International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 249-256

A NOTE ON SEMI- CONVERGENT SERIES

SREEJA S. NAIR ${ }^{1}$ AND DR. V. MADHUKAR MALLAYYA ${ }^{2}$
${ }^{1}$ Assistant Professor of Mathematics, Govt. Arts College, Thiruvananthapuram, Kerala, India
${ }^{2}$ Former Professor and Head,
Department of Mathematics, Mar Ivanios College, Thiruvananthapuram, India

Abstract

In this paper we shall give some properties of a semi-convergent series. We also distinguish a semi- convergent and an absolutely convergent series.

1. Introduction

The study of infinite series includes two important class of series namely, absolute convergent series and conditionally convergent series. A conditionally convergent series is also named as a semi- convergent series. The study of a semi-convergent series plays a vital role in mathematical analysis. Here we shall prove the re-arrangement theorems for a semi-convergent series.
Definition 1: An infinite series is a sum of infinite number of terms $a_{1}+a_{2}+a_{3}+\cdots$. An infinite series is usually denoted by $\sum_{n=1}^{\infty} a_{n}$.
If the sum of infinite number of terms is a finite number, say S, then we say that the series $\sum_{n=1}^{\infty} a_{n}$ is convergent and S is called the sum of the series.

We denote it as $\sum_{n=1}^{\infty} a_{n}=S$.
If $\sum_{n=1}^{\infty} a_{n}= \pm \infty$, we say that the series is divergent.
Definition 2: An alternating series is of the form $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ where $a_{n}>0$.
Definition 3: The sequence of partial sums of the series $\sum_{n=1}^{\infty} a_{n}$ is the sum to n terms of the series. It is denoted by S_{n}. That is $S_{n}=\sum_{n=1}^{\infty} a_{k}$.
Theorem : A series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if its sequence of partial sums S_{n} is convergent.
Definition 4:A series $\sum_{n=1}^{\infty} a_{n}$ is called an absolutely convergent series, if the series of positive terms $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.
If a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then the series itself is also convergent.
Example :

1. The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{p}}$ where $p>1$
2. The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n(n+1)}$.

Definition 5: A series $\sum_{n=1}^{\infty} a_{n}$ is called a semi-convergent (conditionally convergent) series, if the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, but the series of positive terms $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is not convergent.
Example: The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{p}}$ where $0 \leq p \leq 1$.
Definition 6: Let $\sum_{n=1}^{\infty} a_{n}$ be a series of positive and negative terms. Define

$$
\begin{aligned}
& a_{n}^{+}=\left\{\begin{array}{lll}
a_{n}, & \text { if } & a_{n}>0 \\
0, & \text { if } & a_{n} \leq 0
\end{array}\right. \\
& a_{n}^{-}=\left\{\begin{array}{lll}
-a_{n}, & \text { if } & a_{n}<0 \\
0, & \text { if } & a_{n} \geq 0
\end{array}\right.
\end{aligned}
$$

Then the series $\sum_{n=1}^{\infty} a_{n}^{+}$is called the series of positive terms and series $\sum_{n=1}^{\infty} a_{n}^{-}$is called the series of negative terms.
It follows that $a_{n}=a_{n}^{+}-a_{n}^{-}$

$$
\left|a_{n}\right|=a_{n}^{+}+a_{n}^{-}
$$

That is $a_{n}^{+}=\frac{\left|a_{n}\right|+a_{n}}{2}, \quad a_{n}^{-}=\frac{\left|a_{n}\right|-a_{n}}{2}$.
Note: For the series $\sum_{n=1}^{\infty} a_{n}$, the series $\sum_{n=1}^{\infty} a_{n}^{+}$is called the series of positive terms and the series $\sum_{n=1}^{\infty} a_{n}^{-}$is called the series of negative terms.
Theorem : For an absolutely convergent series, the series $\sum_{n=1}^{\infty} a_{n}^{+}+$and $\sum_{n=1}^{\infty} a_{n}^{-}$are convergent.
Proof : Let $\sum_{n=1}^{\infty} a_{n}$ be an absolutely convergent series. Then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ are convergent.
Let $\sum_{n=1}^{\infty} a_{n}=S$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|=T$.
Let S_{n} and T_{n} be the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ respectively.
Let P_{n} and Q_{n} denote the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$respectively. Then we have $S_{n}=P_{n}-Q_{n}$ and $T_{n}=P_{n}+Q_{n}$.
That is $P_{n}=\frac{T_{n}+S_{n}}{2}$ and $Q_{n}=\frac{T_{n}-S_{n}}{2}$.
Now $\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty} \frac{T_{n}+S_{n}}{2}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(T_{n}+S_{n}\right)=\frac{T+S}{2}$, a finite number.
Also $\lim _{n \rightarrow \infty} Q_{n}=\lim _{n \rightarrow \infty} \frac{T_{n}-S_{n}}{2}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(T_{n}-S_{n}\right)=\frac{T-S}{2}$, a finite number.
Hence the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$are convergent.
Thus the two series $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$are convergent.
Theorem : For a semi-convergent series $\sum_{n=1}^{\infty} a_{n}$, the two series $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$are divergent.
Proof : Let $\sum_{n=1}^{\infty} a_{n}$ be a semi-convergent series. Then $\sum_{n=1}^{\infty} a_{n}$ is convergent, but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is not convergent.
Let $\sum_{n=1}^{\infty} a_{n}=S, \sum_{n=1}^{\infty}\left|a_{n}\right|=\infty$.
Let S_{n} and T_{n} be the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ respectively.
Let $\lim _{n \rightarrow \infty} S_{n}=S$. We have $\lim _{n \rightarrow \infty} T_{n}=\infty$.

Let P_{n} and Q_{n} denote the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$respectively. Then we have $S_{n}=P_{n}-Q_{n}$ and $T_{n}=P_{n}+Q_{n}$.
That is $P_{n}=\frac{T_{n}+S_{n}}{2}$ and $Q_{n}=\frac{T_{n}-S_{n}}{2}$.
Now

$$
\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty} \frac{T_{n}+S_{n}}{2}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(T_{n}+S_{n}\right)=\frac{\infty+S}{2}=\infty .
$$

Also

$$
\lim _{n \rightarrow \infty} Q_{n}=\lim _{n \rightarrow \infty} \frac{T_{n}-S_{n}}{2}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(T_{n}-S_{n}\right)=\frac{\infty-S}{2}=\infty
$$

Hence the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$are divergent.
Thus the two series $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}-$ are divergent.
Lemma : For a semi-convergent series $\sum_{n=1}^{\infty} a_{n}$, the two series $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$have infinitely many positive terms.
Proof : Assume that $\sum_{n=1}^{\infty} a_{n}^{-}$has only a finite number of positive terms. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|a_{n}\right| & =\sum_{n=1}^{\infty}\left(a_{n}^{+}+a_{n}^{-}\right) \\
& \leq \sum_{n=1}^{\infty}\left(a_{n}^{+}-a_{n}^{-}\right)+2 \sum_{n=1}^{\infty} a_{n}^{-} \\
& =\sum_{n=1}^{\infty} a_{n}+2 \sum_{n=1}^{\infty} a_{n}^{-}
\end{aligned}
$$

We have $\sum_{n=1}^{\infty} a_{n}$ is convergent and by our assumption, $\sum_{n=1}^{\infty} a_{n}^{-}$is convergent. It follows that $\left|a_{n}\right|$ is convergent which is a contradiction. Hence our assumption is wrong.
Thus $\sum_{n=1}^{\infty} a_{n}^{-}$must have infinite number of positive terms.
Similarly assume that $\sum_{n=1}^{\infty} a_{n}^{+}$has only finite number of terms. Since

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|a_{n}\right| & =\sum_{n=1}^{\infty}\left(a_{n}^{+}+a_{n}^{-}\right) \\
& \leq \sum_{n=1}^{\infty}\left(a_{n}^{-}-a_{n}^{+}\right)+2 \sum_{n=1}^{\infty} a_{n}^{+} \\
& =(-1) \sum_{n=1}^{\infty} a_{n}+2 \sum_{n=1}^{\infty} a_{n}^{+} .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} a_{n}$ is convergent, we have $(-1) \sum_{n=1}^{\infty} a_{n}$ is also convergent.
By our assumption $\sum_{n=1}^{\infty} a_{n}^{+}$is convergent.
It follows that $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent, which is a contradiction.
Hence $\sum_{n=1}^{\infty} a_{n}^{+}$must have infinite number of positive terms.
Lemma: The series $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$are unbounded below.
Proof: We have $\sum_{n=1}^{\infty} a_{n}^{-}$is a series of non-positive terms and so it is monotone decreasing.
If the series $\sum_{n=1}^{\infty} a_{n}^{-}$is bounded below, then by monotone convergence theorem, the series will converge which is a contradiction.
Thus the series $\sum_{n=1}^{\infty} a_{n}^{-}$is unbounded below.
Similarly we can prove that $\sum_{n=1}^{\infty} a_{n}^{+}+$is unbounded below.
Theorem : A semi-convergent series $\sum_{n=1}^{\infty} a_{n}$, the terms can be rearranged so that the re-arranged series diverges to ∞.
Proof: In this proof we shall denote $u_{n}=a_{n}^{+}$and $v_{n}=a_{n}^{-}$. Then clearly u_{n} and v_{n} are non-negative real numbers.
Now we make a re-arrangement of $\sum_{n=1}^{\infty} a_{n}$ as follows.

$$
\begin{aligned}
& \left(u_{1}+u_{2}+\cdots+u_{m 1}\right) v_{1}+\left(u_{m 1+1}+u_{m 1+2}+\cdots+u_{m 2}\right) \\
& v_{2}+\left(u_{m 2+1}+u_{m 2+2}+\cdots+u_{m 3}\right) v_{3}+\cdots
\end{aligned}
$$

where a group of positive terms is followed by a single negative term.
We denote the re-arranged series as $\sum_{n=1}^{\infty} b_{n}$ and let S_{n} denote the sequence of partial sums of $\sum_{n=1}^{\infty} b_{n}$.
Since $\sum_{n=1}^{\infty} u_{n}$ is divergent, its sequence of partial sums is unbounded.
Let us choose m_{1} so large that $u_{1}+u_{2}+\cdots+u_{m 1}>1+v_{1}$.
Now choose $m_{2}>m_{1}$ such that

$$
u_{1}+u_{2}+\cdots+u_{m 1}+u_{m 1+1}+u_{m 1+2}+\cdots+u_{m 2}>2+v_{1}+v_{2} .
$$

In general, choose $m_{n}>m_{n-1}$ such that
$u_{1}+u_{2}+\cdots+u_{m 1}+u_{m 1+1}+u_{m 1+2}+\cdots+u_{m 2}+\cdots+u_{m n}>n+v_{1}+v_{2}+\cdots+v_{n}$ for $n \in N$.

Since each of the partial sums $S_{m 1+1}, S_{m 2+2}, \cdots$ of the rearranged series, whose last term is a negative term $-v_{n}$, is greater than n, these partial sums are unbounded above and hence the series $\sum_{n=1}^{\infty} b_{n}$ diverges to ∞.
Theorem : The terms of a semi-convergent series $\sum_{n=1}^{\infty} a_{n}$ can be rearranged so that the rearranged series diverges to $-\infty$.
Proof : The non negative real numbers u_{n} and v_{n} are defined as in the proof of previous theorem.

Here we make another re-arrangement of as follows.

$$
\begin{aligned}
& \left(-v_{1}-v 2-\cdots-v_{m 1}\right)+u_{1}+\left(v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 2}\right) \\
& +u_{2}+\left(-v m_{2+1}-v_{m 2+2}-\cdots-v_{m 3}\right)+u_{3}+\cdots
\end{aligned}
$$

where a group of negative terms is followed by a single positive term.
We denote the re-arranged series as $\sum_{n=1}^{\infty} b_{n}$ and let S_{n} denote the sequence of partial sum of $\sum_{n=1}^{\infty} b_{n}$.
Since $\sum_{n=1}^{\infty} v_{n}$ is divergent, its sequence of partial sums is unbounded.
Let us choose m_{1} so large that $-v_{1}-v_{2}-\cdots-v_{m 1}<1-u_{1}$.
Now choose $m_{2}>m_{1}$ such that

$$
-v_{1}-v_{2} \cdots-v_{m 1}-v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 2}<2-u_{1}-u_{2}
$$

In general, choose $m_{n}>m_{n-1}$ such that
$-v_{1}-v_{2}-\cdots-v_{m 1}-v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 2}-\cdots-v_{m n}<n-u_{1}-u_{2}-\cdots-u_{n}$ for $n \in N$.
Since each of the partial sums $S_{m 1+1}, S_{m 2+2}, \cdots$ of the rearranged series $\sum_{n=1}^{\infty} b_{n}$, whose last term is a positive term u_{n} is less than n, these partial sums are unbounded below. Hence the re-arranged series $\sum_{n=1}^{\infty} b_{n}$ diverges to ∞.

Theorem (Riemanns re-arrangement theorem) : Let $\sum_{n=1}^{\infty} a_{n}$ be a semi-convergent series and let $r \in R$. Then there exists a rearrangement of the terms of $\sum_{n=1}^{\infty} a_{n}$ that converges to r.
Proof: The non negative real numbers u_{n} and v_{n} are defined as in the proof of previous theorem.
Here we make another re-arrangement of $\sum_{n=1}^{\infty} a_{n}$ as follows.
Choose first m_{1} positive terms such that their sum exceeds r. i.e. $\left(u_{1}+u_{2}+\cdots+u_{m 1}\right)>r$.
Then add first m_{2} negative terms such that the sum is less than r.
i.e. $\left(u_{1}+u_{2}+\cdots+u_{m 1}\right)+\left(-v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 2}\right)<r$..

Again add next m_{3} positive terms so that the sum exceeds r.
i.e. $\left(u_{1}+u_{2}+\cdots+u_{m 1}\right)+\left(-v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 2}\right)+\left(u_{m 2+1}+u_{m 2+2}+\cdots+u_{m 3}\right)>r$.

Next we add m_{4} negative terms so that the sum is less than r. i.e.

$$
\begin{aligned}
& \left(u_{1}+u_{2}+\cdots+u_{m 1}\right)+\left(-v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 2}\right) \\
& +\left(u_{m 2+1}+u_{m 2+2}+\cdots+u_{m 3}\right)+\left(-v_{m 1+1}-v_{m 1+2}-\cdots-v_{m 4}\right)<r .
\end{aligned}
$$

We continue the above process, where a group of positive terms is followed by another group of negative terms.
We denote the re-arranged series as $\sum_{n=1}^{\infty} b_{n}$ and let S_{n} denote the sequence of partial sum of $\sum_{n=1}^{\infty} b_{n}$.
We can see that the partial sums $S_{m 1+m 2+m 3}+\cdots$ of the rearranged seris $\sum_{n=1}^{\infty} b_{n}$ brackets the real number r.
We have $u_{n} \rightarrow 0$ and $v_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Hence for given $\epsilon>0$, there exists a natural number N such that $\left|S_{n}-r\right|<\epsilon$ for $n \geq N$.
Thus $S_{n} \rightarrow r$ as $n \rightarrow \infty$.
Hence the rearranged series $\sum_{n=1}^{\infty} b_{n}$ converges to the real number r.

References

[1] Knopp Konra, Theoryand Application of Infinite Series, Blackie and Son Limited (London and Glasgow).
[2] Hardy G. H., A Course of Pure Mathematics, Cambridge at the University Press, (Tenth edition), (1963).
[3] Knopp K., Infinite Sequences and Series, Dover, (1956).
[4] Apostol Tom M., Mathematical Analysis, Narosa Publishing House, (Second Edition), ISBN 81-85015-66.
[5] Galanor Stewart, Reimann's rearrangement theorem, mathematics teacher, 80(8), (Novermber 1987), 675-681.

