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Abstract

Let R be a ring with involution ∗. An additive mapping T : R → R is called
a left(respectively right) α-centralizer if T (xy) = T (x)α(y) (respectively T (xy) =
α(x)T (y)), for all x, y ∈ R. The purpose of this paper is to examine the com-
mutativity of prime rings with involution satisfying certain identities involving left
α-centralizers.

1. Introduction

Throughout this article, R will represent an associative ring with centre Z(R). A ring

R is said to be 2-torsion free if 2a = 0 (where a ∈ R) implies a = 0. A ring R is

called a prime ring if aRb = (0) (where a, b ∈ R) implies a = 0 or b = 0. We write

[x, y] = xy − yx. An additive map x → x∗ of R into itself is called an involution if

(i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x holds for all x, y ∈ R. A ring equipped with an

involution ∗ is known as ring with involution or ∗-ring. An element x in a ring with

involution ∗ is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets
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of all hermitian and skewhermitian elements of R will be denoted by H(R) and S(R),

respectively. If R is 2-torsion free then every x ∈ R can be uniquely represented in the

form 2x = h+k, where h ∈ H(R) and k ∈ S(R). Note that x is normal, i.e., xx∗ = x∗x,

if and only if h and k commute. If all elements in R are normal, then R is called a

normal ring. An example of the normal ring is the ring of quaternions. A description

of such rings can be found in [7].

Following [16], an additive mapping T : R → R is said to be a left (respectively right)

centralizer (multiplier) of R if T (xy) = T (x)y (respectively T (xy) = xT (y)), for all

x, y ∈ R. An additive mapping T is called centralizer in case T is a left and a right

centralizer of R. Considerable work has been done on left (respectively right) centralizers

in prime and semiprime rings during the last few decades (see for example [1-3, 6, 9,

10, 13-15 and 16]) where further references can be found.

Recently, E. Albas [1] introduced the notion of α-centralizers of R, i.e., an additive

mapping T : R→ R is called a left (resp. right) α-centralizer of R if T (xy) = T (x)α(y)

(resp. T (xy) = α(x)T (y)) holds for all x, y ∈ R, where α is an endomorphism of R. If

T is both left as well as right α-centralizer, then we call T an α-centralizer. It is clear

that for an additive mapping T : R→ R associated with a homomorphism α : R→ R,

if La(x) = aα(x) and Ra(x) = α(x)a for a fixed element a ∈ R and for all x ∈ R, then

La is a left α-centralizer and Ra is a right α-centralizer. Clearly every multiplier is a

special case of an α-multiplier with α = idR, the identity map on R. Recently Ali and

Dar [2] proved that if a prime ring with involution admits a left centralizer T : R→ R

such that T ([x, x∗])± [x, x∗] = 0, for all x ∈ R, then R is commutative. Moreover, in [3]

some related results involving left centralizers have also been discussed. In [9] Oukhtite

established similar problems for certain situations involving left centralizers acting on

Lie ideals.

In this paper, we shall consider similar problems when the ring R is equipped with a

fixed involution ∗ even in more general setting by replacing centralizer with α central-

izer. More precisely, we prove that if a prime ring with involution such that char (R) 6= 2

admits a left α-centralizer T : R→ R satisfying any one of the following conditions: (i)

T (xx∗)±α(xx∗) = 0, (ii) α(x)T (x∗)±T (x)α(x∗) = 0 and (iii) T (x)T (x∗)±α(xx∗) = 0,

for all x ∈ R, then either T is a centralizer or R is normal.
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Main Results

Theorem 2.1 : Let R be a prime ring with involution ∗ and α be an automorphism. If

T is a left α-centralizer of R such that T (xx∗)± α(xx∗) = 0, for all x ∈ R, then either

T is a centralizer or R is normal.

Proof : First we consider the case T (xx∗) − α(xx∗) = 0 for all x ∈ R. This can be

further written as

T (x)α(x∗)− α(xx∗) = 0, for all x ∈ R. (2.1)

Linearizing the above relation, we get

T (x)α(y∗) + T (y)α(x∗)− α(xy∗)− α(yx∗) = 0, for all x, y ∈ R. (2.2)

Replacing y by yx in (2.2), we obtain

T (x)α(x∗y∗) + T (y)α(xx∗)− α(xx∗y∗)− α(yxx∗) = 0.

Application of (2.1) yields that

T (y)α(xx∗)− α(yxx∗) = 0, for all x, y ∈ R. (2.3)

Substituting zy for y in (2.3), we have

T (z)α(yxx∗)− α(zyxx∗) = 0, for all x, y, z ∈ R. (2.4)

Left multiplication to (2.3) by α(z) yields that

α(z)T (y)α(xx∗)− α(zyxx∗) = 0, for all x, y, z ∈ R. (2.5)

Subtracting (2.4) from (2.5), we obtain

α(z)T (y)α(xx∗)− T (z)α(yxx∗) = 0, for all x, y, z ∈ R. (2.6)

Substituting yr for y in (2.6) to get α(z)T (y)α(rxx∗) − T (z)α(yrxx∗) = 0, for all

x, y, z, r ∈ R which can be further written as

(α(z)T (y)− T (z)α(y))α(rxx∗) = 0, for all x, y, z, r ∈ R. (2.7)

Replacing x by x∗ in (2.7), we find that

(α(z)T (y)− T (z)α(y))α(rx∗x) = 0, for all x, y, z, r ∈ R. (2.8)
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Subtracting (2.8) from (2.7), we obtain

(α(z)T (y)− T (z)α(y))α(r[x, x∗] = 0, for all x, y, z, r ∈ R.

This implies that (α(z)T (y) − T (z)α(y))Rα([x, x∗] = (0), for all x, y, z ∈ R. Thus

by the primeness of R, we have either α(z)T (y) − T (z)α(y) = 0, for all y, z ∈ R or

α([x;x∗] = 0, for all x ∈ R. Now if α(z)T (y) = T (z)α(y) = 0, for all y, z ∈ R. That is,

α(z)T (y) = T (z)α(y). Then T is also a right α-centralizer of R and hence a α-centralizer

of R. On the other hand, if α([x;x∗]) = 0, for all x ∈ R, that is [x, x∗] = 0, then R is

normal.

By the same arguments, we obtain the same conclusion in case T (xx∗) + α(xx∗) = 0,

for all x ∈ R. This proves the theorem.

By similar arguments as above with necessary variation, we can prove the following

theorem.

Theorem 2.2 : Let R be a prime ring with involution ∗ and α be an automorphism. If

T is a left α-centralizer of R such that T (x∗x)± α(x∗x) = 0, for all x ∈ R, then either

T is a centralizer or R is normal.

Theorem 2.3 : Let R be a prime ring with involution ∗ and α is an automorphism. If

T is a left α-centralizer of R such that α(x)T (x∗)± T (x)α(x∗) = 0, for all x ∈ R, then

either T is a centralizer or R is normal.

Proof : First we consider the case

α(x)T (x∗)− T (x)α(∗) = 0, for all x ∈ R. (2.9)

Linearizing the above relation, we get

α(x)T (y∗)− T (x)α(y∗) + α(y)T (x∗)− T (y)α(x∗) = 0, for all x, y ∈ R. (2.10)

Replacing y by yx in (2.10) and using (2.9), we obtain

T (y)α(xx∗)− α(yx)T (x∗) = 0, for all x, y ∈ R. (2.11)

Substituting zy for y in (2.11), we have

T (z)α(yxx∗)− α(zyx)T (x∗) = 0, for all x, y, z ∈ R. (2.12)
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Left multiplying (2.11) by α(z) yields that

α(z)T (y)λ(xx∗)− α(zyx)T (x∗) = 0, for all x, y, z ∈ R. ((2.13)

Subtracting (2.12) from (2.13), we obtain

T (z)α(yxx∗)− α(z)T (y)α(xx∗) = 0, for all x, y, z ∈ R. (2.14)

Substituting yr for y in (2.14) we get

(α(z)T (y)− T (z)α(y))α(rxx∗) = 0, for all x, y, z ∈ R. (2.15)

The above equation is same as (2.8) and henceforward using the same approach as we

have used in the last paragraph of the proof of Theorem 2.1, we get the required result.

By the same arguments, we obtain the same conclusion in case α(x)T (x∗)+T (x)α(x∗) =

0, for all x ∈ R. This proves the theorem.

Theorem 2.4 : Let R be a prime ring with involution ∗ and α is an automorphism.

If T is a left α-centralizer of R such that T (x)T (x∗) ± α(xx∗) = 0, for all x ∈ R, then

either T is a α-centralizer or R is normal.

Proof : First we consider the situation

T (x)T (x∗)− α(xx∗) = 0, for all x ∈ R. (2.16)

Replacing x by x+ y, we get

T (x)T (y∗)− α(xy∗) + T (y)T (x∗)− α(yx∗) = 0, for all x, y ∈ R. (2.17)

Substituting yx for y in (2.17), we obtain

T (x)T (x∗)α(y∗ − α(xx∗y∗) + T (y)α(x)T (x∗)− α(yxx∗) = 0, or all x, y ∈ R.

In view of (2.16), the above expression reduces to

T (y)α(x)T (x∗)− α(yxx∗) = 0, for all x, y ∈ R. (2.18)

Replace y by zy in (2.18) to get

T (z)α(yx)T (x∗)− α(zyxx∗) = 0, for all x, y, z ∈ R. (2.19)
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Left multiplying (2.18) by α(z), we get

α(z)T (y)α(x)T (x∗)− α(zyxx∗) = 0, for all x, y, z ∈ R. (2.20)

Subtracting (2.20) from (2.19), we obtain

α(z)T (y)α(x)T (x∗)− T (z)α(yx)T (x∗) = 0, for all x, y, z ∈ R. (2.21)

Substituting yr for y in (2.21), we find that

α(z)T (y)α(rx)T (x∗)− T (z)α(yrx)T (x∗) = 0, for all x, y, z, r ∈ R.

This implies that

(α(z)T (y)− T (z)α(y))α(rx)T (x∗) = 0, for all x, y, z, r ∈ R. (2.22)

That is, (α(z)T (y) − T (z)α(y))Rα(x)T (x∗) = (0), for all x, y, z ∈ R. Thus by the

primeness of R, we find that either α(z)T (y) − T (z)α(y) = 0, for all y, z ∈ R or

α(x)T (x∗) = 0, for all x ∈ R. If α(z)T (y) − T (z)α(y) = 0 i.e., T (z)α(y) = α(z)T (y),

for all y, z ∈ R, then T is also a right α-centralizer and hence a α-centralizer on R. On

the other hand, suppose α(x)T (x∗) = 0, for all x ∈ R. This gives T (y)α(x)T (x∗) = 0,

for all x, y ∈ R. Hence (2.16) reduces to α(yxx∗) = 0, for all x, y ∈ R. Replacing y by

yr in the above relation, we obtain

α(yrxx∗) = 0, for all x, y, r ∈ R. (2.23)

Replacing x by x∗ in (2.23), we have

α(yrx∗x) = 0, for all x, y, r ∈ R. (2.24)

Subtracting (2.24) from (2.23), we obtain α(yr[x, x∗]) = 0, for all x, y, r ∈ R. This

implies that α([x, x∗])Rα([x, x∗]) = (0), for all x ∈ R. Since R is prime and α is

automorphism, the last expression forces that [x, x∗] = 0, for all x ∈ R.

Similar conclusion holds for the case T (x)T (x∗) + α(xx∗) = 0, for all x ∈ R. This

finishes the second case, and so the theorem is proved.
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