
International J. of Math. Sci. & Engg. Appls. (IJMSEA)

ISSN 0973-9424, Vol. 11 No. I (April, 2017), pp. 185-193

A NEW RANDOM NUMBER GENERATOR USING FIBONACCI

SERIES

KOTTA NAGALAKSHMI RACHANA1 AND SOUBHIK CHAKRABORTY2

1,2 Department of Mathematics,
BIT Mesra, Ranchi-835215, Jharkhand, India

Abstract

Extensive research is going on for developing good random number generators
(RNG). No RNG is full proof. One problem is cycle. Another, perhaps bigger
problem is that numbers generated from an arbitrary seed may not be random.
In this paper we are trying to develop a new random number generator using Fi-
bonacci series. In doing so an application of Fibonacci series combined with linear
congruential method would be explored. Our model which uses Fibonacci series
requires a division by the seed which eliminates the problem of cycle in random
numbers which is otherwise present in linear congruential method. Hence the tech-
nique so proposed can be considered as an improvement. Our proposed method
is also efficient in that numbers of arbitrary length generated from arbitrary po-
sitions were tested by run test for randomness and found to be random. This is
achieved through programs run in Dev C++ software. Hence the second problem
of improper seed selection stands resolved.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Key Words : Random number generator, Linear congruential method, Fibonacci series, seed,

Cycle, Run test for randomness.

AMS Subject Classification : 62P99.

c© http: //www.ascent-journals.com

185

186 KOTTA NAGALAKSHMI RACHANA & SOUBHIK CHAKRABORTY

The paper is organised as follows. Section 1 is the introduction; section 2 gives the state

of the art. The proposed model and the testing algorithm are explained in section 3

followed by experimental results in section 4. Sections 5 and 6 are reserved for discussion

and concluding remarks respectively.

1. Introduction

Random number may be defined as any number whose occurrence of digits cannot be

predicted basing on past value. Random number generation is a method to generate

numbers in a random manner to acquire random characteristics. Unpredictable charac-

ter of a random number has uncountable applications. Random processes are the raw

materials of classical statistical inferences. In statistical methods in research most of

the applications require a “random sample” to study the whole population, since the

law of statistical regularity states that only a random sample represents a population.

In the development of statistical methods also random processes’ observations may be

used. Not only in statistical field, but also in other areas like Cryptography (for en-

cryption, key generation) in the medical field for the randomized control trails (RCT)

in scientific modelling in Video poker machines which require to deal with random card

sequences using a virtual deck of cards and for developing different game, we would be

requiring the exploration of efficient random number generators. Some of the important

applications in secured systems would require efficient random numbers to evade from

breaking of a given designed algorithm. Different necessities employ different types of

random numbers.

In order to terminate the cycle of pseudo-random numbers, i.e., in the case of linear

congruential generator it has combined with Fibonacci numbers followed by a division

by the seed. Mastumoto (2007) et.al. suggested that most RNG fail due to improper

seed selection and this led us to chose a random seed for its initialization. To test

randomness of the sequence generated by our developed RNG, it would undergo the

Wald-Wolfowitz runs test. A run of a sequence is a maximal non empty segment of the

sequence consisting of adjacent equal elements. Or we may say a run is a sequence of

letters of the one kind surrounded by a sequence of letters of the other kind (except

the first and last position where it is only followed by or preceded by respectively).

The program developed in Dev C++ of the pseudo code given in section 3 would give

the generated sequence as well as a percentage pass of the run test for sub strings of

A NEW RANDOM NUMBER GENERATOR... 187

arbitrary length taken from arbitrary positions.

2. State of the Art

Lehmer (1951) proposed the linear congruential method which is a pseudo-random num-

ber generator (PRNG) with additive constant (C) as zero. Usage of additive constant

as non zero was done in further research. Thomson (1958) developed a modified congru-

ence method of generating pseudo-random Numbers, Franklin (1958) researched on the

equidistribution of pseudo-random Numbers, Rotenberg (1960) proposed a new RNG,

and Greenbereger (1961) gave notes on a new PRNG. Tausworthe (1965) proposed a

generator that produces numbers which are generated by modulo 2 linear recurrence

techniques long used to generate binary codes for communications. Panneton, et.al

(2006) proposed a fast uniform RNG with extremely long periods have been defined

and implemented based on linear recurrences modulo 2. Mastumoto et.al (2007) have

experimented with 58 RNG and found 40 to be defective, unwanted pattern caused by

non systematic choice of seed rather than recurrence as mentioned earlier. Further lit-

erature can be found in Kennedy and Gentle (1980). For applications of pseudorandom

numbers in cryptography, we refer the reader to Luby (1996). A more recent book on

computational statistics is by Gentle (2009).

3. Methodology

a. Our New Random Number Generator :

Our new RNG has the following equations:

Xi+1 =

(
a ∗Xi + c + int

(
fi
X0

))
(mod m) for i = 0, 1, 2, · · ·

where X : sequence of random numbers, X0 : seed value /or arbitrary position.

Xi, a, c,m are integers, int : takes integral part.

fi : i-th element of the Fibonacci series (fi = fi−1 + fi−2) we are choosing a = 5, c = 1,

m = 232 (see the remark below).

Remark, : The values of a and c are to be selected so that the period (length of a

cycle) of a RNG is maximized. In our case there is no cycle and so we are dropping the

constraint in choosing the values of a, c strictly. For illustrative purpose, we take a = 5

and c = 1.

188 KOTTA NAGALAKSHMI RACHANA & SOUBHIK CHAKRABORTY

b. Verifying the Goodness of our New RNG Through Run Test of Random-

ness :

We re-emphasize that the proposed RNG would be better in the absence of a cycle and

the ability of the RNG to generate numbers of arbitrary length even from arbitrary seed

passing the randomness test successfully. We would take samples of different sizes from

the arbitrary position of the sequence generated by the random number generator. We

would take null hypothesis HO as the sequence of observations is random and alternating

hypothesis H1 as the sequence of observations is not random.

Run Test of Randomness :

Let R is a random number which takes the number of runs in a given sequence, For

each sequence of digits, runs of the sequence would be counted and expected number of

runs and its variance of a given sequence would be counted using formulae given below

E(R) =
n + 2

2
and V ar(R) =

n

4

(
n− 2

n− 1

)
where n is the size of the sequence generated (including seed).

For large n(> 25), R may be regarded as asymptotically normal and we may use the

normal test using statistic Z = R−E(R)√
V ar(R)

∼ N(0, 1), asymptotically.

If |Z| calulated < 1.96, we may accept the null hypothesis at 5% level of significance

otherwise reject null hypothesis.

This test would be repeated for different samples sizes and from arbitrary positions.

c. Algorithm to Test the Randomness of Sequence Generated for a Given

length n and from an Arbitrary Position (seed) :

Step 1 : Initialize the values as a = 5, c = 1,m = 232.

Step 2 : Input size of the sample and store in n.

Step 3 : Generate Fibonacci series and store it in an array f [n].

Step 4 : X[0] is initialized with random number using rand () for arbitrary position.

Step 5 : Generate sequence using

X[i + 1] = (a ∗X[i] + c + f [n]/X[0]) modm,

store it in an array X[n].

Step 6 : From i = 0 to n

Print all the elements of X[i].

A NEW RANDOM NUMBER GENERATOR... 189

Step 7 : To find the median

• sort the elements from i = 0 to n in ascending order

• if n + 1 is even (including seed value odd n will be even) then median = mean of[
(n+1)

2

]th
and

[[
(n+1)

2

]
+ 1
]th

term

• if n+1 is odd (including seed value even n will be odd) then median =
[
((n+1)+1)

2

]th
term.

Step 8 : From the first digit to the unsorted array,

• Write L’, if the digit is less than the median, or

• Write ‘U ’, if the digit is greater than or equal to the median.

Step 9 : Store all characters in a string str[n], which is obtained from previous step.

Step 10 : Initialize a new character variable i with the first character of str[n] and set

R = 1.

Step 11 : From i = 1 to n

Check If (str[i]! = str[i − 1]) increment R by 1 (“!=” implies not equal to) value of R

gives the number of runs in the string.

Step 12 : R is asymptotically normal with

Mean E(R) = ((n + 1) + 2)/2

Variance V ar(R) = (n + 1)((n + 1)− 2)/4((n + 1)− 1)

Calculate Z = [R− E(R)]/
√

V ar(R) under H0

Z ∼ N(0, 1) for n(> 25).

Step 13 : If |Z| < 1.96, subsequence may be taken as random at 5% level of significance.

4. Experimental Results

a. To test the non cyclic nature of our RNG:

Figures 1 and 2 give some screenshots to display and compare the nature of linear

congruential generator with that of our developed RNG. In fig. 1, the presence of cycle

has been highlighted. There is no cycle in our developed RNG (fig. 2).

190 KOTTA NAGALAKSHMI RACHANA & SOUBHIK CHAKRABORTY

To test the randomness of substrings of arbitrary lengths taken from arbitrary positions,

table 1 is of interest.

Table 1 : Results of run test on arbitrary substrings and number of passes (score) out

of 10 trails of the substring of given length.

Length (n) Score out of 10

40 8

50 7

60 8

70 7

80 8

90 8

100 7

A NEW RANDOM NUMBER GENERATOR... 191

Length (n) Score out of 10

110 9

120 7

130 9

140 9

150 8

160 10

170 7

180 9

190 7

200 10

210 10

220 10

230 10

240 8

250 7

260 8

270 9

280 9

290 8

300 10

310 10

320 8

330 9

340 8

350 9

360 10

370 10

380 9

390 9

400 10

410 8

420 9

430 10

192 KOTTA NAGALAKSHMI RACHANA & SOUBHIK CHAKRABORTY

Length (n) Score out of 10

440 7

450 10

460 10

470 8

480 9

490 10

500 9

5. Discussion

Our model which uses Fibonacci series requires a division by the seed which eliminates

the problem of cycle in random numbers which is otherwise present in linear congruential

method. Hence the technique so proposed can be considered as an improvement. Our

proposed method is also efficient in that numbers of arbitrary length generated from

arbitrary positions were tested by run test for randomness and found to be random

in general. Let us call this new method FLRNG with the letters F and L

standing for Fibonacci and Lehmer respectively.

Supplementing only Fibonacci element to LCG gives cycle for different m values. In

order to terminate the cycle Fibonacci element has to be divided with seed and integral

part of the division should be equipped to the LCG. Experimenting with other values

of a and c is reserved as a rewarding future work.

6. Concluding Remarks

A great deal of research has been done in generating a sequence which looks like random

as well as truly random (a truly random sequence is one whose Kolmogorov complexity

equals its own length or in simpler words to generate which we would require a program

at least as long as the sequence itself). True random numbers have lots of efficient roles

in weighty applications. The study of our RNG and its analysis, done upto sample size

of 64,000 in this paper to develop a RNG with a devise of equipping linear congruental

generator with integral part of Fibonacci number divided with a given seed, confirms

that the sequence generated does not produce cycle. In order to avoid the complexity of

culling the inappropriate seed, we are picking a seed randomly (substrings, of arbitrary

lengths were taken from arbitrary positions). With these results we could eventually

conclude that the developed RNG is a good generator.

A NEW RANDOM NUMBER GENERATOR... 193

References

[1] Lehmer D. H., Mathematical Methods in Large-scale Computing Units, Proceed-
ings of the Second Symposium on Large Scale Digital Computing Machinery,
Harvard University Press, Cambridge, (1951), 141-146.

[2] Thomson W. E., A Modified Congruence Method Of Generating Pseudo-Random
Numbers, Comp. J., 1 (1958), 83, 86.

[3] Franklin J. N., On the Equidistribution of Pseudo-Random Numbers, Quart.
Appl. Math., 16 (1958), 183-188.

[4] Rotenberg A., A New Random Number Generator, JACM, 7 (1960), 75-77.

[5] Greenbereger M., Notes on a New Pseudo-Random Number Generator, JACM,
8 (1961), 163-167.

[6] Tausworthe R. C., Random Numbers Generated by Linear Recurrence Modulo
Two, Math. Comp., 19 (1965), 201-209.

[7] Kennedy W. and Gentle J., Statistical Computing, Marcel Dekker Inc. (1980).

[8] Panneton F. P., L’Ecuyer and Matsumoto M., Improved Long- Period Generators
Based on Linear Reccurences Modulo 2, ACM Transactions on Mathematical
Software, 32(1) (March 2006), 1-16.

[9] Mastumoto M., Wada I., Kuramoto A., Ashihara H., Common defects in Intial-
ization of Pseudo-Random Number Generator, ACM Transcations on Modelling
& Computing Simulation, 17(4) (2007).

[10] Luby M., Pseudorandomness and Cryptographic Applications, Princeton Univ
Press, (1996).

[11] Gentle J., Computational Statistics, Springer Pub. Co. Inc. N.Y., (2009).

