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Abstract

In the present paper, a subclass of meromorphic multivalent functions is defined by
using fractional differ-integral operators. Coefficients estimates, radii of starlikeness
and convexity are obtained. Also convolution property, neighborhoods and convex
linear combination for the class G;‘(/\, W, v, M, ¢, ) are also established.

1. Introduction
Let L(p) be the class of all functions of the form:

o0

f(z)=2"P+ Z apz", pe N={1,2,---}, (1.1)
n=p+1
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which are analytic and meromorphic multivalent in the punctured unit disk U* = {z €

C: 0 < |z| < 1} consider a subclass Gp of the class L(p) of the functions of the form:

f2)=27= > apnz", (an>0). (1.2)

n=p+1

A function f € G) is meromorphic p-valent starlike function of order ¢(0 < ¢ < p) if

o () -
R{f(z)}>go, 0<p<pzeU").

A function f € G, is meromorphic p-valent convex function of order p(0 < ¢ < p) if

—Re{zﬁég) +1} >0, (0<p<p; z€U).

The convolution (or Hadamard product) of two functions f given by (1.2) and

g(z) =2zP— Z bnzna (bn >0, pEN),

n=p+1
is defined by
(fx9) () =2"7"= Y anby= (9% f)(2). (1.3)
n=p+1

In this paper, we discuss and study a subclass of meromorphic p-valent functions by
making use of the fractional differ-integral operator contained in:

Definition 1 [1] : The fractional differ-integral operator is defined as follows:

et n DO, —p41 A0 040 £(2)](0 < A < 1)

Avn D(p+n)I(v+n)
Woz " f(z) = ] o . (1.4)
B bt g M7 £ ()] (00 < A < 0),
where Ja #7 §s the generalized fractional derivative operator of order A defined
To M f(2) = L4 / 171z — ) oFy (ML — o1 — A 1— L) f(t)de
0,z F(l _ )\) dz 0 ) ) B

0<A<1l,u,n€R, r€R" and r > (max{0,u} —n)), (1.5)

where f is an analytic function in a simply-connected region of the z-plane containing
the origin and multiplicity of (z — t) is removed by requiring log(z — t) to be real when

(z —t) > 0, provided further that

f(z) =0 ([2") (z = 0), (1.6)
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and I Z)‘ #01 g the generalized fractional integral operator of order —\ (—oo < A < 0)

defined by

—(Atp) 2z

z t

25 = S [0 =0 RO it = Do
A>0,u,n€R, re€R" and r > (max{0,u} —n)), (1.7)

where f is constrained and the multiplicity of (z — ¢)*~! is removed as above and 7 is

given by the order estimate (1.6). It follows from (1.5) and (1.6) that

Tt f(2) = T f (), (1.8)

2 2
and
13;5’“71 f(z) = 13;57” f(2), (1.9)

A A s . . . .
where J§7"" and I} are the familiar Owa-Saigo-Srivastava generalized fractional

derivative and integral operators (see, e.g., [4] and [9] see also [8]). Also
AAv,1 P
Joz T f(2) = Dzf(2), (0<A<1), (1.10)
and
Iy (2) = DI (), (A>0), (1.11)

where D2 and D;* are the familiar Owa-Srivastava fractional derivative and integral of
order )\, respectively (cf, Owa[3]; see also Srivastava and Owa[7]).

Furthermore, in terms of Gamma function, we have

J)\,u,v,nzk _ F(k} + n)F(k +n—pn+ U) ZkJrn*,ufl
0,2 T(k+n—plk+n—X+0) ’

0<A<1,u,m€RveR" and k> (max{0,u} — 7)), (1.12)
and
I)\ s v,nzk (k + 77) (k +n—pu+ U) Zk+177u71
Fk+n—pwI'k+n+A+0) ’
(A>0,u,m€ R,ve€RT and k> (max{0,u} —n)), (1.13)

Now using (1.2), (1.12) and (1.13) in (1.4), we find that

)\Hv ﬂ?f Z F)\uv,nan n’ (114)
n=p+1
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provided that —oo < A< 1,pu+v+n>A\pu>-nv>-nn1>0,peN,fcG),and

F)\”u’v’n _ (lu’ + 77)”"’17(1) + 77)n+p ) (115)
" (4041 =Nntp(Mntp

It may be worth noting that, by choosing t = A;n = 1 and p = 1, the operator
Wé\ #°%" f(z) reduces to the well-known Ruscheweyh derivative D* f(z) for meromorphic

univalent function [6].
In this paper, we shall study a subclass of (1.2) define below.
Definition 2 : The function f € Gp is in the class Gp(\, u, v, 7, ¢, @) if it satisfies the

condition:

22 AL, 05m £ NVI
(02— St
5.2 <1, (1.16)

2(Wk " f(2))

2 —
gy T2 e)

where 0 < c<1,0<a<l,pe N,—co< A< lL,u+v+n>Au>-nv>-—nand
n > 0.

Definition 3 : Let G,f denote the subclass of G}, defined by (1.2). Then we define a
subclass G} (X, i, v,7, ¢, ) by

G;(/\,u,v, N, ¢, a) = G; NGp(A, p,v,m, ¢, ).

2. Coefficient Estimates
In the following theorem, we obtain the necessary and sufficient condition for the func-
tion to be f € Gp in the class Gp (A, u, v, 1, ¢, a).
Theorem 1 : Assume that f € Gp be given by (1.2) and

o0

Z n[2n — a + T "a, < p[2p + o — d, (2.1)

n=p+1

where 0 < c<1,0<a<l,pe N,—co< A< lLu+v+n>Apu>-nv>-—nand
n > 0. Then f € Gp(\ p,v,1n,c, ).
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Proof : Let us assume that inequality (2.1) is true and let |z| = r < 1, then, we have

(=0)2(Wod " £(2)) — 22 (W f(2))"]
—|2 (W f(2)" + (2 — a)z(Wy " f(2))']

=plc—p—1)z"P+ Z (n 4 ¢ — 1)TpH00g,, 2"
n=p+1

o
—Iplp+a—-1)z27" + Z n(n — o+ 1Ty, 2"

n=p+1
o
< Z n[2n — o + TMa, — p[2p + o —¢] <0,
n=p+1

by hypothesis. Then by principle of maximum modulus theorem, f € Gp(X, p, v, 1, ¢, ).
Theorem 2 : Let f € Gf. Then f € G} (A, p,v,7,¢, ) if and only if

o0
Z n[2n — a + T a, < p[2p + o — d, (2.2)
n=p+1
where 0 < c<1,0<a<l,pe N,—co< A< lLu+v+n>Au>-nv>-—nand
n > 0.
Proof : In view of Theorem 1, it is sufficient to prove the “only if” part. Let us assume

that f € GZ()\,M,U,n,c, a). Then

Aspyv ”I " 00
(—c)z — w plc=p—1zP+ > nn+c— 1)I‘ VMg o
Woug " f(2)) B et »
e R e
ey @-az] P a1zt 3 a(n - ot DI,
Woz " f(2)) w5

Since Re(z) < |z| for all z, it follows that

o0
ple—p—1z"P+ 3 nln+c—1)Iy""a,zn
Re e

e~ < 1. (2.3)
pp+a—1DzP+ 3 nn—a+ )Tpt"a,zn
n=p+1

Now letting z — 17, through real values, so we can write (2.3) as

o0
Z n[2n — a + TMa, < p[2p + o — d.
n=p+1
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Finally, sharpness following if we take

1 p12p+a—c
f(z) = — - [ /\Lvnz”, n>p+1. (2.4)
22 n2n — a+ IR

Corollary 1 : If f defined by (1.2) is in the class G;r()\,,u,v,n,c, «), then

pl2p+ o —
]1“27“»’”777 ’

an n>p+1, pe N. (2.5)

Cn[2n—a+c

The equality in (2.5) is attained for the function f given by (2.4).

3. Convolution Property

In the following theorem, we obtain the Convolution (or Hadamard product) of the
functions f and g in the class G} (A, 1, v, 7, ¢, ).

Theorem 3 : Let f and g € G} (A, i1,v,n, ¢, ). Then (f * g) € G}f (A, p,v,m,w, ) for

1 = 1 =
_ - _ - n
f()_zp Z anz -, g(z)_zp Z bnz7
n=p+1 n=p+1
and
1 00
(f*g)=§— Z anbpz",
n=p+1
where

< n(a 4 2p)[2n — a + 2Tp*" 4 p(a — 2n)[2p + o — (]2
W=
n2n — a4 200" + pl2p + a — (2

Proof : Since f and g are in the class G;()\,,u, v, M, ¢, ) then

io: n[2n — o + cJTptv"

n=p+1 p2p+a—d =t (31)
and
i nj2n — a + cly """ by < 1. (3.2)
Wi pRrra—d -
We have to find the largest w such that
i n[2r;[;pa+—|—aw]_l“iv]ﬂw,n b1 33)

n=p+1
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By Cauchy Schwarz inequality, we get

00 LW

2 _ 1" U5
3 n2n—a+ 6]7” Vanby < 1. (3.4)
WSl prra—d

We want only to show that

n2n — o + w Tt n2n — a4 Tyt

b, < b,,.
p[2p + o — W] AnOn = p2p + o — ¢ @nOn

This equivalently to

—  [2n—a+2p+ a—u]
@nbn < 2n —a+w][2p+a—c]

From (3.4), we get
pl2p+ a —
n[2n — a + Jrytvn

Thus it is enough to show that

p[2p+ a — ¢ <[2n—a+c][2p+a—w]
n2n— a1 T S Pr—atwlRpta—d

which simplifies to

< n(o + 2p)[2n — a + 2In™"" + p(a — 2n)[2p + a — (2
B n[2n — o+ 2Oy + p[2p + a — o2 .

4. Neighborhoods

Following the earlier works on neighborhoods of analytic functions by Goodman [2] and
Ruscheweyh [5], we begin by introducing here the §-neighborhood of a function f € G;
of the form (1.2) by means of the definition below:

Ns(f)=R9€Gf :g(z)=27P— Z bpz" and Z nlan, — by <6,0<0<1
n=p+1 n=p+1
(4.1)

Particularly for the identity function e(z) = z7P, we have

Ns(e) =S ge G 1g(z) =27P - Z bpz" and Z nlby| <56,0<d<1,. (4.2)
n=p+1 n=p+1
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Definition 4 : A function f € G} is said to be in the class G} (A, 4, v,7, ¢, a) if there
exists function g € G+ A, b, v,m, ¢, ) such that

Z—1‘<1—a, (zeU*0<o<1).
Z

Theorem 4 : If g € G;‘()\,/,L,v,n, ¢, ) and

3[2(p+ 1) +a — Ipt

oc=1- 5 . (4.3)
(p+1)2(p+1) +a— ™™ —p2p —a+
Then Ns(g) C G (A, g, v,m, ¢, ).
Proof : Let f € Ns(g). Then we find from (4.1) that
o
Z nla, — by| <94,
n=p+1
which implies the coefficient inequality
S 5
Z an —bn| < ——, (n=p+1).
n=p+1 p_Fl
Since g € G;()\, W, v,1m, ¢, ), then by using Theorem 2
2 —
Z b < p2p—atd . (4.4)
n=p+1 )[2(p+1)+a_c]rn1 o
So that
> lan bl
an —b
‘f(z) - 1‘ _ np A - 512(p+ 1) + a — Uy .
9z 17 L s, EDRE+) eIt - pl2p - a+d

n=p+1

Hence by Definition 4 f € G;()\, w,v,1m, c,«) for o given by (4.3). This completes the

proof.

5. Convex Linear Combination
In next theorem, we obtain convex linear combination in the class G;{()\, [y Vs 1), Cy Q).

Theorem 5 : The class G;()\, W, v,1m, ¢, ) is closed under convex linear combination.
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Proof : Let f(z) and g(z) be in the class G,/ (X, u, v, 7, ¢, @), where

o [e.e]
f(z) =277~ Z apz" and g(z)=z"P — Z bnz".
n=p+1 n=p+1

We show the function

is also in the class G,/ (A, p, v, 7, ¢, ). Since for 0 <7 <1,

o0
V(z) = ?lp =Y fran+ (1= )baJe"
n=p+1
Then by Theorem 2, we have

o0

Z n[2n — a + TN ra, 4+ (1 — 7)by)
n=p+1

[e.e] e @]
=+ 3 nl2n—a+dD e, +(1-7) Y nf2n—a+ i,
n=p+1 n=p+1

<mpR2p+a—cd+ (1 -71)p2p+a—d=p2p+a—d.

Therefore, V(z) € GJf (A, i1, v,1, ¢, ).

6. Radii of Starlikeness and Convexity

In the next theorems, we discuss the radii of starlikeness and convexity.

Theorem 6 : Let f € G; (A, g, v,m, ¢, ), then f is p-valent meromorphic starlike of
order (0 < ¢ < p) in the disk |z| < r = r; where

1
_ _ Apv,m | ntp
= inf n(p —e)2n —a+ 'y 6.1)
n2ptl | p(n—¢+2p)[2p+a—d
The result is sharp for the function f given by (2.2).
Proof : It is sufficient to show that
2f'(z

but -

> (n+pag|z|"*P

2f'(2) + pf(2)| _ n=p+1

J— o0 .
L= > anlz[*?
n=p+1

f(z)
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Thus, (6.2) will be satisfied if

o0
>, (n+ p)an\ZI”“’

n=p+1
) S p—,
L= > anlz|**?
n=p+1
or if -
Z wan‘z|n+p <1. (6.3)
nept1 PTF
Since f € G} (A, 1, v,1, ¢, ), we have
00 A0
2 _ 1" LU,
Z n[2n —a+ I’y 0 <1,

WS plpta—d

Hence, (6.3) will true if

A7 b
(n—cp—|—2p)|zyn+p < n[2n — a + ]I

pP—¢ p[2p +a —

)

or equivalently

_ _ A 50,1)
2] < [n(p v)[2n —a+ 'y

n+p
, n>p+1
p(n—¢+2p)[2p+a— ]

which follows the result.
Theorem 7 : Let f € G; (A, p,v,m,¢,). Then f is p-valent meromorphic convex of

order ¢ (0 < ¢ < p) in the disk |z| < r = ry, where

1
. N Apv,m | ndp
ro = inf (p=¢)2n — o+l . (6.4)
n>p+1 | (n— @+ 2p)2p+ a — (]

The result is sharp for the function f given by (2.2).
Proof : It is sufficient to show that

21"(2)

Ty TP S (6.5)
but -

S>> n(n+p)ay|z|"P
"2+ p+ Df(2)| _ n=pi1 !

— (&)

p— 2 an|z|**P
n=p+1
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Thus (6.5) will be satisfied if
> n(n+ p)an|z"*?
n=p+1
) S b—@,

p— 2 anlz[*P
n=p+1

or if

Z ManMnﬂv <1. (6.6)
WS Ple—¢)

Since f € GJf (A, 1, v,1, ¢, ), we have

i n[2n —a + c]I‘;\L’”’U’"an <1

WS ppta—d

Hence, (6.6) will true if

)

n(n — P + 2])) ’Z‘ner < n[2n —a+ C]F?L,#,UW
p(p — ) - p2pta—d

or equivalently

1
p—p)2n—a+ C]Ff{’“’”’” P

zl <
2l < (n—9+2p)2p+a—c

, n=>p+1

which follows the result.
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