International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. II (August, 2016), pp. 67-78

ON A SUBCLASS OF MEROMORPHIC p-VALENT FUNCTIONS WITH FRACTIONAL CALCULUS OPERATORS

WAGGAS GALIB ATSHAN ${ }^{1}$, ALI HUSSEIN BATTOR ${ }^{2}$ AND NOOR DAHIR
ABBAS ${ }^{3}$
${ }^{1}$ Department of Mathematics,
Collage of Computer Science and Information Technology, University of Al-Qadisiya, Diwaniya-Iraq
${ }^{2,3}$ Department of Mathematics,
College of Education for Girls University of Kufa, Najaf-Iraq

Abstract

In the present paper, a subclass of meromorphic multivalent functions is defined by using fractional differ-integral operators. Coefficients estimates, radii of starlikeness and convexity are obtained. Also convolution property, neighborhoods and convex linear combination for the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ are also established.

1. Introduction

Let $L(p)$ be the class of all functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad p \in N=\{1,2, \cdots\}, \tag{1.1}
\end{equation*}
$$

Key Words : Meromorphic multivalent function, Differential operator, Convex combination, Convolution property, Neighborhoods, Radii of starlikeness and convexity.

AMS Subject Classification : 30C45.
(c) http: //www.ascent-journals.com
which are analytic and meromorphic multivalent in the punctured unit disk $U^{*}=\{z \in$ $C: 0<|z|<1\}$ consider a subclass G_{P} of the class $L(p)$ of the functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}-\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0\right) \tag{1.2}
\end{equation*}
$$

A function $f \in G_{p}$ is meromorphic p-valent starlike function of order $\varphi(0 \leq \varphi<p)$ if

$$
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\varphi, \quad\left(0 \leq \varphi<p ; z \in U^{*}\right) .
$$

A function $f \in G_{p}$ is meromorphic p-valent convex function of order $\varphi(0 \leq \varphi<p)$ if

$$
-R e\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right\}>\varphi, \quad\left(0 \leq \varphi<p ; z \in U^{*}\right)
$$

The convolution (or Hadamard product) of two functions f given by (1.2) and

$$
g(z)=z^{-p}-\sum_{n=p+1}^{\infty} b_{n} z^{n}, \quad\left(b_{n} \geq 0, p \in N\right)
$$

is defined by

$$
\begin{equation*}
(f * g)(z)=z^{-p}-\sum_{n=p+1}^{\infty} a_{n} b_{n}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

In this paper, we discuss and study a subclass of meromorphic p-valent functions by making use of the fractional differ-integral operator contained in:
Definition 1 [1]: The fractional differ-integral operator is defined as follows:

$$
W_{0, Z}^{\lambda, \mu, v, \eta} f(z)=\left\{\begin{array}{l}
\frac{\Gamma(\mu+v+\eta-\lambda) \Gamma(\lambda)}{\Gamma(\mu+\eta) \Gamma(v+\eta)} z^{-p+\eta+1} J_{0, z}^{\lambda, \mu, v, \eta}\left[z^{\mu+p} f(z)\right](0 \leq \lambda<1) \tag{1.4}\\
\frac{\Gamma(\mu+v+\eta-\lambda) \Gamma(\lambda)}{\Gamma(\mu+\eta) \Gamma(v+\eta)} z^{-p+\eta+1} I_{0, z}^{-\lambda, \mu, v, \eta}\left[z^{\mu+p} f(z)\right](-\infty \leq \lambda<0),
\end{array}\right.
$$

where $J_{0, z}^{\lambda, \mu, v, \eta}$ is the generalized fractional derivative operator of order λ defined

$$
\begin{align*}
J_{0, z}^{\lambda, \mu, v, \eta} f(z)= & \frac{1}{\Gamma(1-\lambda)} \frac{d}{d z}\left\{z^{\lambda-\mu} \int_{0}^{z} t^{\eta-1}(z-t)^{\lambda}{ }_{2} F_{1}\left(\mu,-\lambda, 1-v ; 1-\lambda ; 1-\frac{t}{2}\right) f(t) d t\right\} \\
& \left(0 \leq \lambda<1, \mu, \eta \in R, r \in R^{+} \text {and } r>(\max \{0, \mu\}-\eta)\right), \tag{1.5}
\end{align*}
$$

where f is an analytic function in a simply-connected region of the z-plane containing the origin and multiplicity of $(z-t)$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$, provided further that

$$
\begin{equation*}
f(z)=0 \quad\left(|z|^{r}\right)(z \rightarrow 0), \tag{1.6}
\end{equation*}
$$

and $I_{0, z}^{-\lambda, \mu, v, \eta}$ is the generalized fractional integral operator of order $-\lambda(-\infty<\lambda<0)$ defined by

$$
\begin{gather*}
I_{0, z}^{-\lambda, \mu, v, \eta} f(z)=\frac{z^{-(\lambda+\mu)}}{\Gamma(\lambda)} \int_{0}^{z} t^{\eta-1}(z-t)^{\lambda-1}{ }_{2} F_{1}\left(\lambda+\mu,-v ; \lambda ; 1-\frac{t}{2}\right) f(t) d t \\
\left(\lambda>0, \mu, \eta \in R, \quad r \in R^{+} \text {and } r>(\max \{0, \mu\}-\eta)\right) \tag{1.7}
\end{gather*}
$$

where f is constrained and the multiplicity of $(z-t)^{\lambda-1}$ is removed as above and r is given by the order estimate (1.6). It follows from (1.5) and (1.6) that

$$
\begin{equation*}
J_{0, z}^{\lambda, \mu, v, 1} f(z)=J_{0, z}^{\lambda, \mu, v} f(z) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{0, z}^{\lambda, \mu, v, 1} f(z)=I_{0, z}^{\lambda, \mu, v} f(z) \tag{1.9}
\end{equation*}
$$

where $J_{0, z}^{\lambda, \mu, v}$ and $I_{0, z}^{\lambda, \mu, v}$ are the familiar Owa-Saigo-Srivastava generalized fractional derivative and integral operators (see, e.g., [4] and [9] see also [8]). Also

$$
\begin{equation*}
J_{0, z}^{\lambda, \lambda, v, 1} f(z)=D_{Z}^{\lambda} f(z), \quad(0 \leq \lambda<1) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{0, z}^{\lambda,-\lambda, v, 1} f(z)=D_{z}^{-\lambda} f(z), \quad(\lambda>0) \tag{1.11}
\end{equation*}
$$

where D_{z}^{λ} and $D_{z}^{-\lambda}$ are the familiar Owa-Srivastava fractional derivative and integral of order λ, respectively (cf, Owa[3]; see also Srivastava and Owa[7]).
Furthermore, in terms of Gamma function, we have

$$
\begin{gather*}
J_{0, z}^{\lambda, \mu, v, \eta} z^{k}=\frac{\Gamma(k+\eta) \Gamma(k+\eta-\mu+v)}{\Gamma(k+\eta-\mu) \Gamma(k+\eta-\lambda+v)} z^{k+\eta-\mu-1}, \\
\left(0 \leq \lambda<1, \mu, \eta \in R, v \in R^{+} \quad \text { and } k>(\max \{0, \mu\}-\eta)\right) \tag{1.12}
\end{gather*}
$$

and

$$
\begin{align*}
& I_{0, z}^{\lambda, \mu, v, \eta} z^{k}=\frac{\Gamma(k+\eta) \Gamma(k+\eta-\mu+v)}{\Gamma(k+\eta-\mu) \Gamma(k+\eta+\lambda+v)} z^{k+\eta-\mu-1}, \\
& \left(\lambda>0, \mu, \eta \in R, v \in R^{+} \text {and } k>(\max \{0, \mu\}-\eta)\right), \tag{1.13}
\end{align*}
$$

Now using (1.2), (1.12) and (1.13) in (1.4), we find that

$$
\begin{equation*}
W_{0, Z}^{\lambda, \mu, v, \eta} f(z)=\frac{1}{z^{p}}-\sum_{n=p+1}^{\infty} \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n} \tag{1.14}
\end{equation*}
$$

provided that $-\infty<\lambda<1, \mu+v+\eta>\lambda, \mu>-\eta, v>-\eta, \eta>0, p \in N, f \in G_{p}$ and

$$
\begin{equation*}
\Gamma_{n}^{\lambda, \mu, v, \eta}=\frac{(\mu+\eta)_{n+p}(v+\eta)_{n+p}}{(\mu+v+\eta-\lambda)_{n+p}(\eta)_{n+p}} \tag{1.15}
\end{equation*}
$$

It may be worth noting that, by choosing $\mu=\lambda, \eta=1$ and $p=1$, the operator $W_{0, Z}^{\lambda, \mu, v, \eta} f(z)$ reduces to the well-known Ruscheweyh derivative $D^{\lambda} f(z)$ for meromorphic univalent function [6].
In this paper, we shall study a subclass of (1.2) define below.
Definition 2: The function $f \in G_{P}$ is in the class $G_{P}(\lambda, \mu, v, \eta, c, \alpha)$ if it satisfies the condition:

$$
\begin{equation*}
\left|\frac{(-c) z-\frac{z^{2}\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime \prime}}{\left(W_{0, Z}^{\lambda, u, v, \eta} f(z)\right)^{\prime}}}{\frac{z^{2}\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime \prime}}{\left(W_{0, Z, Z, v, \eta}^{\lambda, \mu} f(z)\right)^{\prime}}+(2-\alpha) z}\right|<1 \tag{1.16}
\end{equation*}
$$

where $0 \leq c \leq 1,0 \leq \alpha<1, p \in N,-\infty<\lambda<1, \mu+v+\eta>\lambda, \mu>-\eta, v>-\eta$ and $\eta>0$.
Definition 3: Let G_{p}^{+}denote the subclass of G_{p} defined by (1.2). Then we define a subclass $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ by

$$
G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)=G_{p}^{+} \cap G_{P}(\lambda, \mu, v, \eta, c, \alpha) .
$$

2. Coefficient Estimates

In the following theorem, we obtain the necessary and sufficient condition for the function to be $f \in G_{P}$ in the class $G_{P}(\lambda, \mu, v, \eta, c, \alpha)$.
Theorem 1: Assume that $f \in G_{P}$ be given by (1.2) and

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} \leq p[2 p+\alpha-c], \tag{2.1}
\end{equation*}
$$

where $0 \leq c \leq 1,0 \leq \alpha<1, p \in N,-\infty<\lambda<1, \mu+v+\eta>\lambda, \mu>-\eta, v>-\eta$ and $\eta>0$. Then $f \in G_{P}(\lambda, \mu, v, \eta, c, \alpha)$.

Proof : Let us assume that inequality (2.1) is true and let $|z|=r<1$, then, we have

$$
\begin{aligned}
& \left|(-c) z\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime}-z^{2}\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime \prime}\right| \\
& -\left|z^{2}\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime \prime}+(2-\alpha) z\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime}\right| \\
& =\left|p(c-p-1) z^{-p}+\sum_{n=p+1}^{\infty} n(n+c-1) \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n}\right| \\
& -\left|p(p+\alpha-1) z^{-p}+\sum_{n=p+1}^{\infty} n(n-\alpha+1) \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n}\right| \\
& \leq \sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n}-p[2 p+\alpha-c] \leq 0
\end{aligned}
$$

by hypothesis. Then by principle of maximum modulus theorem, $f \in G_{P}(\lambda, \mu, v, \eta, c, \alpha)$.
Theorem 2: Let $f \in G_{p}^{+}$. Then $f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} \leq p[2 p+\alpha-c], \tag{2.2}
\end{equation*}
$$

where $0 \leq c \leq 1,0 \leq \alpha<1, p \in N,-\infty<\lambda<1, \mu+v+\eta>\lambda, \mu>-\eta, v>-\eta$ and $\eta>0$.
Proof : In view of Theorem 1, it is sufficient to prove the "only if" part. Let us assume that $f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$. Then

$$
\left|\frac{(-c) z-\frac{z^{2}\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime \prime}}{\left(W_{0, Z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}}{\frac{z^{2}\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime}}{\left(W_{0, Z}^{\lambda, \mu, v, \eta} f(z)\right)^{\prime}}+(2-\alpha) z}\right|=\left|\frac{p(c-p-1) z^{-p}+\sum_{n=p+1}^{\infty} n(n+c-1) \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n}}{p(p+\alpha-1) z^{-p}+\sum_{n=p+1}^{\infty} n(n-\alpha+1) \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n}}\right|<1 .
$$

Since $\operatorname{Re}(z) \leq|z|$ for all z, it follows that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{p(c-p-1) z^{-p}+\sum_{n=p+1}^{\infty} n(n+c-1) \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n}}{p(p+\alpha-1) z^{-p}+\sum_{n=p+1}^{\infty} n(n-\alpha+1) \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} z^{n}}\right\}<1 . \tag{2.3}
\end{equation*}
$$

Now letting $z \rightarrow 1^{-}$, through real values, so we can write (2.3) as

$$
\sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n} \leq p[2 p+\alpha-c] .
$$

Finally, sharpness following if we take

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}-\frac{p[2 p+\alpha-c]}{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}} z^{n}, \quad n \geq p+1 \tag{2.4}
\end{equation*}
$$

Corollary 1: If f defined by (1.2) is in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$, then

$$
\begin{equation*}
a_{n} \leq \frac{p[2 p+\alpha-c]}{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}, \quad n \geq p+1, p \in N \tag{2.5}
\end{equation*}
$$

The equality in (2.5) is attained for the function f given by (2.4).

3. Convolution Property

In the following theorem, we obtain the Convolution (or Hadamard product) of the functions f and g in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$.
Theorem 3: Let f and $g \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$. Then $(f * g) \in G_{p}^{+}(\lambda, \mu, v, \eta, \omega, \alpha)$ for

$$
f(z)=\frac{1}{z^{p}}-\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad g(z)=\frac{1}{z^{p}}-\sum_{n=p+1}^{\infty} b_{n} z^{n}
$$

and

$$
(f * g)=\frac{1}{z^{p}}-\sum_{n=p+1}^{\infty} a_{n} b_{n} z^{n}
$$

where

$$
\omega \leq \frac{n(\alpha+2 p)[2 n-\alpha+c]^{2} \Gamma_{n}^{\lambda, \mu, v, \eta}+p(\alpha-2 n)[2 p+\alpha-c]^{2}}{n[2 n-\alpha+c]^{2} \Gamma_{n}^{\lambda, \mu, v, \eta}+p[2 p+\alpha-c]^{2}} .
$$

Proof: Since f and g are in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ then

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]} a_{n} \leq 1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]} b_{n} \leq 1 \tag{3.2}
\end{equation*}
$$

We have to find the largest ω such that

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n[2 n-\alpha+\omega] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-\omega]} a_{n} b_{n} \leq 1 \tag{3.3}
\end{equation*}
$$

By Cauchy Schwarz inequality, we get

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]} \sqrt{a_{n} b_{n}} \leq 1 \tag{3.4}
\end{equation*}
$$

We want only to show that

$$
\frac{n[2 n-\alpha+\omega] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-\omega]} a_{n} b_{n} \leq \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]} \sqrt{a_{n} b_{n}} .
$$

This equivalently to

$$
\sqrt{a_{n} b_{n}} \leq \frac{[2 n-\alpha+c][2 p+\alpha-\omega]}{[2 n-\alpha+\omega][2 p+\alpha-c]}
$$

From (3.4), we get

$$
\sqrt{a_{n} b_{n}} \leq \frac{p[2 p+\alpha-c]}{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}
$$

Thus it is enough to show that

$$
\frac{p[2 p+\alpha-c]}{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}} \leq \frac{[2 n-\alpha+c][2 p+\alpha-\omega]}{[2 n-\alpha+\omega][2 p+\alpha-c]}
$$

which simplifies to

$$
\omega \leq \frac{n(\alpha+2 p)[2 n-\alpha+c]^{2} \Gamma_{n}^{\lambda, \mu, v, \eta}+p(\alpha-2 n)[2 p+\alpha-c]^{2}}{n[2 n-\alpha+c]^{2} \Gamma_{n}^{\lambda, \mu, v, \eta}+p[2 p+\alpha-c]^{2}} .
$$

4. Neighborhoods

Following the earlier works on neighborhoods of analytic functions by Goodman [2] and Ruscheweyh [5], we begin by introducing here the δ-neighborhood of a function $f \in G_{p}^{+}$ of the form (1.2) by means of the definition below:

$$
\begin{equation*}
N_{\delta}(f)=\left\{g \in G_{p}^{+}: g(z)=z^{-p}-\sum_{n=p+1}^{\infty} b_{n} z^{n} \text { and } \sum_{n=p+1}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta, 0 \leq \delta<1\right\} . \tag{4.1}
\end{equation*}
$$

Particularly for the identity function $e(z)=z^{-p}$, we have

$$
\begin{equation*}
N_{\delta}(e)=\left\{g \in G_{p}^{+}: g(z)=z^{-p}-\sum_{n=p+1}^{\infty} b_{n} z^{n} \text { and } \sum_{n=p+1}^{\infty} n\left|b_{n}\right| \leq \delta, 0 \leq \delta<1\right\} . \tag{4.2}
\end{equation*}
$$

Definition 4: A function $f \in G_{p}^{+}$is said to be in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ if there exists function $g \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ such that

$$
\left|\frac{f(z)}{g(z)}-1\right|<1-\sigma, \quad\left(z \in U^{*}, 0 \leq \sigma<1\right)
$$

Theorem 4: If $g \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ and

$$
\begin{equation*}
\sigma=1-\frac{\delta[2(p+1)+\alpha-c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{(p+1)[2(p+1)+\alpha-c] \Gamma_{n}^{\lambda, \mu, v, \eta}-p[2 p-\alpha+c]} \tag{4.3}
\end{equation*}
$$

Then $N_{\delta}(g) \subset G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$.
Proof : Let $f \in N_{\delta}(g)$. Then we find from (4.1) that

$$
\sum_{n=p+1}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta
$$

which implies the coefficient inequality

$$
\sum_{n=p+1}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\delta}{p+1}, \quad(n \geq p+1)
$$

Since $g \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$, then by using Theorem 2

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} b_{n} \leq \frac{p[2 p-\alpha+c]}{(p+1)[2(p+1)+\alpha-c] \Gamma_{n}^{\lambda, \mu, v, \eta}} . \tag{4.4}
\end{equation*}
$$

So that
$\left|\frac{f(z)}{g(z)}-1\right| \leq \frac{\sum_{n=p+1}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=p+1}^{\infty} b_{n}} \leq \frac{\delta[2(p+1)+\alpha-c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{(p+1)[2(p+1)+\alpha-c]\left[\Gamma_{n}^{\lambda, \mu, v, \eta}\right]-p[2 p-\alpha+c]}=1-\sigma$.
Hence by Definition $4 f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ for σ given by (4.3). This completes the proof.

5. Convex Linear Combination

In next theorem, we obtain convex linear combination in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$.
Theorem 5: The class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$ is closed under convex linear combination.

Proof : Let $f(z)$ and $g(z)$ be in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$, where

$$
f(z)=z^{-p}-\sum_{n=p+1}^{\infty} a_{n} z^{n} \text { and } g(z)=z^{-p}-\sum_{n=p+1}^{\infty} b_{n} z^{n}
$$

We show the function

$$
V(z)=\tau f(z)+(1-\tau) g(z), \quad(0 \leq \tau \leq 1)
$$

is also in the class $G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$. Since for $0 \leq \tau \leq 1$,

$$
V(z)=\frac{1}{z^{p}}-\sum_{n=p+1}^{\infty}\left[\tau a_{n}+(1-\tau) b_{n}\right] z^{n}
$$

Then by Theorem 2, we have

$$
\begin{aligned}
& \sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}\left[\tau a_{n}+(1-\tau) b_{n}\right] \\
& =\tau \sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta} a_{n}+(1-\tau) \sum_{n=p+1}^{\infty} n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta} b_{n} \\
& \leq \tau p[2 p+\alpha-c]+(1-\tau) p[2 p+\alpha-c]=p[2 p+\alpha-c]
\end{aligned}
$$

Therefore, $V(z) \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$.

6. Radii of Starlikeness and Convexity

In the next theorems, we discuss the radii of starlikeness and convexity.
Theorem 6 : Let $f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$, then f is p-valent meromorphic starlike of order $\varphi(0 \leq \varphi<p)$ in the disk $|z|<r=r_{1}$ where

$$
\begin{equation*}
r_{1}=\inf _{n \geq p+1}\left[\frac{n(p-\varphi)[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p(n-\varphi+2 p)[2 p+\alpha-c]}\right]^{\frac{1}{n+p}} \tag{6.1}
\end{equation*}
$$

The result is sharp for the function f given by (2.2).
Proof : It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+p\right| \leq p-\varphi \tag{6.2}
\end{equation*}
$$

but

$$
\left|\frac{z f^{\prime}(z)+p f(z)}{f(z)}\right| \leq \frac{\sum_{n=p+1}^{\infty}(n+p) a_{n}|z|^{n+p}}{1-\sum_{n=p+1}^{\infty} a_{n}|z|^{n+p}}
$$

Thus, (6.2) will be satisfied if

$$
\frac{\sum_{n=p+1}^{\infty}(n+p) a_{n}|z|^{n+p}}{1-\sum_{n=p+1}^{\infty} a_{n}|z|^{n+p}} \leq p-\varphi
$$

or if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{(n-\varphi+p)}{p-\varphi} a_{n}|z|^{n+p} \leq 1 \tag{6.3}
\end{equation*}
$$

Since $f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$, we have

$$
\sum_{n=p+1}^{\infty} \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]} a_{n} \leq 1
$$

Hence, (6.3) will true if

$$
\frac{(n-\varphi+2 p)}{p-\varphi}|z|^{n+p} \leq \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]}
$$

or equivalently

$$
|z| \leq\left[\frac{n(p-\varphi)[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p(n-\varphi+2 p)[2 p+\alpha-c]}\right]^{\frac{1}{n+p}}, \quad n \geq p+1
$$

which follows the result.
Theorem 7: Let $f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$. Then f is p-valent meromorphic convex of order $\varphi(0 \leq \varphi<p)$ in the disk $|z|<r=r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{n \geq p+1}\left[\frac{(p-\varphi)[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{(n-\varphi+2 p)[2 p+\alpha-c]}\right]^{\frac{1}{n+p}} \tag{6.4}
\end{equation*}
$$

The result is sharp for the function f given by (2.2).
Proof: It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1+p\right| \leq p-\varphi \tag{6.5}
\end{equation*}
$$

but

$$
\left|\frac{z f^{\prime \prime}(z)+(p+1) f^{\prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{n=p+1}^{\infty} n(n+p) a_{n}|z|^{n+p}}{p-\sum_{n=p+1}^{\infty} a_{n}|z|^{n+p}}
$$

Thus (6.5) will be satisfied if

$$
\frac{\sum_{n=p+1}^{\infty} n(n+p) a_{n}|z|^{n+p}}{p-\sum_{n=p+1}^{\infty} a_{n}|z|^{n+p}} \leq p-\varphi,
$$

or if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n(n-\varphi+p)}{p(p-\varphi)} a_{n}|z|^{n+p} \leq 1 . \tag{6.6}
\end{equation*}
$$

Since $f \in G_{p}^{+}(\lambda, \mu, v, \eta, c, \alpha)$, we have

$$
\sum_{n=p+1}^{\infty} \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]} a_{n} \leq 1
$$

Hence, (6.6) will true if

$$
\frac{n(n-\varphi+2 p)}{p(p-\varphi)}|z|^{n+p} \leq \frac{n[2 n-\alpha+c] \Gamma_{n}^{\lambda, \mu, v, \eta}}{p[2 p+\alpha-c]}
$$

or equivalently

$$
|z| \leq\left[\frac{(p-\varphi)\left[2 n-\alpha+c \mid \Gamma_{n}^{\lambda, \mu, v, \eta}\right.}{(n-\varphi+2 p)[2 p+\alpha-c]}\right]^{\frac{1}{n+p}}, \quad n \geq p+1
$$

which follows the result.

References

[1] Atshan W. G., Alzopee L. A. and Mostafa M., On fractional calculus operators of a class of meromorphic multivalent functions, Gen. Math. Notes, 18(2) (2013), 92-103.
[2] Goodman A. W., Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., (1975), 598-601.
[3] Owa S., On the distortion theorems, I. Kyung Pook Math. J., 18 (1978), 53-59.
[4] Owa S., Saigo M. and Srivastava H. M., Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, J. Math. Anal. Appl., 140 (1989), 419- 426.
[5] Ruscheweyh S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521-572.
[6] Ruscheweyh S., New criteria for univalent functions, Proc. Amer. Math.Soc., 49 (1975), 109-115.
[7] Srivastava H. M. and Owa S. (Editors), Univalent Functions, Fractional Calculus and their Applications, Halsted Press (Ellis Horwood Limited,Chichester), John Wiley and Sons, NeYork, Chichester, Brisbane andToronto, (1989).
[8] Srivastava H. M. and Owa S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (1992).
[9] Srivastava H. M., Saigo M. and Owa S., A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl., 31 (1988), 412420.

