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Abstract

We prove fixed point theorems for (a1, £)-contractive multivalued mappings by
changing the contractive conditions which generalize the results of Seong-Hoon Cho

[10].

1. Introduction and Preliminaries
In 2012, Samet et al. [1] introduced the notions of « — v contractive mapping and
a-admissible mappings in metric spaces and obtained corresponding fixed point results,

which are generalizations of ordered fixed point results (see [1]). Since then, by using
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their idea, some authors investigated fixed point results in the field. Asl et al.[2] extended
some of results in [1] to multivalued mappings by introducing the notions of ay — -
contractive mapping and a,-admissible mapping.

Recently, Salimi et al. [3] modified the notions of « — ¢ contractive mapping and
a-admissible mappings by introducing another function 7 and then, they gave general-
izations of the results of Samet et al.[1] and Karapinar and Samet [4]. Hussain et al.[5]
extended these modified notions to multivalued mappings. That is, they introduced
the notion of a — n contractive multifunctions and gave fixed point results for these
multifunctions.

Very recently, Ali et al.[6] generalized and extended the notion of a — ¢ contractive
mappings by introducing the notion of («, v, £)-contractive multivalued mappings and
obtained fixed point theorems for these mappings in complete metric spaces.

Let (X,d) be a metric space. We denote by CB(X) the class of nonempty closed and
bounded subsets of X and by CL(X) the class of nonempty closed subsets of X. Let
H(-,-) be the generalized Hausdorff distance on C'L(X), that is, for all A, B € CL(X),

max{sup d(a, B) supd(b, A), if the maximum exists,
H(A, B) = ol bl (1)
o0,  otherwise
where d(a, B) = inf{d(a,b : b € B} is the distance from point a to subset B. For
A,B € CL(X), let D(A,B) = 216131}212 d(x,y). Then, we have D(A, B) < H(A, B) for
all A, B € CL(X).

From now on, we denote by

M (z,y) = max {d(w, y), d(z, ), d(y, Ty), L& T2, Ty) }

1+d(z,y)

for a multivalued map T': X — CL(X) and z,y € X.
We denote by = the class of all functions ¢ : [0, 00) — [0, 00) such that

(1) & is continuous;
(2) £ is nondecreasing on [0, 00);
(3) &£(t) = 0 if and only if ¢ = 0;

(4) ¢ is subadditive.
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Also, we denote by ¥ the family of all nondecreasing functions ¥ : [0, 00) — [0, 00) such
that Y 9"(t) < oo for each ¢t > 0, where 9" is the n-th iterate of .
n=1

Note that if ¥ € U, then ¥(0) =0 and 0 < ¥(¢) < ¢ for all ¢ > 0.
Let (X, d) be a metric space, and let a : X x X — [0,00) be a function.

We consider the following conditions:

(1) For any sequence {z,} in X with a(zy,,z,1+1) > 1 for all n € X and li_)m Ty = T,
n—oo
we have

a(xp,z)>1 V¥V neR (3)

(2) for any sequence {x,} in X with a(zy,x,41) > 1 for all n € X and a cluster point
x of {z,}, we have

lim inf a(z,,z) > 1; (4)

n—oo

(3) for any sequence {z,} in X with a(x,,zp4+1) > 1 for all n € X and a cluster point

x of {x,}, there exists a subsequence {z,(k)} of {x,} such that

a(Tppy,z) =21 ¥V keER. (5)

Remark 1 : (1) imples (2) and (2) implies (1).

Note that if (X, d) is a metric space and £ € E, then (X, £ o d) is a metric space.

Let (X, d) be a metric space, and let 7' : X — C'L(X) be a multivalued mapping. Then,
we say that

(1) T is called a,-admissible [2] if
a(x,y) > 1 implies ax(Tz,Ty) > 1, (6)
where o, (Tz,Ty) = inf{a(a,b) : a € Tx,b € Ty};

(2) T is called a-admissible [7] if, for each z € X and y € Tz with a(z,y) > 1, we
have a(y,z) > 1 for all z € Ty.

Lemma 1.1 (see[10]) : Let (X,d) be a metric space and let 7' : X — CL(X) be a
multivalued mapping. If T is a,-admissible, then it is a-admissible.

Proof : Suppose that T is a,-admissible mapping.
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Let z € X and y € Tx be such that a(z,y) > 1.

Let z € T'y be given.

Since T is ax-admissible, a(y, z) > a.(Tz, Ty) > 1.

Lemma 1.2 (see[10]) : Let (X, d) be a metric space and let £ € =Z and B € CL(X).
If a € X and &(d(a, B)) < ¢, then there exists b € B such that £(d(a,b)) < c.

Proof : Let e = ¢ —&(d(a, B)).

Since &(d(a, B)) < ¢ and & o d is metric on X, there exists b € B such that £(d(a,b)) <
&(d(a, B)) + € by definition of infimum. Hence, £(d(a,b)) < c.

Let (X,d) be a metric space.

A function f : X — [0,00) is called upper semicontinuous if, for each z € X and
{zn} C X with nh_}rrolo xn, = x, we have nh_}nolo f(zy) < f(x).

A function f : X — [0,00) is called lower semicontinuous if, for each x € X and
{zn} C X with nlggo xn, = x, we have f(z) < nhﬁrglo f(zp).

For a multivalued map 7' : X — CL(X), let fr : X — [0,00) be a function defined by
fr(z) =d(z,Tz).

2. Fixed Point Theorems

Theorem 2.1 (see[10]) : Let (X, d) be a complete metric space and let o : X x X —
[0,00) be a function. Suppose that a multivalued mapping T : X — CL(X) is a-
admissible.

Assume that, for all z,y € X, a(z,y) > 1 implies

§(H(Tz,Ty)) < ¢(E(E(M(x,y))) + LE(d(y, Tx))

where

M(z,y) = max {d(w, y),d(x, Tx),d(y, Ty), é{d(x, Ty) + d(y, T:v)}}

where L > 0,¢ € 2 and ¢ € V¥ is strictly increasing.
Also, suppose that the following are satisfied:

(1) there exists g € X and x; € Tz such that a(xg, z1) > 1;

(2) either T is continuous or fr is lower semicontinuous.
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Then T has a fixed point in X.

Theorem 2.2 : Let (X,d) be a complete metric space and let a: X x X — [0,00) be
a function. Suppose that a multivalued mapping T': X — CL(X) is a-admissible.
Assume that, for all z,y € X, a(z,y) > 1 implies

§(H (T, Ty)) < ¢(E(M(z,y))) + LE(d(y, Tx)) (7)

d(ﬂfmi)d(y,Ty)}
1+d(z,y)

M(x,y) = max {d(x, y),d(x, Tx),d(y, Ty),

where L > 0,& € Z and ¢ € ¥ is strictly increasing.
Also, suppose that the following are satisfied:

(1) there exists g € X and z; € Tz such that a(xg, z1) > 1;
(2) either T is continuous or fr is lower semicontinuous.

Then T has a fixed point in X.

Proof : Let 29 € X and x1 € Txg be such that a(zg,z1) > 1. Let ¢ be a real number
with £(d(z0, 21)) < £(¢).

If xg = x1, then x is a fixed point. Let zg # x1.

If 1 € Txz1, then z7 is a fixed point.

Let 1 € Txy. Then d(x1,Tx1) > 0.

From (7) we obtain

o
IN

§(d(3317 T$1))
¢(H(Txo, Tx1)
Y(§(max{d(zo, 21), d(z0, T'v0), d(x1, TT1), Az 71ng(;£(zll’)Txl)

(elmax{d(an,an) o, ) dor, Tan), 02 OB 4 e, )

< P(E(max{d(zo, 21), d(x1, T1)}))- (8)

IN

IN

H) + L&(d(xo, 1))

IN

If max{d(xo,z1),d(x1,T2z1)} = d(x1,Tx1), then we have

0 < &(d(z1, Ter)) < 9(&(d(x1, T21))) < E(d(21, 1))

which is a contraction.
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Thus, max{d(zg,z1),d(z1,Tx1)} = d(xg, 1), and hence we have

0<--- <¥Y(&(e))

Hence,there exists xo € T'xq such that

(d(z1, 22)) < ¥(£(c))
Since T is a-admissible, from condition (1)and xo € T'z1, we have
a(zy,z2) > 1.

If o € Txo, then x5 is a fixed point. Let xo & Txo.
Then d(z2,Tz2) > 0 and so &(d(z2, Tz2)) > 0.

From (7) we obtain
0 < g(d(xg,TZL‘g))
E(H(Txy,Txs)

Y(§(max{d(x1, z2), d(x1, Tw1), d(22, TT2),

IN

IN

d(fL‘l, Txl) . d(l’g, T{L‘Q)

(11)

1+ d(l’l, 1‘2)

IN

Y(€(max{d(x1, z2), d(21, x2), d(x2, T22),

d(.’El, .2122) . d(xg, T.%'Q)

1+ d(x1,22)
< Y(€(max{d(z1, x2), d(w2, Tx2)})).

If max{d(x1,x2),d(xs, Tx2)} = d(x9,Tz2), then we have

§(d(z2, T2)) < Y(&(d(z2, Tx2))) < £(d(72, Tx2))

which is a contraction.

Thus, max{d(z1,x2),d(ze, Tx2)} = d(x1,x2), and hence we have
E(d(w2, T2)) < P(€(d(a1,22))) < ¥*(E(c))
Hence, there exists x3 € Tx9 such that
E(d(w2, 23)) < ¥*(€(c))
Since T' is a-admissible, from z3 € T'xo, we have

a(re,z3) > 1

1) <o+ Le(d(a2, 21))

}) + LE(d(z2, 22))
(12)

(13)

(14)
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By induction, we obtain a sequence {z,} C X such that, for alln € RU{0}, a(zp, Tpnt1) >
1, Tpt1 € Ty, Ty # Tyt

§(d(xn, Tny1)) < P (E(c))- (16)
Let € > 0 be given.
Since §0 Y (&(ep)) < (€)oo, there exists N € X such that

D U(E(e) <€) (17)
n>N
For all m > n > N, we have
m—1
E(d(@n, mm)) < D UF(E() < Y ¥M(E(e) < &(e) (18)
k=n n>N

which implies d(zp, xm) <€, ¥V m >mn > N. Hence {z,} is a Cauchy sequence in X.

It follows from the completeness of X that there exists

z, = lim z, € X. (19)

n—oo

Suppose that T is continuous. We have
d(xy, Tay) < d(zs, Tpt1) + d(@py1, Try) < d(@s, Tng1) + H(zp, Tay). (20)

By letting n — « in the above inequality, we obtain d(x., Tz.) = 0 and so x, € Tx,.

Assume that fr is lower semicontinous. Then, fr(z.) < lim fr(z,). Hence
n—o

d(xy, Tzy) < lim d(zy, Tx,) < lim d(zy, 2pe1) = 0.

n—oo n—oo

Thus, z, € Tx,. O
Corollary 2.1 : Let (X, d) be a complete metric space and let a: X x X — [0,00) be
a function. Suppose that a multivalued mapping 7" : X — CL(X) is a-admissible.
Assume that, for all z,y € X, a(z,y) > 1 implies

(o, y))(H(Tz, Ty)) < p(§(M(x,y))) + LE(d(y, Tx)) ((21)
d(z, Tz)(d(y, Ty)) }

1+d(z,y)
where L > 0, £ € E and ¢ € V¥ is strictly increasing. Also, suppose that conditions (1)
and (2)of Theorem 2.2 are satisfied.

M(x,y) = max {d(a:, y),d(z, Tx),d(y, Ty),
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Then T has a fixed point in X.
Remark 2.1 : If we have {(t) =t for all ¢t > 0,L =0,

M(z,y) = max {d(x, y),d(z, Tx),d(y, Ty), %{d(x, Ty) + d(y, T:U)}}

and T is continuous, then Corollary 2.1 reduces to Theorem 3.4 of [7].

Theorem 2.3 (see [10]) : Let (X, d) be a complete metric space and let av: X x X —
[0,00) be a function. Suppose that a multivalued mapping 7' : X — CL(X) is a-
admissible.

Assume that, for all z,y € X, a(z,y) > 1 implies
§(H(Tx, Ty)) < 9(§(M(x,y))) + LE(d(y, Tx)) (22)

M (z,y) = max {d(q:, y),d(z,Tz),d(y, Ty), %{d(m, Ty) + d(y, Tm)}}

where L > 0,€ € =9 € ¥ and is strictly increasing and upper semicontinuous function.

Also, suppose that the following are satisfied.
(1) there exists 29 € X and z1 € Tz such that a(zg,z1) > 1;

(2) for a sequence {x,} in X with a(z,,x,4+1) > 1 forall n € XU {0} and a cluster
point = of {x,}, there exists a subsequence {z,)} of {zn} such that, for all,

k € XU {0},
Ty, z) > 1. (23)

Then T has a fixed point in X.

Theorem 2.4 : Let (X, d) be a complete metric space and let a: X x X — [0,00) be
a function. Suppose that a multivalued mapping T': X — CL(X) is a-admissible.
Assume that, for all z,y € X, a(z,y) > 1 implies

§(H (T, Ty)) < ¢(E(M(z,y))) + LE(d(y, Tx)) (24)

d(z, Tz) - d(y, Ty) }
1+d(z,y)

where L > 0, € 2,9 € V is strictly increasing and upper semicontinuous function.

M(l‘,y) = max {d(l’,y),d({ﬂ, TIB), d(ya Ty),

Also, suppose that the following are satisfied.

(1) there exists g € X and z; € Tz such that a(xg, z1) > 1;
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(2) for a sequence {x,} in X with a(xy,, z,+1) > 1 foralln € RU{0} and a cluster point
x of {x, }, there exists a subsequence {z, )} of {x, } such that, for all k € RU{0},

Then T has a fixed point in X.
Proof : Following the proof of Theorem 2.2, we obtain a sequence {x,} C X with

lim z,, = 2, € X such that, for all n € XU {0},

n—oo

Tnt1 € Ty, Ty # g1, (Tn, Try1) > 1. (26)
From (2) there exists a subsequence {z,,;)} of {x,} such that
(@n(k)s T+) 2 1. (27)
Thus, we have

E(d(@n k)1, Tx)) = E(H (Tanr), Twx)) < PEM (2, 24))) + LE(A(@4; Ty +1))
((28)

where

d(xn(k)a l‘n(k)+1) cd(xy, Txy) }

M(xn(k)7x*) = maX{d(wn(k),x*),d(ﬂfn(k),$n(k)+1)ad(x*va*)7 1 —i—d(x (k)s T )

(29)
we have
lim M (zp,r), T+) = d(zx, Txy) (30)
k—o0
and so
T £(M (i, 5),.)) = €(d(zs, T2). (31)
Suppose that d(z., Tx,) # 0.
Since 1) is upper semicontinuous.
T Y(E(M (19, 22)) < P(EA(w, T))) (32)
Letting k£ — oo in inequality (27) and using continuity of £, we obtain
0 <&(d(xs,Tas))
< klinolo ﬂ)(ﬁ(M(fEmk, l‘*))) + nh_g)lo L&(d(iv*v mn(k)—f—l)) (33)

< Pe(d(ay, Ty)) < &(d(2s, Tiri))
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which is a contraction. Hence, d(z.,Tz.) = 0, and hence z, is a fixed point of T'.

The following example shows that upper semicontinuity of ¥ cannot be dropped in
Theorem 2.4.

Example : Let X = [0,00) and let d(z,y) = | — y| for all z,y > 0.

Define a mapping 7' : X — CL(X) by

{51}
Te=<{ {2z} (0<z<1), (34)
{3z} (xz>1).
Let £(t) =t for all t > 0, and let
{8} (t=>1),
P(t) = (35)

{3t} (0<t<1).

Then £ € = and ¢ € Y is a strictly increasing function.

Let a,n: X x X — [0, 00] be defined by

6, 0<z, y<I,
alz,y) = (36)
0, otherwise
Obviously condition (2)of Theorem 2.4 is satisfied. Condition (1) of Theorem 2.4 is
satisfied with zg = ¢ we show that (7) is stisfied.
Let z,y € X be such that o(z,y) > 1. Then 0 < z,y < 1.
If x = 0 then obviously (7) is satisfied.

Let z #y. If z =0 and 0 < y < 1, then we obtain

2 ) 1

§H(Tz, Ty)) = H({3,1}, gy) < § < ¥ld(z, T2)) < P(E(M(,y))). (37)

Let 0 <z <1and 0 <y < 1. Then, we have

§(H(TaTy)) = d(Te,Ty) = d(gr, ¢v)
5
= 6|$*y|

= Y(E(M(z,y)))
< PEM(z,y)).
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We now show that T is a-admissible.
Let x € X be given and let y € Tx be such that a(z,y) > 1. Then 0 < z,y < 1.
Obviously a(y,z) > 1 for all z € Ty whenever 0 < y < 1.

If y =0, then Ty = {%,1}. Hence, for all z € Ty,a(y,z) > 1. Hence, T is a-
admisible. Thus, all hypothesis of Theorem 2.4 are satisfied. However, T has no fixed
points.

Note that 1 is not upper semicontinuous.

Corollary 2.2 : Let (X, d) be a complete metric space and let a: X x X — [0, 00) be
a function. Suppose that a multivalued mapping 7" : X — CL(X) is a-admissible.
Assume that, for all z,y € X, a(z,y) > 1 implies

§(H(Tw, Ty)) < ¢(E(M(z,y))) + LE(d(y, Tr)) (38)
d(z, Tz)d(y, Ty) }

1+d(z,y)
where L > 0,& € Z,¢ € W is strictly increasing and upper semicontinuous function.

Also, suppose that conditions (1)and (2) of Theorem 2.4 are satisfied. Then T has a

M(x,y) = max {d(x, y),d(x, Tx),d(y, Ty),

fixed point in X.
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