FIXED POINT THEOREMS VIA THE CONCEPT SET S_{t} IN 2-METRIC SPACES

MADHU SINGH ${ }^{1}$, NAVAL SINGH ${ }^{2}$ AND OM PRAKASH CHAUHAN ${ }^{3}$
${ }^{1}$ Department of Mathematics, VNS Engineering College Bhopal, (M.P) India
E-mail: madhusingh2871@gmail.com.
${ }^{2}$ Department of Mathematics, Govt. Science and Commerce College Benazeer, Bhopal, (M.P.) India
E-mail: drsinghnaval12@gmail.com
${ }^{3}$ Department of Applied Mathematics, Jabalpur Engineering College, Jabalpur, (M.P.) India
E-mail: chauhaan.op@gmail.com

Abstract

2- metric spaces is an attractive nonlinear generalization of metric spaces which was studied in details by Gahler [2]. In this note some common fixed point results in 2 - metric spaces are obtained. In the process, some previously known results in the context of 2-metric spaces are generalized and improved. As an application of the concept of E_{α} given by Rathore et al. [18]. At the end some open problems are suggested.

1. Introduction and Preliminaries

Kannan [9] introduced a set $S_{a}=\{z \in X ; \rho(z, T z) \leq a\}$ for any positive number a and a self-mapping T of a metric space X with metric ρ.

Key Words and Phrases : Fixed point, 2-metric Space, Contractive conditions.
2010 AMS Subject Classification : $47 \mathrm{H} 10,54 \mathrm{H} 25$.
(c) http: //www.ascent-journals.com

Using the notation of the set S_{a}, he proved certain properties of the set S_{a} and also established the well known Banach fixed point theorem [13]. Pal M. and Pal M.C. [17] introduced a set E_{α} for self mapping in different way than that of Kannan [9]. They obtained some properties of the set E_{α} and proved some results of fixed points without using iteration method. Rathore M. S., Singh M., Rathore S. and Singh N. [18] defined the set E_{α} considering two self mappings and established all properties stated in [17]. Recently Lahiri, B.K., Das P. and Dey L. K. [11] proved an analogue of Cantor intersection theorem for complete 2-metric space and defined set S_{t}. Further they observed that the intersection theorem along with the idea of a set S_{t} may be conventionally used to prove Banach fixed point theorem in 2-metric space. Later on, some other fixed point theorem have also been obtained by them.

2. Definitions and Preliminaries

Definition 2.1 [6]: A sequence $\left\{x_{n}\right\}$ in 2-metric space (X, σ) is said to converge to $x \in X$ if for any $a \in X, \sigma\left(x_{n}, x, a\right) \rightarrow 0$ as $n \rightarrow \infty$.
i.e. $x_{n} \rightarrow x$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 2.2 [6] : A sequence $\left\{x_{n}\right\}$ in 2-metric space (X, σ) is said to be a Cauchy sequence if for any $a \in X, \sigma\left(x_{m}, x_{n}, a\right) \rightarrow 0$ as $m, n \rightarrow \infty$.
Definition $2.3[6,7]$: A 2-metric space (X, σ) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges to a point of X.
Definition 2.4: A 2-metric space (X, σ) is said to be compact if every sequence $\left\{x_{n}\right\}$ in X has a convergent sub-sequence.

Theorem 2.1 [11] : Suppose that (X, σ) is a complete 2-metric space. If $\left\{F_{n}\right\}$ is any decreasing sequence (i.e, $F_{n+1} \subset F_{n} \forall n \in N$) of 2-closed sets with $\delta_{a}\left(F_{n}\right) \rightarrow 0$ as $n \rightarrow \infty \forall a \in X$ then $\cap_{n=1}^{\infty} F_{n}$ is non empty and contains at most one point.
In our subsequent discussion we need a set S_{t} due to [11] which is defined as follows:
Definition 2.5 : Let (X, ρ) be 2-metric space and $T: X \rightarrow X$ be a mapping. For $t>0$ define

$$
S_{t}=\{x \in X ; \sigma(x, T x, y) \leq t \forall y \in X\} .
$$

3. Main Result

Theorem 3.1 : Let (X, σ) be a 2-metric space and $T: X \rightarrow X$ be a continuous
mapping such that

$$
\begin{equation*}
\sigma(T x, T y, a) \leq \alpha \sigma(x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a) \tag{3.1}
\end{equation*}
$$

where α, β, γ are non-negative real numbers such that $\alpha+\beta+\gamma<1, \quad \forall x, y \in X$. Then T has a unique fixed point.
Proof: Let $\left\{t_{n}\right\}$ be a decreasing sequence of positive numbers converging to zero. Clearly $S_{t_{n+1}} \subseteq S_{t_{n}}, \mathrm{n}=1,2,3 \ldots$
Clearly $S_{t_{n}}(\mathrm{n}=1,2, \ldots)$ is closed.
Now we shall show that $\partial\left(S_{t_{n}}\right) \rightarrow 0$ as $n \rightarrow 0$. For any $x, y \in S_{t_{n}}$, and $a \in X$, we have

$$
\begin{aligned}
\sigma(x, y, a) & \leq \sigma(x, T x, a)+\sigma(x, y, T x)+\sigma(T x, y, a) \\
& \leq 2 t_{n}+\sigma(T x, y, a) \\
& \leq 2 t_{n}+\sigma(T x, T y, a)+\sigma(T x, y, T y)+\sigma(T y, y, a) \\
& \leq 4 t_{n}+\sigma(T x, T y, a) \\
& \leq 4 t_{n}+\alpha \sigma(x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
(1-\alpha) \sigma(x, y, a) \leq 4 t_{n}+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a) . \tag{3.2}
\end{equation*}
$$

First step:
From (3.1) and (3.2) we have

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+\beta\{\sigma(x, T y, T x)+\sigma(x, T x, a)+\sigma(T x, T y, a)\} \\
& +\gamma\{\sigma(y, T x, T y)+\sigma(y, T y, a)+\sigma(T y, T x, a)\}
\end{aligned}
$$

or

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+\beta\left\{2 t_{n}+\sigma(T x, T y, a)\right\}+\gamma\left\{2 t_{n}+\sigma(T x, T y, a)\right\} \\
& =4 t_{n}+2(\beta+\gamma) t_{n}+(\beta+\gamma) \sigma(T x, T y, a) \\
& \leq 4 t_{n}+2(\beta+\gamma) t_{n}+(\beta+\gamma)\{\alpha \sigma(x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)\} \\
& \leq 4 t_{n}+2(\beta+\gamma) t_{n}+(\beta+\gamma)[\alpha\{\sigma(x, y, T x)+\sigma(x, T x, a)+\sigma(T x, y, a)\} \\
& +\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)]
\end{aligned}
$$

$$
\begin{align*}
&(1-\alpha) \sigma(x, y, a)=4 t_{n}+2(\beta+\gamma) t_{n}+(\beta+\gamma)\left[\alpha\left\{2 t_{n}+\sigma(T x, y, a)\right\}\right. \\
&+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)] \\
&=4 t_{n}+2(\beta+\gamma) t_{n}+2 \alpha(\beta+\gamma) t_{n} \\
&+(\beta+\gamma)\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\} \\
&(1-\alpha) \sigma(x, y, a) \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+(\beta+\gamma)\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\} . \tag{3.3}
\end{align*}
$$

Second step:
From (3.1) and (3.3), we have

$$
\begin{aligned}
(1-\alpha) \sigma & (x, y, a) \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n} \\
& +(\beta+\gamma)[\beta\{\sigma(x, T y, T x)+\sigma(x, T x, a)+\sigma(T x, T y, a)\} \\
& +(\alpha+\gamma)\{\sigma(y, T x, T y)+\sigma(y, T y, a)+\sigma(T y, T x, a)\}] \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n} \\
& +(\beta+\gamma)\left[\beta\left\{2 t_{n}+\sigma(T x, T y, a)\right\}+(\alpha+\gamma)\left\{2 t_{n}+\sigma(T x, T y, a)\right\}\right] \\
& =4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n} \\
& +(\beta+\gamma)\left[2(\alpha+\beta+\gamma) t_{n}+\beta \sigma(T x, T y, a)+(\alpha+\gamma) \sigma(T x, T y, a)\right]
\end{aligned}
$$

or

$$
\begin{align*}
&(1-\alpha) \sigma(x, y, a) \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
&+(\beta+\gamma)(\alpha+\beta+\gamma) \sigma(T x, T y, a) \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
&+(\beta+\gamma)(\alpha+\beta+\gamma)\{\alpha \sigma(x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)\} \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
&+(\beta+\gamma)(\alpha+\beta+\gamma)[\alpha\{\sigma(x, y, T x)+\sigma(x, T x, a)+\sigma(T x, y, a)\} \\
&+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)] \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
&+(\beta+\gamma)(\alpha+\beta+\gamma)\left[\alpha\left\{2 t_{n}+\sigma(T x, y, a)\right\}+\beta \sigma(x, T y, a)+\gamma(y, T x, a)\right] \\
&(1-\alpha) \sigma(x, y, a) \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n}
\end{align*}
$$

Third step:
From (3.1) and (3.4) it follows that

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) \leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)[\beta\{\sigma(x, T y, T x)+\sigma(x, T x, a)+\sigma(T x, T y, a)\} \\
+ & (\alpha+\gamma)\{\sigma(y, T x, T y)+\sigma(y, T y, a)+\sigma(T y, T x, a)\}] \\
\leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
+ & (\beta+\gamma)(\alpha+\beta+\gamma)\left[\beta\left\{2 t_{n}+\sigma(T x, T y, a)\right\}\right. \\
+ & \left.(\alpha+\gamma)\left\{2 t_{n}+\sigma(T x, T y, a)\right\}\right] \\
= & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)\left[2(\alpha+\beta+\gamma) t_{n}+(\alpha+\beta+\gamma) \sigma(T x, T y, a)\right] \\
\leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
+ & 2(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{2}\{\alpha \sigma(x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)\}
\end{aligned}
$$

or

$$
\begin{align*}
(1-\alpha) \sigma(x, y, a) \leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{2}[\alpha\{\sigma(x, y, T x)+\sigma(x, T x, a)+\sigma(T x, y, a)\} \\
+ & \beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)] \\
\leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
+ & 2(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n} \\
+ & (\beta+\gamma)(\alpha+\beta+\gamma)^{2}\left[2 \alpha t_{n}+\alpha \sigma(T x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)\right]
\end{aligned} \quad \begin{aligned}
(1-\alpha) \sigma(x, y, a) \leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& \quad+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n} \\
& \quad+(\beta+\gamma)(\alpha+\beta+\gamma)^{2}[\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\}] .
\end{align*}
$$

Fourth step:

From (3.1) and (3.5), we have

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+(\beta+\gamma)(\alpha+\beta+\gamma)^{2}[\beta\{\alpha(x, T y, T x) \\
& +\sigma(x, T x, a)+\sigma(T x, T y, a)\} \\
& +(\alpha+\gamma)\{\sigma(y, T x, T y)+\sigma(y, T y, a)+\sigma(T y, T x, a)\}] \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{2}\left[\beta\left\{2 t_{n}+\sigma(T x, T y, a)\right\}\right. \\
& \left.+(\alpha+\gamma)\left\{2 t_{n}+\sigma(T x, T y, a)\right\}\right]
\end{aligned}
$$

or

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{2}\left[2(\alpha+\beta+\gamma) t_{n}+(\alpha+\beta+\gamma) \sigma(T x, T y, a)\right]
\end{aligned}
$$

or

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{3} \sigma(\text { Tx,Ty,a) }
\end{aligned}
$$

or

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{3}\{\alpha \sigma(x, y, a)+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)\} \\
& \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{3}[\alpha\{\sigma(x, y, T x)+\sigma(x, T x, a)+\sigma(T x, y, a)\} \\
& +\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)]
\end{aligned}
$$

$$
\begin{gather*}
\leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n} \\
+(\beta+\gamma)(\alpha+\beta+\gamma)^{3}\left[\alpha\left\{2 t_{n}+\sigma(T x, y, a)\right\}+\beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a)\right] \\
\quad \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n} \\
+2 \alpha(\beta+\gamma)(\alpha+\beta+\gamma)^{3} \\
+(\beta+\gamma)(\alpha+\beta+\gamma)^{3}\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\} \\
(1-\alpha) \sigma(x, y, a) \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
\quad+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n} \\
 \tag{3.6}\\
\quad+(\beta+\gamma)(\alpha+\beta+\gamma)^{3}[\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)]
\end{gather*}
$$

Continuing in this way in $n^{t h}$ step, we get

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) & \leq 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& +2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{2} t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{3} t_{n}+\ldots \\
& +(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma)^{n-1} t_{n} \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{n-1}\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\}
\end{aligned}
$$

or

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) \leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& {\left[1+(\alpha+\beta+\gamma)+(\alpha+\beta+\gamma)^{2}+\ldots(\alpha+\beta+\gamma)^{n-2}\right] } \\
& +(\beta+\gamma)(\alpha+\beta+\gamma)^{n-1}\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
(1-\alpha) \sigma(x, y, a) \leq & 4 t_{n}+2(1+\alpha)(\beta+\gamma) t_{n}+2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n} \\
& \left\{1+(\alpha+\beta+\gamma)+(\alpha+\beta+\gamma)^{2}+\ldots\right\} \\
+ & (\beta+\gamma)(\alpha+\beta+\gamma)^{n-1}\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\}
\end{aligned}
$$

or

$$
\begin{aligned}
\sigma(x, y, a) \leq & \frac{4 t_{n}}{1-\alpha}+\frac{2(1+\alpha)(\beta+\gamma) t_{n}}{1-\alpha}+\frac{2(1+\alpha)(\beta+\gamma)(\alpha+\beta+\gamma) t_{n}}{(1-\alpha)\{1-(\alpha+\beta+\gamma)\}} \\
& +\frac{(\beta+\gamma)(\alpha+\beta+\gamma)^{n-1}}{1-\alpha}\{\beta \sigma(x, T y, a)+(\alpha+\gamma) \sigma(y, T x, a)\} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $\delta\left(S_{t_{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$. So $\left\{S_{t_{n}}\right\}$ is a sequence of sets such that
(i) $S_{t_{n}}$ is closed
(ii) $S_{t_{n+1}} \subseteq S_{t_{n}} \forall n=1,2,3 \ldots$
(iii) $\delta\left(S_{t_{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$

Hence $S_{t_{n}}$ contains exactly one point. Let $x_{0} \in \bigcap_{n=1}^{\infty} S_{t_{n}}$.
Then $\sigma\left(x_{0}, T x_{0}, a\right) \leq t_{n} \forall n=1,2,3 \ldots$ and $\forall a \in X$
$\Longrightarrow \sigma\left(x_{0}, T x_{0}, a\right)=0 \quad \forall a \in X$
$\Longrightarrow T x_{0}=x_{0}$.
Hence x_{0} is a fixed point of T.
To prove uniqueness, let u and v be two distinct fixed point of T, then for a point $a \in X$, $a \neq u$ or v,

$$
\begin{aligned}
\sigma(u, v, a) & =\sigma(T u, T v, a) \\
& \leq \alpha \sigma(u, v, a)+\beta \sigma(u, T v, a)+\gamma \sigma(v, T u, a) \\
& =\alpha \sigma(u, v, a)+\beta \sigma(u, v, a)+\gamma \sigma(v, u, a) \\
& =(\alpha+\beta+\gamma) \sigma(u, v, a)
\end{aligned}
$$

or
$\{1-(\alpha+\beta+\gamma)\} \sigma(u, v, a) \leq 0$.
which implies that $u=v$.
Hence T has a unique fixed point.
Remark 3.1: If $\beta=\gamma=0$, then we get result of B. K. Lahiri, Prafulananda Das and Lakshmi Kant Day [11].
If we put $\alpha=0$ in Theorem 3.1 then we get the following corollary.
Corollary 3.1: Let (X, σ) be a 2-metric space and $T: X \rightarrow X$ be a continuous mapping such that

$$
\begin{equation*}
\sigma(T x, T y, a) \leq \beta \sigma(x, T y, a)+\gamma \sigma(y, T x, a) \tag{3.7}
\end{equation*}
$$

where β, γ are non-negative real numbers such that $\beta+\gamma<1 \forall x, y \in X$. If we put $\beta=0$ in Theorem 3.1 then we get the following corollary
Corollary 3.2: Let (X, σ) be a 2 -metric space and $T: X \rightarrow X$ be a continuous mapping such that

$$
\begin{equation*}
\sigma(T x, T y, a) \leq \alpha \sigma(x, y, a)+\gamma \sigma(y, T x, a) \tag{3.8}
\end{equation*}
$$

where α, γ are non-negative real numbers such that $\alpha+\gamma<1 \quad \forall x, y \in X$.
If we put $\gamma=0$ in Theorem 3.1 then we get the following corollary.
Corllary 3.3 : Let (X, σ) be a 2-metric space and $T: X \rightarrow X$ be a continuous mapping such that

$$
\begin{equation*}
\sigma(T x, T y, a) \leq \alpha \sigma(x, y, a)+\beta \sigma(x, T y, a) \tag{3.9}
\end{equation*}
$$

where α, β are non-negative real numbers such that $\alpha+\beta<1 \quad \forall x, y \in X$.
Theorem 3.2: Let (X, σ) be a 2 -metric space and $T: X \rightarrow X$ be a continuous mapping such that

$$
\begin{equation*}
\rho(T x, T y, a) \leq \alpha[\sigma(x, T y, a)+\sigma(y, T x, a)]+\beta[\sigma(x, T x, a)+\sigma(y, T y, a)] \tag{3.10}
\end{equation*}
$$

where α, β, are non-negative reals such that $\alpha+\beta<1 \quad \forall x, y \in X$.
Then T has a unique fixed point.
Proof: Proof follows on similar lines of Theorem 3.1.
If we put $\alpha=0$ in Theorem 3.2 then we get following corollary.
Corollary 3.4: Let (X, σ) be a 2 -metric space and $T: X \rightarrow X$ be a continuous mapping such that

$$
\begin{equation*}
\sigma(T x, T y, a) \leq \beta[\sigma(x, T x, a)+\sigma(y, T y, a)] \tag{3.11}
\end{equation*}
$$

where β is a non-negative real number such that $\beta<1 \quad \forall x, y \in X$
If we put $\beta=0$ in Theorem 3.2 then we get following corollary.
Corollary 3.5 : Let (X, σ) be a 2 -metric space and $T: X \rightarrow X$ be a continuous mapping such that

$$
\begin{equation*}
\sigma(T x, T y, a) \leq \alpha[\sigma(x, T y, a)+\sigma(y, T x, a)] \tag{3.12}
\end{equation*}
$$

where α is non-negative real number such that $\alpha<1 \quad \forall x, y \in X$.

Open Problems

Under what conditions Theorem 3.1 and 3.2 can be extended to a pair of two self mappings, producing common fixed point.

Competing Interests

The authors declare that they have no competing interests.

Author's contribution

All authors contributed equally and significantly in writing this article.
All authors read and approved final manuscript.

References

[1] Boyd D. W., Wong J. S. W., Another proof of the contractive mapping principle, Canad. Math. Bull., 11 (1968), 605-606.
[2] Gahaler S., 2-Metrische Raume und ihre topologische struktur, Math. Nachr., 26(1963/64), 115-118.
[3] Gahaler S., White A., 2-Banach sapces, Math. Nachr., 42 (1969), 43-60.
[4] Gahaler S., Linear 2-Metrische Raume, Math. Nachr., 28 (1965), 1-43.
[5] Gahaler S., Uber die uniformisierbarkeit 2- metrischer Raume, Math. Nachr., 28 (1965), 235-244.
[6] Iseki K., Fixed point theorem in 2-metric spaces, math. Seminar Notes, Kobe Univ., 3 (1975), 133-136.
[7] Iseki K., Sharma P. L., Sharma B. K., Contractive type mapping on 2-metric spaces, math. Japonicae, 21 (1976), 67-70.
[8] Iseki K., Fixed point theorems in Banach spaces, math. Seminar Notes, Kobe Univ., 2 (1976), 11-13.
[9] Kannan R., Some results on fixed points (II), Amer Math Monthly, 76 (1969), 405.
[10] Kannan R., On certain sets and fixed point theorems, Rev. Roum. Math. Pures et. Appl., XIV(1)(1969), 51-54.
[11] Lahiri B. K., Das P., Dey L. K., Contors Theorem in 2 - metric space and its application to fixed point problem, no.1, Taiwan Journal of mathematics, 15 (2011), 337-352.
[12] Liu Z., Fenf C., Chun S., Fixed and periodic point theorems in 2- metric spaces, Nonlinear Funct. Anal. Appl., 8(4) (2003), 497-505.
[13] Lusternik L. A., Soblev V. S., Elements of Functional Analysis, New york (1961), 27.
[14] Mashadi A. O., Bin Md. T., Fixed point theorems in 2- metric spaces, (Malayan) Bull. Malaysian Math.Soc., 22(1) (1999), 11-22.
[15] Naidu S. V. R., Prasad J. R., Fixed point theorems in 2- metric spaces, Indian J.Pure.Appl. Math., 17(8) (1986), 974-993.
[16] Naidu S. V. R., Some fixed point theorems in metric and 2- metric spaces, Int. J. Math. Sci., 28(11) (2001), 625-636.
[17] Pal M., Pal M. C., On certain sets and fixed point theorem Bull. Cal, Math Soc, 85 (1993), 301-310.
[18] Rathore M. S., Singh M., Rathore S., Singh N., Concept of the set E_{α} and common fixed points Bull. Cal. Math. Soc., 94(4) (2002), 259-270.
[19] Rhoades B. E., Contractive type mappings on a 2- metric space, Math. Nachr., 91 (1979), 451-455.
[20] Tan D., Liu Z., Kim J. K., Common fixed points for compatible mappings of type(P) in 2- metric spaces, Nonlinear Funct. Anal. Appl., 8(2) (2003), 215-232.

