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Abstract

In this paper we shall give some properties of a semi-convergent series. We also
distinguish a semi- convergent and an absolutely convergent series.

1. Introduction

The study of infinite series includes two important class of series namely, absolute

convergent series and conditionally convergent series. A conditionally convergent series

is also named as a semi- convergent series. The study of a semi-convergent series plays

a vital role in mathematical analysis. Here we shall prove the re-arrangement theorems

for a semi-convergent series.

Definition 1 : An infinite series is a sum of infinite number of terms a1+a2+a3+· · · .
An infinite series is usually denoted by

∞∑
n=1

an.

If the sum of infinite number of terms is a finite number, say S, then we say that the

series
∞∑
n=1

an is convergent and S is called the sum of the series.
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We denote it as
∞∑
n=1

an = S.

If
∞∑
n=1

an = ±∞, we say that the series is divergent.

Definition 2 : An alternating series is of the form
∞∑
n=1

(−1)n−1an where an > 0.

Definition 3 : The sequence of partial sums of the series
∞∑
n=1

an is the sum to n

terms of the series. It is denoted by Sn. That is Sn =
∞∑
n=1

ak.

Theorem : A series
∞∑
n=1

an is convergent if and only if its sequence of partial sums Sn

is convergent.

Definition 4 : A series
∞∑
n=1

an is called an absolutely convergent series, if the series

of positive terms
∞∑
n=1
|an| is convergent.

If a series
∞∑
n=1

an is absolutely convergent, then the series itself is also convergent.

Example :

1. The series
∞∑
n=1

(−1)n−1 1
np where p > 1

2. The series
∞∑
n=1

(−1)n−1 1
n(n+1) .

Definition 5 : A series
∞∑
n=1

an is called a semi-convergent (conditionally conver-

gent) series , if the series
∞∑
n=1

an is convergent, but the series of positive terms
∞∑
n=1
|an|

is not convergent.

Example : The series
∞∑
n=1

(−1)n−1 1
np where 0 ≤ p ≤ 1.

Definition 6 : Let
∞∑
n=1

an be a series of positive and negative terms. Define

a+n =


an, if an > 0

0, if an ≤ 0

a−n =


−an, if an < 0

0, if an ≥ 0



A NOTE ON SEMI- CONVERGENT SERIES 251

Then the series
∞∑
n=1

a+n is called the series of positive terms and series
∞∑
n=1

a−n is called

the series of negative terms.

It follows that an = a+n − a−n
|an| = a+n + a−n

That is a+n = |an|+an
2 , a−n = |an|−an

2 .

Note : For the series
∞∑
n=1

an, the series
∞∑
n=1

a+n is called the series of positive terms

and the series
∞∑
n=1

a−n is called the series of negative terms.

Theorem : For an absolutely convergent series, the series
∞∑
n=1

a+n + and
∞∑
n=1

a−n are

convergent.

Proof : Let
∞∑
n=1

an be an absolutely convergent series. Then
∞∑
n=1

an and
∞∑
n=1
|an| are

convergent.

Let
∞∑
n=1

an = S and
∞∑
n=1
|an| = T .

Let Sn and Tn be the sequence of partial sums of
∞∑
n=1

an and
∞∑
n=1
|an| respectively.

Let Pn and Qn denote the sequence of partial sums of
∞∑
n=1

a+n and
∞∑
n=1

a−n respectively.

Then we have Sn = Pn −Qn and Tn = Pn +Qn.

That is Pn = Tn+Sn
2 and Qn = Tn−Sn

2 .

Now lim
n→∞

Pn = lim
n→∞

Tn+Sn
2 = lim

n→∞
1
2(Tn + Sn) = T+S

2 , a finite number.

Also lim
n→∞

Qn = lim
n→∞

Tn−Sn
2 = lim

n→∞
1
2(Tn − Sn) = T−S

2 , a finite number.

Hence the sequence of partial sums of
∞∑
n=1

a+n and
∞∑
n=1

a−n are convergent.

Thus the two series
∞∑
n=1

a+n and
∞∑
n=1

a−n are convergent.

Theorem : For a semi-convergent series
∞∑
n=1

an, the two series
∞∑
n=1

a+n and
∞∑
n=1

a−n are

divergent.

Proof : Let
∞∑
n=1

an be a semi-convergent series. Then
∞∑
n=1

an is convergent, but
∞∑
n=1
|an|

is not convergent.

Let
∞∑
n=1

an = S,
∞∑
n=1
|an| =∞.

Let Sn and Tn be the sequence of partial sums of
∞∑
n=1

an and
∞∑
n=1
|an| respectively.

Let lim
n→∞

Sn = S. We have lim
n→∞

Tn =∞.
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Let Pn and Qn denote the sequence of partial sums of
∞∑
n=1

a+n and
∞∑
n=1

a−n respectively.

Then we have Sn = Pn −Qn and Tn = Pn +Qn.

That is Pn = Tn+Sn
2 and Qn = Tn−Sn

2 .

Now

lim
n→∞

Pn = lim
n→∞

Tn + Sn
2

= lim
n→∞

1

2
(Tn + Sn) =

∞+ S

2
=∞.

Also

lim
n→∞

Qn = lim
n→∞

Tn − Sn
2

= lim
n→∞

1

2
(Tn − Sn) =

∞− S
2

=∞.

Hence the sequence of partial sums of
∞∑
n=1

a+n and
∞∑
n=1

a−n are divergent.

Thus the two series
∞∑
n=1

a+n and
∞∑
n=1

an− are divergent.

Lemma : For a semi-convergent series
∞∑
n=1

an, the two series
∞∑
n=1

a+n and
∞∑
n=1

a−n have

infinitely many positive terms.

Proof : Assume that
∞∑
n=1

a−n has only a finite number of positive terms. Then

∞∑
n=1

|an| =
∞∑
n=1

(a+n + a−n )

≤
∞∑
n=1

(a+n − a−n ) + 2

∞∑
n=1

a−n

=
∞∑
n=1

an + 2
∞∑
n=1

a−n

We have
∞∑
n=1

an is convergent and by our assumption,
∞∑
n=1

a−n is convergent. It follows

that |an| is convergent which is a contradiction. Hence our assumption is wrong.

Thus
∞∑
n=1

a−n must have infinite number of positive terms.

Similarly assume that
∞∑
n=1

a+n has only finite number of terms. Since

∞∑
n=1

|an| =

∞∑
n=1

(a+n + a−n )

≤
∞∑
n=1

(a−n − a+n ) + 2

∞∑
n=1

a+n

= (−1)

∞∑
n=1

an + 2

∞∑
n=1

a+n .
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Since
∞∑
n=1

an is convergent, we have (−1)
∞∑
n=1

an is also convergent.

By our assumption
∞∑
n=1

a+n is convergent.

It follows that
∞∑
n=1
|an| is convergent, which is a contradiction.

Hence
∞∑
n=1

a+n must have infinite number of positive terms.

Lemma : The series
∞∑
n=1

a+n and
∞∑
n=1

a−n are unbounded below.

Proof : We have
∞∑
n=1

a−n is a series of non-positive terms and so it is monotone decreas-

ing.

If the series
∞∑
n=1

a−n is bounded below, then by monotone convergence theorem, the series

will converge which is a contradiction.

Thus the series
∞∑
n=1

a−n is unbounded below.

Similarly we can prove that
∞∑
n=1

a+n + is unbounded below.

Theorem : A semi-convergent series
∞∑
n=1

an, the terms can be rearranged so that the

re-arranged series diverges to ∞.

Proof : In this proof we shall denote un = a+n and vn = a−n . Then clearly un and vn

are non-negative real numbers.

Now we make a re-arrangement of
∞∑
n=1

an as follows.

(u1 + u2 + · · ·+ um1)v1 + (um1+1 + um1+2 + · · ·+ um2)

v2 + (um2+1 + um2+2 + · · ·+ um3)v3 + · · ·

where a group of positive terms is followed by a single negative term.

We denote the re-arranged series as
∞∑
n=1

bn and let Sn denote the sequence of partial

sums of
∞∑
n=1

bn.

Since
∞∑
n=1

un is divergent, its sequence of partial sums is unbounded.

Let us choose m1 so large that u1 + u2 + · · ·+ um1 > 1 + v1.

Now choose m2 > m1 such that

u1 + u2 + · · ·+ um1 + um1+1 + um1+2 + · · ·+ um2 > 2 + v1 + v2.
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In general, choose mn > mn−1 such that

u1+u2+· · ·+um1+um1+1+um1+2+· · ·+um2+· · ·+umn > n+v1+v2+· · ·+vn for n ∈ N.

Since each of the partial sums Sm1+1, Sm2+2, · · · of the rearranged series, whose last

term is a negative term −vn, is greater than n, these partial sums are unbounded above

and hence the series
∞∑
n=1

bn diverges to ∞.

Theorem : The terms of a semi-convergent series
∞∑
n=1

an can be rearranged so that the

rearranged series diverges to −∞.

Proof : The non negative real numbers un and vn are defined as in the proof of previous

theorem.

Here we make another re-arrangement of as follows.

(−v1 − v2− · · · − vm1) + u1 + (vm1+1 − vm1+2 − · · · − vm2)

+u2 + (−vm2+1 − vm2+2 − · · · − vm3) + u3 + · · ·

where a group of negative terms is followed by a single positive term.

We denote the re-arranged series as
∞∑
n=1

bn and let Sn denote the sequence of partial

sum of
∞∑
n=1

bn.

Since
∞∑
n=1

vn is divergent, its sequence of partial sums is unbounded.

Let us choose m1 so large that −v1 − v2 − · · · − vm1 < 1− u1.

Now choose m2 > m1 such that

−v1 − v2 · · · − vm1 − vm1+1 − vm1+2 − · · · − vm2 < 2− u1 − u2.

In general, choose mn > mn−1 such that

−v1−v2−· · ·−vm1−vm1+1−vm1+2−· · ·−vm2−· · ·−vmn < n−u1−u2−· · ·−un for n ∈ N.

Since each of the partial sums Sm1+1, Sm2+2, · · · of the rearranged series
∞∑
n=1

bn, whose

last term is a positive term un is less than n, these partial sums are unbounded below.

Hence the re-arranged series
∞∑
n=1

bn diverges to ∞.
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Theorem (Riemanns re-arrangement theorem) : Let
∞∑
n=1

an be a semi-convergent series

and let r ∈ R. Then there exists a rearrangement of the terms of
∞∑
n=1

an that converges

to r.

Proof : The non negative real numbers un and vn are defined as in the proof of previous

theorem.

Here we make another re-arrangement of
∞∑
n=1

an as follows.

Choose firstm1 positive terms such that their sum exceeds r. i.e. (u1+u2+· · ·+um1) > r.

Then add first m2 negative terms such that the sum is less than r.

i.e. (u1 + u2 + · · ·+ um1) + (−vm1+1 − vm1+2 − · · · − vm2) < r..

Again add next m3 positive terms so that the sum exceeds r.

i.e. (u1+u2+· · ·+um1)+(−vm1+1−vm1+2−· · ·−vm2)+(um2+1+um2+2+· · ·+um3) > r.

Next we add m4 negative terms so that the sum is less than r. i.e.

(u1 + u2 + · · ·+ um1) + (−vm1+1 − vm1+2 − · · · − vm2)

+(um2+1 + um2+2 + · · ·+ um3) + (−vm1+1 − vm1+2 − · · · − vm4) < r.

We continue the above process, where a group of positive terms is followed by another

group of negative terms.

We denote the re-arranged series as
∞∑
n=1

bn and let Sn denote the sequence of partial

sum of
∞∑
n=1

bn.

We can see that the partial sums Sm1+m2+m3+· · · of the rearranged seris
∞∑
n=1

bn brackets

the real number r.

We have un → 0 and vn → 0 as n→∞.

Hence for given ε > 0, there exists a natural number N such that |Sn−r| < ε for n ≥ N .

ThusSn → r as n→∞.

Hence the rearranged series
∞∑
n=1

bn converges to the real number r.
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