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Abstract

In this paper we shall give some properties of a semi-convergent series. We also
distinguish a semi- convergent and an absolutely convergent series.

1. Introduction
The study of infinite series includes two important class of series namely, absolute
convergent series and conditionally convergent series. A conditionally convergent series
is also named as a semi- convergent series. The study of a semi-convergent series plays
a vital role in mathematical analysis. Here we shall prove the re-arrangement theorems
for a semi-convergent series.
Definition 1 : An infinite series is a sum of infinite number of terms a; +as+az+---.
An infinite series is usually denoted by iojl Qp, .

e

If the sum of infinite number of terms is a finite number, say S, then we say that the
[e.°]

series Y a, is convergent and S is called the sum of the series.
n=1
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[e.e]
We denote it as ) a, = S.

n=1

[o¢]
If Y a, = +o0, we say that the series is divergent.
n=1

o0
Definition 2 : An alternating series is of the form Y (—1)""!a,, where a, > 0.
n=1

o
Definition 3 : The sequence of partial sums of the series ) a, is the sum to n

n=1
oo
terms of the series. It is denoted by S,. That is S,, = > ak.
=1
~ n
Theorem : A series ) a, is convergent if and only if its sequence of partial sums S,
n=1

is convergent.

o
Definition 4 : A series ) a, is called an absolutely convergent series, if the series
n=1

oo
of positive terms > |ay| is convergent.
n=1

o0

If a series ) a, is absolutely convergent, then the series itself is also convergent.
n=1

Example :

oo
1. The series > (—=1)""'L where p > 1

npP
n=1

oo
2. The series > (—1)" ! L
n=1

n(n+1)"
oo
Definition 5 : A series Y a, is called a semi-convergent (conditionally conver-
& -
gent) series , if the series ) a,, is convergent, but the series of positive terms »_ |a,|
n=1 n=1

is not convergent.

oo
Example : The series Y (—1)""'-1 where 0 < p < 1.

n=1
oo
Definition 6 : Let ) a, be a series of positive and negative terms. Define
n=1
n, if a, >0
0, if a,<0

—an, if a, <0

0, if a,>0
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[e.°] [e.e]
Then the series Y a; is called the series of positive terms and series Y a,, is called
the series of negative terms.

It follows that a, = a; — a,,

|an| = ay +a,,

‘o o+ _ lanlta — _ lan|—a
That is a;, = =5—", a, = 5.
o oo
Note : For the series an, the series al is called the series of positive terms
) n p

n=1 n=1

o0
and the series ) a,, is called the series of negative terms.
n=1
o0 o0
Theorem : For an absolutely convergent series, the series > a4+ and Y. a, are
n=1 n=1

convergent.

oo oo oo
Proof : Let > a, be an absolutely convergent series. Then ) a, and ) |ay| are
n=1 n=1

n=1 = =
convergent.
o0 o0
Let " ap, =S and ) |a,| =T.
n=1 n=1

o0 o0
Let S,, and T}, be the sequence of partial sums of > a, and > |a,| respectively.
n=1 n=1

(&) (&)
Let P, and @, denote the sequence of partial sums of > a7 and > a, respectively.

n=1 n=1
Then we have S, = P, — @, and T,, = P, + Q.
That is P, = T";is’l and Q, = T”%S”
Now lim P, = lim T"%S" = lim %(Tn +5,) = TT*S, a finite number.
n—o0 n—o0 n—r0o0

Also nh_{réo Qn = nh—>Holo Tngis’i = nh_)rglo %(Tn —Sn) = TT_S, a finite number.

o0 o0
Hence the sequence of partial sums of > a;f and 3 a;, are convergent.
n=1 n=1

o0 o0
Thus the two series > a7 and Y a,, are convergent.

n=1 n=1
[e.e] [e.e] o0
Theorem : For a semi-convergent series Y. a,, the two series > af and Y a,, are
n=1 n=1 n=1
divergent.
o0 oo o0
Proof: Let ) a, be a semi-convergent series. Then > a,, is convergent, but > |a,|

is not convergent.

o0 o0
Let > an, =S, Y |ap| = .
n=1 n=1

o0 o0
Let S, and T}, be the sequence of partial sums of >’ a, and ) |ay| respectively.
n=1 n=1

Let lim S, =S5. We have lim T, = cc.
n—oo n—oo
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o0 o0
Let P, and Q,, denote the sequence of partial sums of > a7 and > a; respectively.

n=1 n=1
Then we have S,, = P, — @, and T,, = P, + Q.
That is P, = T”‘gi‘g" and @, = T"%S”
Now
T,+ S 1 S
lim P, = lim It on i —(T, + Sp) = ©to _ .
n—00 n—00 n—oo 2 2
Also
. . T, =5, .1 00— S
e I
o0 o0
Hence the sequence of partial sums of > a;f and Y a,, are divergent.
o ~ n=1 n=1
Thus the two series > a and Y. a,— are divergent.
n=1 n=1

[e.°] o0 [e.°]
Lemma : For a semi-convergent series > a,, the two series . @} and > a,, have
n=1 n=1 n=1
infinitely many positive terms.
o0

Proof : Assume that > a,, has only a finite number of positive terms. Then

n=1
o o0
Dolanl = ) (af +ay)
n=1 n=1
oo o0
< Z(az —a,_L)—I-QZag
n=1 n=1
oo oo
S SRS
n=1 n=1
o o0
We have ) a, is convergent and by our assumption, »_ a, is convergent. It follows
n=1 n=1

that |a,| is convergent which is a contradiction. Hence our assumption is wrong.
o0

Thus ) a, must have infinite number of positive terms.
n=1

o0
Similarly assume that > a;} has only finite number of terms. Since
n=1

hE

(ay +ay;,)

o0
> lanl =
n=1

N
Il
—_

WE

o0
(a;—ai)—i—QZa;’{
n=1

Il
—

n

o (o0
= (-1 an+2) al.
n=1 n=1
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oo [e.e]
Since Y ay is convergent, we have (—1) > a, is also convergent.

n=1 n=1
oo

. ; + ig
By our assumption »_ a is convergent.
n=1

o0
It follows that > |ay| is convergent, which is a contradiction.

n=1
o0
Hence ) a;f must have infinite number of positive terms.
n=1

o0 o0
Lemma : The series Y a and > a, are unbounded below.
n=1 n=1

o0
Proof : We have ) a,, is a series of non-positive terms and so it is monotone decreas-
n=1
ing.
oo
If the series ) a,, is bounded below, then by monotone convergence theorem, the series
n=1
will converge which is a contradiction.

[e.°]
Thus the series ) a, is unbounded below.
n=1

o0
Similarly we can prove that Y a4+ is unbounded below.

n=1
o0
Theorem : A semi-convergent series » a,, the terms can be rearranged so that the
n=1

re-arranged series diverges to oo.
Proof : In this proof we shall denote u, = a:{ and v, = a,,. Then clearly u, and v,
are non-negative real numbers.

oo

Now we make a re-arrangement of > a, as follows.
n=1

(ur +ug + - + um1)v1 + (Umis1 + Umit2 + -+ Um2)

V2 + (Um2+1 + Umat2 + -+ + Um3z)vg + - -

where a group of positive terms is followed by a single negative term.
oo

We denote the re-arranged series as »_ b, and let S, denote the sequence of partial
n=1

o0
sums of > by.
n=1

oo

Since ) u,, is divergent, its sequence of partial sums is unbounded.
n=1

Let us choose m so large that uy +wuo + -+ + U1 > 1 4+ v1.

Now choose mg > mq such that

up +ug + o F Ul + Umitl + Unig2 + o+ U2 > 24 01 + 0.
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In general, choose m,, > m,,_1 such that
urtug+- - FuUml FUmi 1 FUmir2+ o FUm2+ Uy, > ntv v+ -+, for n e N

Since each of the partial sums Sy,141, Smoto, -+ of the rearranged series, whose last
term is a negative term —uv,, is greater than n, these partial sums are unbounded above
oo

and hence the series Y b, diverges to oco.

n=1
oo
Theorem : The terms of a semi-convergent series > a, can be rearranged so that the
n=1

rearranged series diverges to —oo.
Proof: The non negative real numbers u,, and v,, are defined as in the proof of previous
theorem.

Here we make another re-arrangement of as follows.

(—v1 — 02— —vp1) Fur + (Vmi+1 — Umig2 — *° — Um2)

+ug + (—vmay1 — Umato — 0 — Upg) + U3 + -

where a group of negative terms is followed by a single positive term.

[e.e]
We denote the re-arranged series as > b, and let S,, denote the sequence of partial
~ n=1
sum of > by,
n=1

oo

Since ) v, is divergent, its sequence of partial sums is unbounded.
n=1

Let us choose m so large that —v; —vg — -+ — U1 < 1 — ug.

Now choose mo > mq such that

—U1 — U2 — Ul — Uml+l — Uml42 = — Um2 < 2 — U1 — Ug.

In general, choose m,, > m,_1 such that

—V1—V2— " —Uml—Uml+1—Uml4+2— " —Um2— " —VUmp < N—U]—U2—" **—Up, for n € N.
oo
Since each of the partial sums Sy,141, Smate,- - of the rearranged series Y b,, whose
n=1
last term is a positive term wu,, is less than n, these partial sums are unbounded below.
(o]

Hence the re-arranged series Y b, diverges to co.
n=1
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o0
Theorem (Riemanns re-arrangement theorem) : Let ) a, be a semi-convergent series
n=1

(o]
and let 7 € R. Then there exists a rearrangement of the terms of ) a, that converges

n=1
to r.

Proof: The non negative real numbers u,, and v,, are defined as in the proof of previous

theorem.
o0

Here we make another re-arrangement of ) a, as follows.
n=1

Choose first m; positive terms such that their sum exceeds r. i.e. (ui+ug+- - -+umi) > 7.
Then add first mo negative terms such that the sum is less than r.

ie. (up+ug+ -+ uUni) + (—Umit1 — Umit2 — + — Um2) < T..

Again add next mg positive terms so that the sum exceeds r.

Le. (uptug+- - +umi)+(—vmis1 —Vmite— - —Vm2) + (Umat1 +Umata+- +Umz) > 7.

Next we add m4 negative terms so that the sum is less than 7. i.e.

(ur +ug + -+ Up1) + (—Vmig1 — Umig2 — - — Um2)
F(Uma41 + Um2at2 + -+ Um3z) + (—VUmi41 — Umit2 — -+ — Upa) < T~

We continue the above process, where a group of positive terms is followed by another

group of negative terms.
[e.e]

We denote the re-arranged series as Y b, and let S,, denote the sequence of partial
~ n=1

sum of > by,
n=1

We can see that the partial sums Sy,14mo+m3—+- - - of the rearranged seris § b,, brackets
the real number 7. "

We have u,, = 0 and v, — 0 as n — .

Hence for given € > 0, there exists a natural number N such that |S,, —r| < e forn > N.
ThussS,, — r as n — oo.

o
Hence the rearranged series ) b, converges to the real number 7.
n=1
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