International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 249-256

A NOTE ON SEMI- CONVERGENT SERIES

SREEJA S. NAIR¹ AND DR. V. MADHUKAR MALLAYYA²

¹ Assistant Professor of Mathematics, Govt. Arts College, Thiruvananthapuram, Kerala, India ² Former Professor and Head, Department of Mathematics, Mar Ivanios College, Thiruvananthapuram, India

Abstract

In this paper we shall give some properties of a semi-convergent series. We also distinguish a semi- convergent and an absolutely convergent series.

1. Introduction

The study of infinite series includes two important class of series namely, absolute convergent series and conditionally convergent series. A conditionally convergent series is also named as a semi- convergent series. The study of a semi-convergent series plays a vital role in mathematical analysis. Here we shall prove the re-arrangement theorems for a semi-convergent series.

Definition 1: An **infinite series** is a sum of infinite number of terms $a_1 + a_2 + a_3 + \cdots$. An infinite series is usually denoted by $\sum_{n=1}^{\infty} a_n$. If the sum of infinite number of terms is a finite number, say S, then we say that the

If the sum of infinite number of terms is a finite number, say S, then we say that the series $\sum_{n=1}^{\infty} a_n$ is **convergent** and S is called the **sum** of the series.

© http://www.ascent-journals.com

We denote it as $\sum_{n=1}^{\infty} a_n = S$. If $\sum_{n=1}^{\infty} a_n = \pm \infty$, we say that the series is **divergent**. **Definition 2** : An alternating series is of the form $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ where $a_n > 0$. **Definition 3** : The **sequence of partial sums** of the series $\sum_{n=1}^{\infty} a_n$ is the sum to nterms of the series. It is denoted by S_n . That is $S_n = \sum_{n=1}^{\infty} a_k$. **Theorem** : A series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if its sequence of partial sums S_n is convergent. **Definition 4** : A series $\sum_{n=1}^{\infty} a_n$ is called an **absolutely convergent** series, if the series of positive terms $\sum_{n=1}^{\infty} |a_n|$ is convergent.

If a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then the series itself is also convergent. Example :

1. The series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p}$ where p > 1

2. The series
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)}$$
.

Definition 5: A series $\sum_{n=1}^{\infty} a_n$ is called a **semi-convergent (conditionally convergent) gent)** series , if the series $\sum_{n=1}^{\infty} a_n$ is convergent, but the series of positive terms $\sum_{n=1}^{\infty} |a_n|$ is not convergent. **Example** : The series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p}$ where $0 \le p \le 1$. **Definition 6** : Let $\sum_{n=1}^{\infty} a_n$ be a series of positive and negative terms. Define

$$a_n^+ = \begin{cases} a_n, & \text{if } a_n > 0\\ 0, & \text{if } a_n \le 0 \end{cases}$$
$$a_n^- = \begin{cases} -a_n, & \text{if } a_n < 0\\ 0, & \text{if } a_n \ge 0 \end{cases}$$

Then the series $\sum_{n=1}^{\infty} a_n^+$ is called the **series of positive terms** and series $\sum_{n=1}^{\infty} a_n^-$ is called the series of negative terms

It follows that $a_n = a_n^+ - a_n^-$

$$|a_n| = a_n^+ + a_n^-$$

That is $a_n^+ = \frac{|a_n| + a_n}{2}, \quad a_n^- = \frac{|a_n| - a_n}{2}$ **Note** : For the series $\sum_{n=1}^{\infty} a_n$, the series $\sum_{n=1}^{\infty} a_n^+$ is called the series of **positive terms** and the series $\sum_{n=1}^{\infty} a_n^-$ is called the series of **negative terms**.

Theorem : For an absolutely convergent series, the series $\sum_{n=1}^{\infty} a_n^+ + and \sum_{n=1}^{\infty} a_n^-$ are convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series. Then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ are convergent.

Let
$$\sum_{n=1}^{\infty} a_n = S$$
 and $\sum_{n=1}^{\infty} |a_n| = T$.

Let S_n and T_n be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ respectively. Let P_n and Q_n denote the sequence of partial sums of $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ respectively. Then we have $S_n = P_n - Q_n$ and $T_n = P_n + Q_n$. That is $P_n = \frac{T_n + S_n}{2}$ and $Q_n = \frac{T_n - S_n}{2}$.

Now $\lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{T_n + S_n}{2} = \lim_{n \to \infty} \frac{1}{2} (T_n + S_n) = \frac{T + S}{2}$, a finite number. Also $\lim_{n \to \infty} Q_n = \lim_{n \to \infty} \frac{T_n - S_n}{2} = \lim_{n \to \infty} \frac{1}{2} (T_n - S_n) = \frac{T - S}{2}$, a finite number. Hence the sequence of partial sums of $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are convergent.

Thus the two series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are convergent.

Theorem : For a semi-convergent series $\sum_{n=1}^{\infty} a_n$, the two series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are divergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be a semi-convergent series. Then $\sum_{n=1}^{\infty} a_n$ is convergent, but $\sum_{n=1}^{\infty} |a_n|$ is not convergent Let $\sum_{n=1}^{\infty} a_n = S$, $\sum_{n=1}^{\infty} |a_n| = \infty$.

Let S_n and T_n be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ respectively. Let $\lim_{n \to \infty} S_n = S$. We have $\lim_{n \to \infty} T_n = \infty$.

Let P_n and Q_n denote the sequence of partial sums of $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ respectively. Then we have $S_n = P_n - Q_n$ and $T_n = P_n + Q_n$. That is $P_n = \frac{T_n + S_n}{2}$ and $Q_n = \frac{T_n - S_n}{2}$. Now

$$\lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{T_n + S_n}{2} = \lim_{n \to \infty} \frac{1}{2} (T_n + S_n) = \frac{\infty + S}{2} = \infty$$

Also

$$\lim_{n \to \infty} Q_n = \lim_{n \to \infty} \frac{T_n - S_n}{2} = \lim_{n \to \infty} \frac{1}{2} (T_n - S_n) = \frac{\infty - S}{2} = \infty$$

Hence the sequence of partial sums of $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are divergent.

Thus the two series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are divergent.

Lemma: For a semi-convergent series $\sum_{n=1}^{\infty} a_n$, the two series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ have infinitely many positive terms.

Proof : Assume that $\sum_{n=1}^{\infty} a_n^-$ has only a finite number of positive terms. Then

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} (a_n^+ + a_n^-)$$

$$\leq \sum_{n=1}^{\infty} (a_n^+ - a_n^-) + 2 \sum_{n=1}^{\infty} a_n^-$$

$$= \sum_{n=1}^{\infty} a_n + 2 \sum_{n=1}^{\infty} a_n^-$$

We have $\sum_{n=1}^{\infty} a_n$ is convergent and by our assumption, $\sum_{n=1}^{\infty} a_n^-$ is convergent. It follows that $|a_n|$ is convergent which is a contradiction. Hence our assumption is wrong. Thus $\sum_{n=1}^{\infty} a_n^-$ must have infinite number of positive terms.

Similarly assume that $\sum_{n=1}^{\infty} a_n^+$ has only finite number of terms. Since

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} (a_n^+ + a_n^-)$$

$$\leq \sum_{n=1}^{\infty} (a_n^- - a_n^+) + 2 \sum_{n=1}^{\infty} a_n^+$$

$$= (-1) \sum_{n=1}^{\infty} a_n + 2 \sum_{n=1}^{\infty} a_n^+.$$

Since $\sum_{n=1}^{\infty} a_n$ is convergent, we have $(-1) \sum_{n=1}^{\infty} a_n$ is also convergent. By our assumption $\sum_{n=1}^{\infty} a_n^+$ is convergent. It follows that $\sum_{n=1}^{\infty} |a_n|$ is convergent, which is a contradiction. Hence $\sum_{n=1}^{\infty} a_n^+$ must have infinite number of positive terms. **Lemma**: The series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ are unbounded below. **Proof**: We have $\sum_{n=1}^{\infty} a_n^-$ is a series of non-positive terms and so it is monotone decreasing. If the series $\sum_{n=1}^{\infty} a_n^-$ is bounded below, then by monotone convergence theorem, the series will converge which is a contradiction. Thus the series $\sum_{n=1}^{\infty} a_n^-$ is unbounded below. Similarly we can prove that $\sum_{n=1}^{\infty} a_n^+$ is unbounded below. **Theorem** : A semi-convergent series $\sum_{n=1}^{\infty} a_n$, the terms can be rearranged so that the re-arranged series diverges to ∞ .

Proof: In this proof we shall denote $u_n = a_n^+$ and $v_n = a_n^-$. Then clearly u_n and v_n are non-negative real numbers.

Now we make a re-arrangement of $\sum_{n=1}^{\infty} a_n$ as follows.

$$(u_1 + u_2 + \dots + u_{m1})v_1 + (u_{m1+1} + u_{m1+2} + \dots + u_{m2})$$
$$v_2 + (u_{m2+1} + u_{m2+2} + \dots + u_{m3})v_3 + \dots$$

where a group of positive terms is followed by a single negative term.

We denote the re-arranged series as $\sum_{n=1}^{\infty} b_n$ and let S_n denote the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$. Since $\sum_{n=1}^{\infty} u_n$ is divergent, its sequence of partial sums is unbounded. Let us choose m_1 so large that $u_1 + u_2 + \cdots + u_{m1} > 1 + v_1$.

Now choose $m_2 > m_1$ such that

$$u_1 + u_2 + \dots + u_{m1} + u_{m1+1} + u_{m1+2} + \dots + u_{m2} > 2 + v_1 + v_2.$$

In general, choose $m_n > m_{n-1}$ such that

$$u_1 + u_2 + \dots + u_{m1} + u_{m1+1} + u_{m1+2} + \dots + u_{m2} + \dots + u_{mn} > n + v_1 + v_2 + \dots + v_n$$
 for $n \in N$.

Since each of the partial sums $S_{m1+1}, S_{m2+2}, \cdots$ of the rearranged series, whose last term is a negative term $-v_n$, is greater than n, these partial sums are unbounded above and hence the series $\sum_{n=1}^{\infty} b_n$ diverges to ∞ .

Theorem : The terms of a semi-convergent series $\sum_{n=1}^{\infty} a_n$ can be rearranged so that the rearranged series diverges to $-\infty$.

Proof: The non negative real numbers u_n and v_n are defined as in the proof of previous theorem.

Here we make another re-arrangement of as follows.

$$(-v_1 - v_2 - \dots - v_{m1}) + u_1 + (v_{m1+1} - v_{m1+2} - \dots - v_{m2}) + u_2 + (-v_{m2+1} - v_{m2+2} - \dots - v_{m3}) + u_3 + \dots$$

where a group of negative terms is followed by a single positive term.

We denote the re-arranged series as $\sum_{n=1}^{\infty} b_n$ and let S_n denote the sequence of partial sum of $\sum_{n=1}^{\infty} b_n$. Since $\sum_{n=1}^{\infty} v_n$ is divergent, its sequence of partial sums is unbounded. Let us choose m_1 so large that $-v_1 - v_2 - \cdots - v_{m1} < 1 - u_1$. Now choose $m_2 > m_1$ such that

$$-v_1 - v_2 \cdots - v_{m1} - v_{m1+1} - v_{m1+2} - \cdots - v_{m2} < 2 - u_1 - u_2$$

In general, choose $m_n > m_{n-1}$ such that

$$-v_1 - v_2 - \dots - v_{m1} - v_{m1+1} - v_{m1+2} - \dots - v_{m2} - \dots - v_{mn} < n - u_1 - u_2 - \dots - u_n \text{ for } n \in N.$$

Since each of the partial sums $S_{m1+1}, S_{m2+2}, \cdots$ of the rearranged series $\sum_{n=1}^{\infty} b_n$, whose last term is a positive term u_n is less than n, these partial sums are unbounded below. Hence the re-arranged series $\sum_{n=1}^{\infty} b_n$ diverges to ∞ . **Theorem** (Riemanns re-arrangement theorem) : Let $\sum_{n=1}^{\infty} a_n$ be a semi-convergent series and let $r \in R$. Then there exists a rearrangement of the terms of $\sum_{n=1}^{\infty} a_n$ that converges to r.

Proof: The non negative real numbers u_n and v_n are defined as in the proof of previous theorem.

Here we make another re-arrangement of $\sum_{n=1}^{\infty} a_n$ as follows.

Choose first m_1 positive terms such that their sum exceeds r. i.e. $(u_1+u_2+\cdots+u_{m_1}) > r$. Then add first m_2 negative terms such that the sum is less than r.

i.e. $(u_1 + u_2 + \dots + u_{m1}) + (-v_{m1+1} - v_{m1+2} - \dots - v_{m2}) < r$.

Again add next m_3 positive terms so that the sum exceeds r.

i.e. $(u_1+u_2+\cdots+u_{m1})+(-v_{m1+1}-v_{m1+2}-\cdots-v_{m2})+(u_{m2+1}+u_{m2+2}+\cdots+u_{m3}) > r$. Next we add m_4 negative terms so that the sum is less than r. i.e.

$$(u_1 + u_2 + \dots + u_{m1}) + (-v_{m1+1} - v_{m1+2} - \dots - v_{m2}) + (u_{m2+1} + u_{m2+2} + \dots + u_{m3}) + (-v_{m1+1} - v_{m1+2} - \dots - v_{m4}) < r$$

We continue the above process, where a group of positive terms is followed by another group of negative terms.

We denote the re-arranged series as $\sum_{n=1}^{\infty} b_n$ and let S_n denote the sequence of partial sum of $\sum_{n=1}^{\infty} b_n$.

We can see that the partial sums $S_{m1+m2+m3} + \cdots$ of the rearranged seris $\sum_{n=1}^{\infty} b_n$ brackets the real number r.

We have $u_n \to 0$ and $v_n \to 0$ as $n \to \infty$.

Hence for given $\epsilon > 0$, there exists a natural number N such that $|S_n - r| < \epsilon$ for $n \ge N$. Thus $S_n \to r$ as $n \to \infty$. Hence the rearranged series $\sum_{n=1}^{\infty} b_n$ converges to the real number r.

References

[1] Knopp Konra, Theoryand Application of Infinite Series, Blackie and Son Limited (London and Glasgow).

- [2] Hardy G. H., A Course of Pure Mathematics, Cambridge at the University Press, (Tenth edition), (1963).
- [3] Knopp K., Infinite Sequences and Series, Dover, (1956).
- [4] Apostol Tom M., Mathematical Analysis, Narosa Publishing House, (Second Edition), ISBN 81-85015-66.
- [5] Galanor Stewart, Reimann's rearrangement theorem, mathematics teacher, 80(8), (Novermber 1987), 675-681.