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ON EXTENDED FRACTIONAL FOURIER TRANSFORM
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Abstract

In this paper Fractional Fourier transform is extended on new class functions. The
extension has the usual properties. Distributions are characterized, which are trans-
forms of tempered Bohemians. Inversion theorem is also proved.

1. Introduction

In [4] Boehmians introduced as a generalization of regular operators of Boehme (a sub-

class of Mikusinski operators) [2] and Schwartz distributions. The algebraic character

of convolution quotients similar to Mikusinski operators. At the same time, there is no

restriction on the support of Boehmians, which is present in the definition of Mikusin-

ski operators. A Schwartz distribution is regular operator if and only if its support is

bounded on the left. On the other hand, all Schwartz distributions, as well as Beurling

or Roumieu ultradistributions, are Boehmians. The space of Boehmians is defined by

an abstract algebraic construction, which is a generalization of the construction of the

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Key Words : Distributions, Fourier transforms, Fractional Fourier transforms.

AMS Subject Classification : 46 F12.

c© http: //www.ascent-journals.com

143



144 T. G. THANGE

field of quotients. The construction applied to different function spaces yields various

spaces of generalized functions (see [5], [6], [7], [8] and [9]). If the function space is

the space of Lebesgue integrable functions on <n, the obtained space of Boehmians

consists of the so-called integrable Boehmians. It is possible to define the Fractional

Fourier transform for integrable Boehmians [7]. The Fractional Fourier transform of

an integrable Boehmian is a continuous function. This extension of the Fractional

Fourier has desirable properties. Since there are integrable Boehmians, which are not

tempered distributions, this extension allows us to use the Fractional Fourier transform

in some cases where the theory of distributions cannot be used. On the other hand,

there are tempered distributions which are not integrable Boehmians. For example, the

distributional Fractional Fourier transform can be applied to polynomials, which are

not integrable Boehmians.

T - be the space of slowly increasing infinitely differential complex Vvalued functions

on <n.

D - be the space of all infinitely differentiable complex-valued functions on <N having

compact support. a sequence of real-valued functions δ1.δ2 · · · ∈ D such that

(i)
∫
R δn(x)d(x) = 1, ∀ n ∈ N ,

(ii)
∫
R |δn(x)|d(x) ≤M ∀ n, for some M > 0,

(iii) For every ε > 0 there exists n0 ∈ N such that δn(x) = 0 for |x| ≥ ε and n > n0

is called delta sequence.

The convolution denoted by f ∗ g of two functions f and g is defined, as

(f ∗ g)(x)
∫
<N

f(u)g(x− u)du

whenever the right hand integral exists. By A pair of sequence (fn, ϕn) is called a

quotient of sequence, denoted for short by fn/ϕn, if fn ∈ T for all n ∈ N , {ϕn} is a

delta sequence, and fn ∗ ϕm = fm ∗ ϕn for all m,n ∈ N . Two quotients of sequences

fn/ϕn and gn/γn are equivalent if fn ∗ γm = gm ∗ ϕn for all m,n ∈ N . The equivalence

class of fn/ϕn is denoted by [fn/ϕn] and the space of all equivalence classes quotients

of sequences in denoted by BT . Elements of BT are called tempered Boehmians.
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BT is a complex vector with the addition and multiplication by a scalar defined as

follows:

[fn/ϕn] + [gn/γn] = [(fn ∗ γn + gn ∗ ϕn)/(ϕn ∗ γn)] andα[fn/ϕn] = [αfn/ϕn].

Let F = [fn/ϕn] ∈ BT , partial derivatives of F are defined as follows:

∂F

∂xn
=
[(

∂Fn
∂xn

∗ ϕn
)
/(ϕn ∗ ϕx)

]
.

Note that (∂fn/∂xn) ∗ ϕn is a slowly increasing function for every n ∈ N and that

((∂fn/∂xm) ∗ ϕn)/(ϕn ∗ ϕn) is a quotient of sequences. Thus partial derivatives of

tempered Boehmians are tempered Bohemians. Let f be an infinitely differentiable

complex valued function on <N . If

sup
|α|≤m

sup
x∈<N

(1 + x2
1 + · · ·+ x2

N )m
∣∣∣∣∣∂|α|f(x)

∂xα

∣∣∣∣∣ <∞
for every nonnegative integer m, then f is called rapidly decreasing. In the above we use

the following notation: α = (α1 · · ·αn) is a multi-index. αn are nonnegative integers.

|α| = α1 + · · ·+ αN and ∂|α|

∂xα = ∂|α|

∂x
α1
1 ···∂x

αN
N

.

Let τ(<N ) or simply γ, denote the space of all rapidly decreasing functions on <N .

A tempered Boehmian F = [fn/ϕn] is called a rapidly decreasing Boehmians if F =

[fn/ϕn] ∈ BT and fn ∈ τ for all n ∈ N . The space of all rapidly decreasing Boehmians

is denoted by BT . If F = [fn/ϕn] ∈ BT , then the convolution F ∗G can be defined as

F ∗G = [(fn ∗ gn)/(ϕn ∗ γn)]. It is easy to see that F ∗G ∈ BT .

2. Extended Fractional Fourier Transform

It is important to distinguish between convolution quotients and the usual quotients.

We use f/ϕ to denote a convolution quotient and f/ϕ to denote a usual quotient. For

f ∈ T the Fractional Fourier transform denoted by f̂ is the distribution defined: The

fractional Fourier transforms (fractional FT) Rα is an extension of the ordinary Fourier

transforms and depends on a parameter α. For 0 < α ≤ π/2,

Fractional FT reduces to the ordinary Fourier transforms [1].

Now we extend the Fractional Fourier transform on tempered Bohemians.

An entire function φ̂(t) on C is the fractional FT Rα on L1(R) is defined by

φ̂(t) = Rαφ(t) =
∫ ∞
−∞

φ(x)Kα(x, t)dm(x),
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where the kernel,

Kα(x, t) = (2πi sinα)−/12 exp
(
iα

2

)
exp

(
i

2 sinα
((x2 + t2) cosα− 2xt)

)
x is restricted to compact set.

If A and C are constant such that,

|φ̂(t)| ≤ C exp{−M(|t|/A) +HK(t)}

where, HK(t) = sup
x∈k

(−C2αIm((x2 + t2) cosα− 2xt)) is the support function.

Suppose that f is an ultra-distribution with compact support in R. Hence [Rαf(x)](t) =

f̂(t) defines an entier function on C, which we call the fractional Fourier Transforms of

f .

We define the inversion fractional FT,

[Rα]−1 of tempered distribution by duality.

〈[Rα]−1f, φ〉 = 〈f, [Rα]−1φ〉, f ∈ D′, φ ∈ D.

f = [Rα]−1[Rα]f = Rα([Rα]−1f, f ∈ D′ holds.

Also [fα]−1[f ] = Cα(2π)nRα[f̆ ], f ∈ D′ where

f̆(ξ) = f(−ξ,−α); Cα =
−2C2αe

iα

i(Ciα)2
.

Inversion Fractional Fourier transform is also denoted by (f δ̂n)̆ of Fractional Fourier

transforms of f δ̂n.

Theorem 1 : If [fn/ϕn] ∈ BT , then the sequence {f̂n} converges in D′. Moreover, if

[fn/ϕn] = [gn/γn] ∈ BT , then {f̂n} and {ĝn} converge to the same limit.

Proof : Let ϕ ∈ D and let k ∈ N be such that ϕ̂k > 0 on the support of ϕ. Since

fn ∗ ϕn = fm ∗ ϕn for all m,n ∈ N , we have f̂nϕ̂n = f̂nϕ̂n. Thus

f̂n(ϕ) = f̂n(ϕϕ̂n) =
(
f̂nϕ̂k

)( ϕ

ϕ̂k

)
=
(
f̂kϕ̂n

)( ϕ

ϕ̂k

)
= f̂k

(
ϕϕ̂n
ϕ̂k

)
.

Since the sequence
{
ϕϕ̂n
ϕ̂k

}
converges to ϕ

ϕ̂k
in D, the sequence {f̂n(ϕ)} converges. This

proves that the sequence {f̂n} converges in D′. Now assume that [fn/ϕn] = [gn/γn] ∈
BT . Define hn =

{
fn+1

2
∗ yn+1

2
if n is odd and

{
gn

2
∗ ϕn

2
if n is even, and δn =
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{
ϕn+1

2
∗ γn+1

2
if n is odd, δn =

{
ϕn

2
∗ γn

2
if n is even. Then [hn/δn] = [fn/ϕ+n] = [gn/

gn]. By the first part of this proof, the sequence {ĥn} converges in D′. Moreover,

lim
n→∞

ĥ2n−1(ϕ) = lim
n→∞

(fn ∗ γn) ∩ (ϕ) = lim
n→∞

(f̂nϕ) = lim
n→∞

f̂n(ϕ).

Thus {ĥn} and {f̂n} have the same limit. Similarly, {ĥn} and {ĝn} must have the same

limit.

This completes the proof.

Definition : Let F = [fn/ϕn] ∈ BT . By the Fractional Fourier transform of F , denoted

by F̂ , we mean the limit of the sequence {f̂n} in D′.

The defined Fractional Fourier transforms is thus a mapping form BT into D′. It

is clearly a linear mapping. Below we prove some other properties of the Fractional

Fourier transforms.

Theorem 2 : . Let F = [fn/ϕn] ∈ BT , then
(
∂F
∂xm

)
= ixmF̂ .

Proof :(
∂F

∂xn

)
=
[(

∂fn
∂xn

∗ ϕn
)
/(ϕn ∗ ϕ)

]
= lim

n→∞

(
∂fn
∂xm

∗ ϕn
)

= lim
n→∞

ixmf̂nϕ̂n = ixmF̂ .

The last equality follows from the [fn/ϕn] = [(fn ∗ϕn)/(ϕn ∗ϕn)] and from Theorem 1.

Theorem 3 : If G ∈ BT , then Ĝ is an infinity differentiable function.

Proof : Let G = [gn/γn] ∈ BT and let U be a bounded open subset of <N . Then there

exists m ∈ N such that γ̂n > 0 on U and we have

Ĝ = lim
n→∞

ĝn = lim
n→∞

ĝnγ̂n
γ̂m

= lim
n→∞

ĝmγ̂n
γ̂m

=
ĝm
γ̂m

lim
n→∞

γ̂n =
ĝm
γ̂m

on U.

Since ĝm, γ̂m ∈ τ and γ̂m > 0 on U , Ĝ is infinitely differentiable on U .

Theorem 4 : If F ∈ Bτ and G ∈ Bτ then (F ∗G) = F̂ Ĝ.

Proof : Let F = [fn/ϕn] ∈ BT and G = [gn/γn] ∈ Bτ . If ϕ ∈ D, then there exists

m ∈ N such that γγm > 0 on the support of ϕ and we have

(F ∗G)(ϕ) = lim
n→∞

(fn ∗ gn)(ϕ) = lim
n→∞

(f̂nĝn)(ϕ) = lim
n→∞

f̂n(ĝ, ϕ) = lim
n→∞

f̂n

(
γ̂mĝnϕ

γ̂m

)

lim
n→∞

f̂n

(
γ̂mĝnϕ

γ̂m

)
= lim

n→∞
f̂n

(
ĝm
γ̂m

ϕĝn

)
= lim

n→∞
f̂n(Ĝϕγ̂n)

Ĝ lim
n→∞

f̂n(ϕγ̂n) = Ĝ lim
n→∞

(f̂n ˆ̂γn)(ϕ) = Ĝ lim
n→∞

(fn ∗ γn)(ϕ) = (F̂ Ĝ)(ϕ).
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The last equality follows form the fact that [fn/ϕn] = [(fn ∗ γn)/(ϕn ∗ γn)] and form

Theorem 1.

Theorem 5 : If F = [fbn/ϕn] ∈ BT , then F̂ ϕ̂m = f̂m for all m ∈ N .

Proof : Let ϕ ∈ D. Then

(F̂ ϕ̂n)(ϕ) = F̂ (ϕ̂mϕ) = lim
n→∞

fn(ϕ̂mϕ) = lim
n→∞

(f̂n̂̂ϕm)(ϕ) = lim
n→∞

(f̂mϕ̂n)

= lim
n→∞

f̂m(ϕ̂n, ϕ) = f̂m(ϕ).

Theorem 6 : A distribution f is the Fourier transform of a tempered Boehmian if and

only if there exists a delta sequence {δn} such that f δ̂n is a tempered distribution for

every n ∈ N .

Proof : If F = [fn/ϕn] ∈ BT and f = F̂ , then fφ̂n = F̂ φ̂n = f̂n, by Lemma 6. Thus

fφ̂n is a tempered distribution.

Now let f ∈ D and let {δn} be a delta sequence such that f δ̂n is a tempered distribution

for every n ∈ N . Define F =
[(

(f δ̂) ∗ δn
)
/(δn ∗ δn)

]
where (f δ̂n) is the inverse Frac-

tional Fourier transforms of f δ̂n. (Since f δ̂n is a tempered distribution, so is (f δ̂n)). It

is easy to check that F is a tempered Boehmian and that F̂ = f .

From the above we easily obtain the inversion formula.

Theorem 7 : Let F be a tempered Boehmian and F̂ = f then F =
[
((f δ̂) ∗ δn)/(δn ∗ δn)

]
where {δn} is a delta sequence such that f δ̂n is a tempered distribution for every n ∈ N .

Note that if F = [fn/ϕn] ∈ BT then is the inversion form we can take δn = ϕn. In this

case the formula takes a simpler form: F = b(f ϕn)/ϕnc.
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