International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 11 No. I (April, 2017), pp. 159-169

SOME RESULTS IN FUZZY SOFT α - CONTINUITY

A. PONSELVAKUMARI¹ AND R. SELVI²

 ¹ Department of Mathematics, Anna University, Tuticorin Campus, Tuticorin-628008, India
² Department of Mathematics, Sri ParasakthiCollege for Women, Courtallam-627802, India

Abstract

 α -continuous functions, fuzzy α -continuous functions and soft α -continuous functions have been already investigated by topologists. In this paper the concept of a fuzzy soft α -continuous function is introduced and its relationship with the existing concept in the literature of fuzzy soft topology is discussed.

1. Introduction

In the year 1985, Reilly and Vanamurthy [11] have been discussed the concept of α continuity in topological spaces. In 2014, Akdag and Ozkan [2] introduced the concept of Soft \propto open sets and soft \propto continuous between soft topological spaces. In this paper we introduce the notion of fuzzy soft α -continuity and some results along with examples have been discussed. Throughout this paper X and Y denote the initial sets. E and Kdenote the parameter spaces.

Key Words : Fuzzy soft sets, Fuzzy soft topology, Fuzzy soft mapping, Fuzzy soft α -continuous. © http://www.ascent-journals.com

2. Preliminaries

Definition 2.1: A pair (F, E) is called a soft set [8] over X where F is a mapping given by $F: E \to 2^X$ and 2^X is the power set of X.

Definition 2.2: A fuzzy set [14] of on X is a mapping $f : X \to I^X$ where I = [0, 1]. **Definition 2.3**: A pair

 $tilde\lambda = (\lambda, E)$ is called a fuzzy soft set [12] over (X, E) where $\lambda : E \to I^X$ is a mapping, I^X is the collection of all fuzzy subsets of X. FS(X, E) denotes the collection of all fuzzy soft sets over (X, E). We denote $\tilde{\lambda}$ by $\tilde{\lambda} = \{(e, \lambda(e)) : e \in E\}$ where $\lambda(e)$ is a fuzzy subset of X for each e in E.

Definition 2.4 [12]: For any two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over a common universe X and a common parameter space E, $\tilde{\lambda}$ is a fuzzy soft subset of $\tilde{\mu}$ if $\lambda(e) \leq \mu(e)$ for all $e \in E$. If $\tilde{\lambda}$ is a fuzzy soft subset of $\tilde{\mu}$ then we write $\tilde{\lambda} \subseteq \tilde{\mu}$ and $\tilde{\mu}$ contains $\tilde{\lambda}$.

Two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over (X, E) are soft equal if $\tilde{\lambda} \subseteq \tilde{\mu}$ and $\tilde{\mu} \subseteq \tilde{\lambda}$. That is $\tilde{\lambda} = \tilde{\mu}$ if and only if $\lambda(e) = \mu(e)$ for all $e \in E$. We use the following notations:

 $\overline{0}(x) = 0$, for all x in X and $\overline{1}(x) = 1$ for all x in X.

Definition 2.5 [12]: A fuzzy soft set $\tilde{\varphi}_X$ over (X, E) is said to be a null fuzzy soft set if for all $e \in E, \varphi_X(e) = \overline{0}$ and $\tilde{\varphi}_X = (\varphi_X, E)$.

Definition 2.6 [12]: A fuzzy soft set $\overline{1}_X$ over (X, E) is said to be absolute fuzzy soft set if for all $e \in E$, $1_X(e) = \overline{1}$ and $\widetilde{1}_X = (1_X, E)$.

Definition 2.7 [13] : The union of two fuzzy soft sets λ and μ over (X, E) is defined as $\tilde{\lambda} \tilde{\cup} \tilde{\mu} = (\lambda \tilde{\cup} \mu, E)$ where $(\lambda \tilde{\cup} \mu)(e) = \lambda(e) \cup \mu(e)$ = the union of fuzzy sets $\lambda(e)$ and $\mu(e)$ for all $e \in E$.

Definition 2.8 [13] : The intersection of two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over (X, E) is defined as $\tilde{\lambda} \cap \tilde{\mu} = (\lambda \cap \mu, E)$ where $(\lambda \cap \mu)(e) = \lambda(e) \cap \mu(e)$ the intersection of fuzzy sets $\lambda(e)$ and $\mu(e)$ for all $e \in E$.

The arbitrary union and arbitrary intersection of fuzzy soft sets over (X, E) are defined as

 $\tilde{\cup}\{\tilde{\lambda}_{\alpha}: \alpha \in \Delta\} = (\tilde{\cup}\{\lambda_{\alpha}: \alpha \in \Delta\}, E) \text{ and } \tilde{\cap}\{\tilde{\lambda}_{\alpha}: \alpha \in \Delta\} = (\tilde{\cap}\{\lambda_{\alpha}: \alpha \in \Delta\}, E) \text{ where } (\tilde{\cup}\{\lambda_{\alpha}: \alpha \in \Delta\})(e) = \cup\{\lambda_{\alpha}(e): \alpha \in \Delta\} = \text{ the union of fuzzy sets } \lambda_{\alpha}(e), \alpha \in D \text{ and } (\tilde{\cap}\{\lambda_{\alpha}: \alpha \in \Delta\})(e) = \cap\{\lambda(e): \alpha \in \Delta\} = \text{ the intersection of fuzzy sets } \lambda_{\alpha}(e), \alpha \in \Delta, \text{ for all } e \in E.$

Definition 2.9 [13] : The complement of a fuzzy soft set (λ, E) over (X, E), denoted

by $(\lambda, E)^C$ is defined as $(\lambda, E)^C = (\lambda^C, E)$ where $\lambda^C : E \to I^X$ is a mapping given by $\lambda^C(e) = 1 - \lambda(e)$ for every e in E.

Definition 2.10 [13] : A fuzzy soft topology $\tilde{\tau}$ on (X, E) is a family of fuzzy soft sets over (X, E) satisfying the following axioms.

- (i) $\tilde{\varphi}_X, \tilde{1}_X$ belong to $\tilde{\tau}$,
- (ii) Arbitrary union of fuzzy soft sets in $\tilde{\tau}$, belongs to $\tilde{\tau}$,
- (iii) The intersection of any two fuzzy soft sets in $\tilde{\tau}$, belongs to $\tilde{\tau}$.

Members of $\tilde{\tau}$ are called fuzzy soft open sets in $(X, \tilde{\tau}, E)$. A fuzzy soft set $\tilde{\lambda}$ over (X, E)is fuzzy soft closed in $(X, \tilde{\tau}, E)$ if $(\tilde{\lambda})^C \in \tilde{\tau}$. The fuzzy soft interior of $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$ is the union of all fuzzy soft open sets $\tilde{\mu} \subseteq \tilde{\lambda}$ denoted by $\tilde{f}sint(\tilde{\lambda}) = \tilde{\cup}(\tilde{\mu} : \tilde{\mu} \subseteq \tilde{\lambda}, \tilde{\mu} \in \tilde{\tau})$. The fuzzy soft closure of $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$ is the intersection of all fuzzy soft closed sets $\tilde{\eta}, \tilde{\lambda} \subseteq \tilde{\eta}$ denoted by $\tilde{f}scl(\tilde{\lambda}) = \tilde{\cap}(\tilde{\eta} : \tilde{\lambda} \subseteq \tilde{\eta}, (\tilde{\eta})^C \in \tilde{\tau})$.

Definition 2.11 [1] : Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then $\tilde{\lambda}$ is fuzzy soft semi-open if $\tilde{\lambda} \subseteq \tilde{f}scl(\tilde{f}sint(\tilde{\lambda}))$ and fuzzy soft semi closed if $\tilde{f}s$ $int(\tilde{f}scl(\tilde{\lambda})) \subseteq \tilde{\lambda}$.

Definition 2.12 [1] : Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let λ be a fuzzy soft set over (X, E). Then $\tilde{\lambda}$ is fuzzy soft pre-open if $\tilde{\lambda} \subseteq \tilde{fs} int(\tilde{fs} cl(\tilde{\lambda}))$ and fuzzy soft pre-closed if $\tilde{fs} cl(\tilde{fs} Int(\tilde{\lambda})) \subseteq \tilde{\lambda}$.

Definition 2.13 [1] : Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then $\tilde{\lambda}$ is fuzzy soft α -open if $\tilde{\lambda} \subseteq \tilde{fs} int(\tilde{fs} CL(\tilde{fs} Int(\tilde{\lambda})))$ and fuzzy soft α -closed if $\tilde{\lambda} \supseteq \tilde{fs} Cl(\tilde{fs} Cl(\tilde{\lambda})))$

The classes of all fuzzy soft α -open, fuzzy soft pre-open, fuzzy soft semi-open and fuzzy soft semi-pre-open sets over (X, E) are denoted as $\tilde{FS} \alpha(X), \tilde{FS} SO(X), \tilde{FS} PO(X)$ and $\tilde{FS} SP(X)$ respectively.

The fuzzy soft pre-interior, fuzzy soft pre-closure, fuzzy soft semi-interior, fuzzy soft semi-closure and fuzzy soft α -interior, fuzzy soft α -closure, fuzzy soft semi-pre-interior, fuzzy soft semi-pre-closure of X are denoted by $\tilde{fs} PCl(\tilde{\lambda})$, $\tilde{fs} Plnt(\tilde{\lambda})$, $\tilde{fs} Slnt(\tilde{\lambda})$, $\tilde{fs} \alpha Cl(\tilde{\lambda})$, $\tilde{fs} \alpha Int(\tilde{\lambda})$, $\tilde{fs} SPInt(\tilde{\lambda})$, $\tilde{fs} SPCl(\tilde{\lambda})$ respectively.

Definition 2.14 [1] : Let $(X, \tilde{\tau}, E)$. be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then its fuzzy soft pre-closure and fuzzy soft pre-interior are

defined as:

$$\begin{split} &\tilde{fs} \ PCl(\tilde{\lambda}) = \cap \{ \tilde{\mu} | \tilde{\mu} \supseteq \tilde{\lambda}, \tilde{\mu} \in \tilde{FS} \ PC(X) \}. \\ &\tilde{fs} \ PInt(\tilde{\lambda}) = \cup \{ \tilde{\eta} | \tilde{\eta} \subseteq \tilde{\lambda}, \tilde{\eta} \in \tilde{FS} \ PO(X) \}. \end{split}$$

The definitions for \tilde{fs} SCl, \tilde{fs} SInt, $\tilde{fs} \alpha cl$ and $\tilde{fs} \alpha Int$ are similar.

The following extension principle is used to define the mapping between the classes of fuzzy soft sets.

Definition 2.15 [13] : Let X and Y be any two non-empty sets. Let $g : X \to Y$ be a mapping. Let λ be a fuzzy subset of X and $\tilde{\mu}$ be a fuzzy subset of Y. Then $g(\lambda)$ is a fuzzy subset of Y and for y in Y

$$g(\lambda)(y) = \begin{cases} \sup\{\lambda(f(x)) : x \in g^{-1}\}, & g^{-1}(y) \neq \phi \\ 0 & \text{otherwise.} \end{cases}$$

 $g^{-1}(\mu)$ is a fuzzy subset of X, defined by $g^{-1}(\mu)(x) = \mu(f(x))$ for all $x \in X$.

Definition 2.16 [12]: Let FS(X, E) and FS(Y, K) be classes of fuzzy soft sets over (X, E) and (Y, K) respectively.

 $\rho : X \to Y$ and $\psi : E \to K$ be any two mappings. Then a fuzzy soft mapping $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ is defined as follows:

For a fuzzy soft set $\tilde{\lambda}$ in $FS(X, E), g(\tilde{\lambda})$ is a fuzzy soft set in FS(Y, K) obtained as follows:

$$g(\tilde{\lambda})(k) = \begin{cases} \bigcup_{e \in \psi^{-1}(k)} \rho(\lambda(e)), & \psi^{-1}(k) \neq \phi \\\\ \overline{0}, & \text{otherwise.} \end{cases}$$

For every y in Y, where

$$\rho(\lambda(e))(y) = \begin{cases} \sup\{\lambda(e)(x) : x \in \rho^{-1}(y), & \rho^{-1}(y) \neq \phi \\ \\ 0, & \text{otherewise} \end{cases}$$

That is

$$g(\tilde{\lambda})(k)(y) = \begin{cases} \sup_{e \in \psi^{-1}(k)} \left\{ \sup_{x \in \rho^{-1}(y)} \lambda(e)(x) \right\}, & \rho^{-1}(y) \neq \phi, \psi^{-1}(k) \neq \phi \\ 0, & \text{otherwise.} \end{cases}$$

 $g(\tilde{\lambda})$ is the image of the fuzzy soft set $\tilde{\lambda}$ under the fuzzy mapping $g = (\rho, \psi)$. For a fuzzy soft set $\tilde{\mu}$ in FS(Y, K), $g^{-1}(\tilde{\mu})$ is a fuzzy soft set in FS(X, E) obtained as follows: $g^{-1}(\tilde{\mu})(e)(x) = \rho^{-1}(\tilde{\mu}(\psi(e)))(x)$ for every x in X and $g^{-1}(\tilde{\mu})$ is the inverse image of the fuzzy soft set $\tilde{\mu}$.

Lemma 2.17 [9] : Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be fuzzy soft topological spaces. Let $\rho : X \to Y$ and $\psi : E \to K$ be the two mappings and $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ be a fuzzy soft mapping. Let $\tilde{\lambda}, \tilde{\lambda}_1, (\tilde{\lambda})_i \in FS(X, E)$ and $\tilde{\mu}, \tilde{\mu}_1, (\tilde{\mu}) \in FS(Y, K)$, where $i \in J$ is an index set.

- 1. If $\tilde{\lambda}_1 \subseteq \tilde{\lambda}_2$, then $g(\tilde{\lambda}_1) \subseteq g(\tilde{\lambda}_2)$.
- 2. If $\tilde{\mu}_1 \subseteq \tilde{\mu}_2$, then $g^{-1}(\tilde{\mu}_1) \subseteq g^{-1}(\tilde{\mu}_2)$.
- 3. $\tilde{\lambda} \subseteq g^{-1}(g(\tilde{\lambda}))$, the equality holds if g is injective.
- 4. $g(g^{-1}(\tilde{\mu})) \subseteq \tilde{\mu}$, the equality holds if g is surjective.

5.
$$g^{-1}((\tilde{\mu})^C) = [g^{-1}(\tilde{\mu})]^C$$

6. $[g(\tilde{\lambda})]^C \subseteq g((\tilde{\lambda})^C).$

7.
$$g^{-1}(\tilde{1}_K) = \tilde{1}_E, g^{-1}(\tilde{0}_K) = \tilde{0}_E.$$

- 8. $g(\tilde{1}_g) = \tilde{1}_K$ if g is surjective.
- 9. $g(\tilde{0}_E) = \tilde{0}_K$.

Lemma 2.18 [9]: Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be the two fuzzy soft topological spaces. Let $\rho : X.Y$ and $\psi : E \to K$ be the two mappings and $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ be a fuzzy soft mapping. Let $\tilde{\lambda}, \tilde{\lambda}_1, (\tilde{\lambda})_i \in FS(X, E)$ and $\tilde{\mu}, \tilde{\mu}_1, (\tilde{\mu})_i \in FS(Y, K)$, where J is an index set.

1. $g(\bigcup_{i \in J} \tilde{\lambda}_i) = \bigcup_{i \in J} g(\tilde{\lambda}_i).$ 2. $g(\bigcap_{i \in j} \tilde{\lambda}_i) \subseteq \bigcap_{i \in j} g(\tilde{\lambda}_i)$, the equality holds if g is injective. 3. $g^{-1}(\bigcup_{i \in j} \tilde{\mu}_i) = \bigcup_{i \in j} g^{-1}(\tilde{\mu}_i).$ 4. $g^{-1}(\bigcap_{i \in j} \tilde{\mu}_i) = \bigcap_{i \in j} g^{-1}(\tilde{\mu}_i).$ **Definition 2.19** [13] : Fix $x \in X, 0 < \alpha < 1$. Then the fuzzy subset x^{α} of X is called fuzzy point if

$$x^{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x \\ \\ 0 & \text{if } y \neq x. \end{cases}$$

Definition 2.20 [13]: Fix $x \in X$, $0 < \lambda < 1$, $e \in E$. The fuzzy soft set x_e^{α} over (X, E) is called fuzzy soft point if

$$\begin{aligned} x_e^{\alpha}(e_1) = \begin{cases} x^{\alpha} & \text{for } e_1 = e \\ \\ \overline{0} & \text{otherwise.} \end{cases} \\ x_e^{\alpha}(e_1)(y) = \begin{cases} \alpha & \text{for } e_1 = e, y = x \\ \\ \overline{0} & \text{otherwise.} \end{cases} \end{aligned}$$

Definition 2.21 [4] : Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be the fuzzy soft topological spaces. Let $\rho : X \to Y$ and $\psi : E \to K$ be the two mappings and $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ be a fuzzy soft mapping. Then $g = (\rho, \psi)$ is said to be fuzzy soft continuous if the inverse image of every fuzzy soft open set in $(Y, \tilde{\sigma}, K)$ is fuzzy soft open in $(X, \tilde{\tau}, E)$. That is $g^{-1}(\tilde{\mu}) \in \tilde{\tau}$, for all $\tilde{\mu} \in \tilde{\sigma}$.

3. Fuzzy Soft α -continuity

Definition 3.1 : Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft α - continuous if for each fuzzy soft open set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$, the inverse image $g^{-1}(\tilde{\mu})$ is fuzzy soft α - open set in $(X, \tilde{\tau}, E)$.

Definition 3.2: Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft α - irresolute if for each fuzzy soft α - open set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$, the inverse image $g^{-1}(\tilde{\mu})$ is fuzzy soft α - open set in $(X, \tilde{\tau}, E)$.

Definition 3.3 : Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft α - open mapping if for each fuzzy soft open set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$, the image $g(\tilde{\lambda})$ is fuzzy soft α - open set in $(Y, \tilde{\sigma}, K)$.

Definition 3.4: Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft α - closed if for

164

each fuzzy soft closed set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$, the image $g(\tilde{\lambda})$ is fuzzy soft α - closed set in $(Y, \tilde{\sigma}, K)$.

Proposition 3.5 : For a fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$, the following are equivalent

- (i) g is fuzzy soft α continuous.
- (ii) The inverse image of every fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$ is fuzzy soft α -closed in $(X, \tilde{\tau}, E)$.

Proof : Suppose (i) holds. Let $\tilde{\mu}$ be a fuzzy soft closed in $(Y, \tilde{\sigma}, K)$. Then $(\tilde{\mu})^C$ is fuzzy soft open in $(Y, \tilde{\sigma}, K)$. Using definition 3.1, $g^{-1}((\tilde{\mu})^C)$ is fuzzy soft α -open. Since $g^{-1}((\tilde{\mu})^C) = [g^{-1}(\tilde{\mu})]^C$, $g^{-1}(\tilde{\mu})$ is fuzzy soft α -closed. This proves (i) . (ii).

Conversely we assume that (ii) holds. Let $\tilde{\mu}$ be fuzzy soft open in $(Y, \tilde{\sigma}, K)$. Therefore $(\tilde{\mu})^C$ is fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$. Then by applying (ii), $[g6-1(\tilde{\mu})]^C$ is fuzzy soft α -closed in $(X, \tilde{\tau}, E)$. That implies $g^{-1}(\tilde{\mu})$ is fuzzy soft α -open in $(X, \tilde{\tau}, E)$. This proves (ii) . (i).

Proposition 3.6: For a fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$. If g is fuzzy soft α -irresolute then it is fuzzy soft α -continuous.

Proof: Suppose g is fuzzy soft α - irresolute. Let $\tilde{\mu}$ be a fuzzy soft open set in $(Y, \tilde{\sigma}, K)$. Since every fuzzy soft open set is fuzzy soft α - open and since g is fuzzy soft irresolute, by using Definition 3.2, $g^{-1}(\tilde{\mu})$ is fuzzy soft α -open. That implies g is fuzzy soft α continuous.

Proposition 3.7: A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft α - continuous iff $g^{-1}(\tilde{f}s \operatorname{Int} \tilde{\mu}) \subseteq \tilde{f}s \alpha \operatorname{Int}(g^{-1}(\tilde{\mu}))$ for every fuzzy soft set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$. **Proof**: Let $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft α -continuous. Let $\tilde{\mu}$ be a fuzzy soft set in $(Y, \tilde{\sigma}, K)$. Then $\tilde{f}s \operatorname{Int}(\tilde{\mu})$ is fuzzy soft open in Y. Since g is fuzzy soft α - continuous, by using Definition 3.1, $g^{-1}(\tilde{f}s \operatorname{Int}(\tilde{\mu}))$ is fuzzy soft α - open in $(X, \tilde{\tau}, E)$. Then by using Lemma 2.18, $g^{-1}(\tilde{f}s \operatorname{Int}(\tilde{\mu})) \subseteq g^{-1}(\tilde{\mu})$. This implies that $\tilde{f}s \alpha \operatorname{Int} g^{-1}(\tilde{f}s \operatorname{Int}(\tilde{\mu})) \subseteq \tilde{f}s \alpha \operatorname{Int}(g^{-1}(\tilde{\mu}))$. Therefore $g^{-1}(\tilde{f}s \operatorname{Int}(\tilde{\mu})) \subseteq \tilde{f}s \alpha \operatorname{Int}(g^{-1}(\tilde{\mu}))$.

Conversely we assume that, $g^{-1}(\tilde{f}s \operatorname{Int} \tilde{\mu}) \subseteq \tilde{f}s \alpha \operatorname{Int}(g^{-1}(\tilde{\mu}))$ for every fuzzy soft set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$. In particular the above statement is true for fuzzy soft open sets in

 $\tilde{\mu}$. If $\tilde{\mu}$ is fuzzy soft open sets in Y, $g^{-1}(\tilde{\mu}) \subseteq \tilde{fs} \alpha Int(\tilde{\mu})) \subseteq g^{-1}(\tilde{\mu})$. That implies $g^{-1}(\tilde{\mu}) = \tilde{fs} \alpha Int(g^{-1}(\tilde{\mu}))$ is fuzzy soft α -open. Therefore g is fuzzy soft α - continuous. **Proposition 3.8**: A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft α - continuous iff $g(\tilde{fs} \alpha cl \tilde{\lambda}) \subseteq \tilde{fs} Cl(g(\tilde{\lambda}))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Proof: Let $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft α - continuous. Let $\tilde{\lambda}$ be fuzzy soft set in $(X, \tilde{\tau}, E)$. Then $g(\tilde{\lambda})$ is fuzzy soft set in $(Y, \tilde{\sigma}, K)$. Since g is fuzzy soft α - continuous, by using Definition 3.1, $g^{-1}(\tilde{fs} \ CLg(\tilde{\lambda}))$ is fuzzy soft α - closed in $(X, \tilde{\tau}, E)$. Since $g(\tilde{\lambda}) \subseteq (\tilde{fs} \ Clg(\tilde{\lambda}))$,

$$g^{-1}(g(\tilde{\lambda})) \subseteq g^{-1}(\tilde{fs} \ Clg(\tilde{\lambda})), \tilde{\lambda} \subseteq g^{-1}(g(\tilde{\lambda})) \subseteq g^{-1}(\tilde{fs} \ Clg(\tilde{\lambda})).$$

This implies that

$$(\tilde{fs} \; \alpha \; Cl \; \tilde{\lambda}) \subseteq \tilde{fs} \; \alpha \; Cl(g^{-1}(\tilde{fs} \; Clg(\tilde{\lambda}))) = g^{-1}(\tilde{fs} \; Clg(\lambda)).$$

Therefore $g(\tilde{fs} \alpha \ cl \ \tilde{\lambda}) \subseteq g(g^{-1}(\tilde{fs} \ Clg(\tilde{\lambda}))) \subseteq \tilde{fs} \ Clg(\tilde{\lambda}).$

Conversely we assume that, $g(\tilde{f}s\alpha cl\tilde{\lambda}) \subseteq \tilde{f}sCl(g(\lambda))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Let $\tilde{\mu}$ be a fuzzy soft closed in $(Y, \tilde{\sigma}, K)$. Let $\tilde{\lambda} = g^{-1}(\tilde{\mu})$. Since by our assumption,

$$g(\tilde{fs} \ \alpha \ cl\tilde{\lambda}) \subseteq \tilde{fs} \ Cl(g(\tilde{\lambda})), g(\tilde{fs} \ \alpha \ cl \ g^{-1}(\tilde{\mu})) \subseteq \tilde{fs} \ Clg(g^{-1}(\tilde{\mu})) \subseteq \tilde{fs} \ Cl \ \tilde{\mu}.$$

 $g(\tilde{f}s \alpha cl g^{-1}(\tilde{\mu})) \subseteq \tilde{f}s cl \tilde{\mu} = \tilde{\mu}. g^{-1}(g(\tilde{f}s \alpha cl g^{-1}(\tilde{\mu})) \subseteq g^{-1}(\tilde{\mu}).\tilde{f}s \alpha cl g^{-1}(\tilde{\mu}) \subseteq g^{-1}(\tilde{\mu}).$ This implies that $g^{-1}(\tilde{\mu}) = \tilde{f}s \alpha cl g^{-1}(\tilde{\mu}).$ Therefore $g^{-1}(\tilde{\mu})$ is fuzzy soft α -closed. Hence g is fuzzy soft α -continuous.

Proposition 3.9 : For a fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$. The following are equivalent.

- (i) g is fuzzy soft α -continuous.
- (ii) $g(\tilde{f}s \ \alpha \ cl(\tilde{\lambda})) \subseteq \tilde{f}s \ P \ cl \ g(\tilde{\lambda})$, for every fuzzy soft semi open set $\tilde{\lambda}$.
- (iii) $g(\tilde{f}s \ \alpha \ cl(\tilde{\lambda})) \subseteq \tilde{f}s \ \alpha \ cl \ g(\tilde{\lambda})$, for every fuzzy soft semi pre open set $\tilde{\lambda}$.

Proof : Assume (i) holds. By Proposition 3.8, $g(\tilde{f}s \ \alpha \ cl \ \tilde{\lambda}) \subseteq \tilde{f}s \ cl(g(\tilde{\lambda}))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$. Since $\tilde{f}s \ cl \ (g(\tilde{\lambda})) = \tilde{f}s \ P \ clg(\tilde{\lambda})$, for every fuzzy soft semi open set $\tilde{\lambda}$.

This proves (i) \Rightarrow (ii). Assume (ii) holds, $g(\tilde{f}s \ \alpha \ cl(\tilde{\lambda})) \subseteq \tilde{f}s \ P \ clg(\tilde{\lambda})$, for every fuzzy soft semi open set $\tilde{\lambda}$. Let $\tilde{\mu}$ be fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$ and let $\tilde{\lambda} = g^{-1}(\tilde{\mu})$.

$$\begin{split} g(\tilde{f}s \ \alpha \ cl(g^{-1}(\tilde{\mu}))) \tilde{\subseteq} \tilde{f}s \ P \ clg(g^{-1}(\tilde{\mu})) \tilde{\subseteq} \tilde{f}s \ P \ cl(\tilde{\mu}), \\ g(\tilde{f}s \ \alpha \ cl(g^{-1}(\tilde{\mu}))) \tilde{\subseteq} \tilde{f}s \ Pcl(\tilde{\mu}) = \tilde{\mu}, \\ g^{-1}(g(\tilde{f}s \ \alpha \ cl(g^{-1}(\tilde{\mu}))) \tilde{\subseteq} g^{-1}(\tilde{\mu}), \ g^{-1}(\tilde{\mu}) = \tilde{f}s \ \alpha \ cl(g^{-1}(\tilde{\mu})) \end{split}$$

That implies $g^{-1}(\tilde{\mu})$ is fuzzy soft α -closed. Therefore g is fuzzy soft α -continuous. This proves (ii) \Rightarrow (i).

Assume (i) holds. By Proposition 3.8, $g(\tilde{f}s \ \alpha \ cl\tilde{\lambda}) \subseteq \tilde{f}s \ cl(g(\tilde{\lambda}))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$. Since $\tilde{f}s \ cl(g(\tilde{\lambda})) = \tilde{f}s \ \alpha \ clg(\tilde{\lambda})$, for every fuzzy soft semi pre open set $\tilde{\lambda}$.

This proves (i) \Rightarrow (iii).

Assume (iii) holds, $g(\tilde{f}s \ \alpha \ cl(\tilde{\lambda})) \subseteq \tilde{f}s \ \alpha \ clg(\tilde{\lambda})$, for every fuzzy soft semi pre open set $\tilde{\lambda}$. Let $\tilde{\mu}$ be fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$ and let $\tilde{\lambda} = g^{-1}(\tilde{\mu})$.

$$\begin{split} g(\tilde{f}s \; \alpha \; cl(g^{-1}(\tilde{\mu}))) & \subseteq \tilde{f}s \; \alpha \; clg(g^{-1}(\tilde{\mu})) & \subseteq \tilde{f}s \; \alpha \; cl(\tilde{\mu}), \\ g(\tilde{f}s \; \alpha \; cl(g^{-1}(\tilde{\mu}))) & \subseteq \; \alpha \; cl(\tilde{\mu}) = \tilde{\mu}, \\ g^{-1}(g(\tilde{f}s \; \alpha \; cl(g^{-1}(\tilde{\mu}))) & \subseteq g^{-1}(\tilde{\mu}), \\ g^{-1}(\tilde{\mu}) & = \tilde{f}s \; \alpha \; cl(g^{-1}(\tilde{\mu})). \end{split}$$

That implies $g^{-1}(\tilde{\mu})$ is fuzzy soft α -closed. Therefore g is fuzzy soft α -continuous. This proves (iii) \Rightarrow (i).

Proposition 3.10 : A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft α -open iff $g(\tilde{f}s Int \tilde{\lambda}) \subseteq \tilde{f}s \alpha Intg(\tilde{\lambda})$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Proof: Let $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft = *al*-open. Let $\tilde{\lambda}$ be fuzzy soft open set in $(X, \tilde{\tau}, E)$. Then $\tilde{fs} Int(\tilde{\lambda})$ is fuzzy soft set in $(X, \tilde{\tau}, E)$. Since g is fuzzy soft α -open, by Definition 3.4, $g(\tilde{fs} Int(\tilde{\lambda}))$ is fuzzy soft α - open in $(Y, \tilde{\sigma}, K)$. Then by using Lemma 2.18,

$$g(\tilde{f}s \ Int(\tilde{\lambda})) \subseteq g(\tilde{\lambda}), \tilde{f}s \ \alpha \ Intg(\tilde{f}s \ Int(\tilde{\lambda})) \subseteq \tilde{f}s \ \alpha \ intg(\tilde{\lambda}).$$

Therefore $g(\tilde{f}s \ Int \ \tilde{\lambda}) \subseteq \tilde{f}s \ \alpha \ Intg(\tilde{\lambda})$.

Conversely we assume that $g(\tilde{f}s!Int \ \tilde{\lambda}) \subseteq \tilde{f}s \ \alpha \ Intg(\tilde{\lambda})$ for every fuzzy soft set λ in $(X, \tilde{\tau}, E)$.

In particular the above statement is true for fuzzy soft open sets in $\tilde{\lambda}$. If $\tilde{\lambda}$ is fuzzy soft open in $\tilde{\lambda}$, $g(\tilde{\lambda}) \subseteq \tilde{fs} \alpha Intg(\tilde{\lambda}) \subseteq g(\tilde{\lambda})$. That implies $g(\tilde{\lambda}) = \tilde{fs} \alpha Intg(\tilde{\lambda})$ is fuzzy soft α open. Therefore g is fuzzy soft α -continuous.

Proposition 3.11 : A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft α - closed iff $\tilde{fs} \alpha \ clg(\tilde{\lambda}) \subseteq g(\tilde{fs} \ Cl\tilde{\lambda})$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Proof: Let $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft α -closed. Let $\tilde{\lambda}$ be fuzzy soft set in $(X, \tilde{\tau}, E)$. Then $\tilde{fs} cl(\tilde{\lambda})$ is fuzzy soft closed set in $(X, \tilde{\tau}, E)$. Since g is fuzzy soft α - closed, by Definition 3.5, $g(\tilde{fs} cl(\tilde{\lambda}))$ is fuzzy soft α -closed in $Y, \tilde{\sigma}, K$). Since $g(\tilde{\lambda}) \subseteq g(\tilde{fs} cl(\tilde{\lambda})), (\tilde{fs} \alpha cl(\tilde{\lambda}) \subseteq \tilde{fs} \alpha clg(\tilde{fs} cl(\tilde{\lambda})) = g(\tilde{fs} cl(\tilde{\lambda}))$. Therefore $\tilde{fs} \alpha clg(\tilde{\lambda}) \subseteq g(\tilde{fs} cl(\tilde{\lambda}))$.

Conversely we assume that, $\tilde{fs} \alpha \ clg(\tilde{\lambda}) \subseteq g(\tilde{fs} \ CL \ \tilde{\lambda})$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Let $\tilde{\lambda}$ be fuzzy soft closed in $(X, \tilde{\tau}, E)$. By our assumption, $\tilde{fs} \alpha \ clg(\tilde{\lambda}) \subseteq g(\tilde{fs} \ cl \ \tilde{\lambda}) = g(\tilde{\lambda}) \subseteq \tilde{fs} \ \alpha \ clg(\tilde{\lambda})$. Therefore $g(\tilde{\lambda}) = \tilde{fs} \ \alpha \ clg(\tilde{\lambda})$. Therefore $g(\tilde{\lambda})$ is fuzzy soft α -closed.

Theorem 3.12 : Let $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft mapping. Then the following are equivalent.

- (i) g is fuzzy soft α -continuous.
- (ii) The inverse image of every fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$ is fuzzy soft α -closed in $(X, \tilde{\tau}, E)$.
- (iii) $g^{-1}(\tilde{f}s \operatorname{Int} \tilde{\mu}) \subseteq \tilde{f}s \alpha \operatorname{Int}(g^{-1}(\tilde{\mu}))$ for every fuzzy soft set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$.
- (iv) $g(\tilde{f}s \ \alpha \ cl \ \tilde{\lambda}) \subseteq \tilde{f}s \ cl(g(\tilde{\lambda}))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.
- (v) $g(\tilde{f}s \ \alpha \ cl(\tilde{\lambda})) \subseteq \tilde{f}s \ P \ lg(\tilde{\lambda})$, for every fuzzy soft semi open set $\tilde{\lambda}$.
- (vi) $g(\tilde{f}s \ \alpha \ cl(\tilde{\lambda})) \subseteq \tilde{f}s \ \alpha \ clg(\tilde{\lambda})$, for every fuzzy soft semi pre open set $\tilde{\lambda}$.

Proof: Follows from Proposition 3.5, Proposition 3.7, Proposition 3.8, Proposition 3.9.**Remark 3.13**: The above discussions give the following implication diagram.

Fuzzy soft continuous mapping \rightarrow Fuzzy soft α -continuous mapping.

4. Conclusion

Fuzzy soft α -continuous mappings have been characterized using recent concepts in the literature of fuzzy soft topology.

References

- Ahmad B. and Kharal A., Mappings on fuzzy soft classesh, Advances in Fuzzy Systems, Art.ID:407890, (August 2009), 4-5.
- [2] Akdag Mand Ozkan A., Soft ∝ open sets and soft ∝ continuous, Abstract and Applied Analysis, Article ID 891341, (2014), 7 pages.
- [3] Azad V. K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly, continuity, J. Math. Anal. Appl. 82, (1981), 14-32.
- [4] Banashree Bora, On Fuzzy Soft Continuous Mapping, International Journal for Basic Sciences and Social Sciences (IJBSS), ISSN: 2319-2968, 1(2) (August 2012), 50-64.
- [5] Maji P. K., and Biswas R., Fuzzy Soft Sets, Journal of Fuzzy Mathematics, 9(3) (2001),589-602.
- [6] Maji P. K., Biswas R. and Roy A.R., Soft Set Theory, Computers and Mathematics with Applications, 45(4) (2003), 555-562.
- [7] Mahanta J. and Das P. K., March, Results On Fuzzy Soft Topological Spaces, arXiv:1203.0634v1 (2012), Math.GM., 3 1-11.
- [8] Molodstov D., Soft set Theory, Computers and Mathematics with Applications, 37 (February-March 19990, 19-31.
- [9] Pazar Varol B. and Aygun H., Fuzzy Soft Topology, Hacettepe Journal of Mathematics and Statistics, 41(3) (2012), 407-419.
- [10] Roy S. and Samanta T. A note on fuzzy soft topological spacesh, Annals of Fuzzy Mathematics and Informatics, 3(2) (April 2012), 305-311.
- [11] Reilly I. L. and Vamanmurthy M. K. On α-continuity in topological spaces, Acta mat. Hung, 45(1), 27-32.
- [12] Tanay B. and Burc Kandemir M., Topological structure of fuzzy soft setsh Computers and Mathematics with Applications, 61(1) (May 2011), 2952-2957.
- [13] Tugbahan Simsekler and Saziye Yuksel, Fuzzy Soft Topological Spaces, Annals of Fuzzy Mathematics and Informatics, 5(1) (January 2013), 87-96.
- [14] Zadeh L. A., Fuzzy sets, Information Control, 8 (1965), 338-353.