(29)

we have

$$\lim_{k \to \infty} M(x_{n(k)}, x_*) = d(x_*, Tx_*)$$
(30)

and so

$$\lim_{k \to \infty} \xi(M(x_{n(k)}, x_*)) = \xi(d(x_*, Tx_*)).$$
(31)

Suppose that $d(x_*, Tx_*) \neq 0$.

Since ψ is upper semicontinuous.

$$\lim_{k \to \infty} \psi(\xi(M(x_{n(k)}, x_*))) \le \psi(\xi(d(x_*, Tx_*))).$$
(32)

Letting $k \to \infty$ in inequality (27) and using continuity of ξ , we obtain

$$0 < \xi(d(x_*, Tx_*)) \\ \leq \lim_{k \to \infty} \psi(\xi(M(x_{n+k}, x_*))) + \lim_{n \to \infty} L\xi(d(x_*, x_{n(k)+1}))$$
(33)

$$\leq \qquad \qquad \psi\xi(d(x_*,Tx_*)) < \xi(d(x_*,Tx_*))$$

which is a contraction. Hence, $d(x_*, Tx_*) = 0$, and hence x_* is a fixed point of T. The following example shows that upper semicontinuity of ψ cannot be dropped in Theorem 2.4.

Example : Let $X = [0, \infty)$ and let d(x, y) = |x - y| for all $x, y \ge 0$. Define a mapping $T : X \to CL(X)$ by

$$Tx = \begin{cases} \left\{ \frac{2}{3}, 1 \right\} & (x = 0), \\ \left\{ \frac{5}{6}x \right\} & (0 < x \le 1), \\ \left\{ 3x \right\} & (x > 1). \end{cases}$$
(34)

Let $\xi(t) = t$ for all $t \ge 0$, and let

$$\psi(t) = \begin{cases} \left\{ \frac{6}{7}t \right\} & (t \ge 1), \\ \left\{ \frac{4}{5}t \right\} & (0 \le t < 1). \end{cases}$$
(35)

Then $\xi \in \Xi$ and $\psi \in \Psi$ is a strictly increasing function. Let $\alpha, \eta : X \times X \to [0, \infty]$ be defined by

$$\alpha(x,y) = \begin{cases} 6, & 0 \le x, \ y \le 1, \\ 0, & \text{otherwise} \end{cases}$$
(36)

Obviously condition (2) of Theorem 2.4 is satisfied. Condition (1) of Theorem 2.4 is satisfied with $x_0 = \frac{1}{6}$ we show that (7) is stisfied.

Let $x, y \in X$ be such that $\alpha(x, y) \ge 1$. Then $0 \le x, y \le 1$.

If x = 0 then obviously (7) is satisfied.

Let $x \neq y$. If x = 0 and $0 < y \le 1$, then we obtain

$$\xi(H(Tx,Ty)) = H(\{\frac{2}{3},1\},\frac{5}{6}y) \le \frac{1}{6} \le \psi(d(x,Tx)) \le \psi(\xi(M(x,y))).$$
(37)

Let $0 < x \le 1$ and $0 < y \le 1$. Then, we have

$$\begin{aligned} \xi(H(Tx,Ty)) &= d(Tx,Ty) = d(\frac{5}{6}x,\frac{5}{6}y) \\ &= \frac{5}{6}|x-y| \\ &= \psi(\xi(M(x,y))) \\ &\le \psi(\xi(M(x,y)). \end{aligned}$$

We now show that T is α -admissible.

Let $x \in X$ be given and let $y \in Tx$ be such that $\alpha(x, y) \ge 1$. Then $0 \le x, y \le 1$. Obviously $\alpha(y, z) \ge 1$ for all $z \in Ty$ whenever $0 < y \le 1$.

If y = 0, then $Ty = \{\frac{2}{3}, 1\}$. Hence, for all $z \in Ty, \alpha(y, z) \ge 1$. Hence, T is α -admisible. Thus, all hypothesis of Theorem 2.4 are satisfied. However, T has no fixed points.

Note that ψ is not upper semicontinuous.

Corollary 2.2: Let (X, d) be a complete metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Suppose that a multivalued mapping $T : X \to CL(X)$ is α -admissible. Assume that, for all $x, y \in X, \alpha(x, y) \ge 1$ implies

$$\xi(H(Tx,Ty)) \le \psi(\xi(M(x,y))) + L\xi(d(y,Tx))$$
(38)
$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Tx)d(y,Ty)}{1+d(x,y)}\right\}$$

where $L \ge 0, \xi \in \Xi, \psi \in \Psi$ is strictly increasing and upper semicontinuous function. Also, suppose that conditions (1)and (2) of Theorem 2.4 are satisfied. Then T has a fixed point in X.

References

- [1] Samet B., Vetro C. and Vetro P., Fixed point theorems for $\alpha \psi$ contractive type mapping, Nonlinear Analysis : Theory, Methods and Applications. 75(4) (2012), 2154-2165.
- [2] Asl A., Rezapour S. and Shahzad N., On fixed points of $\alpha \psi$ contractive multifunctions, Fixed Point Theory and Applications, article 212 (2012).
- [3] Salimi P., Latif A. and Hussain N., Modified $\alpha \psi$ contractive mappings with applications, Fixed Point Theory and Applications, article 151 (2013).
- [4] Karapinar E. and Samet B., Generalized $\alpha \psi$ contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, Article ID 793486, 17 pages, (2012).
- [5] Hussain N., Salimi P. and Ladif A., Fixed point results for single and set-valued $\alpha \eta \psi$ contractive conditions, Fixed Point Theory and Applications, article 212 (2013).
- [6] Ali M. U., Kamran T. and Karapinar E., (α, ψ, ξ) -contractive multivalued mappings, Fixed Point Theory and Applications, article 7 (2014).

- [7] Mohammadi B., Rezapour S. and Shahzad N., Some results on fixed points of $\alpha \psi$ -Ciric generalized multifunctions, Fixed Point Theory and Application, article 24 (2013).
- [8] Berinde V., Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian journal of Mathematics, 25(2) (2009), 157-162.
- [9] Agarwal R. P., El-Gebeily M. A. and Regan D. O., Generalized contractions in partially ordered metric spaces, Applicable Analysis, 87(1) (2008), 109-116.
- [10] Seong-Hoon Cho, Fixed Point Theorems for Ciric-Berinde Type Contractive Multivalued Mappings, Abstract and Applied Analysis, Article ID 768238, 1-6, (2015).