International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 11 No. I (April, 2017), pp. 11-17

PROXIMATE GOL'DBERG ORDER OF AN ENTIRE FUNCTION IN SEVERAL COMPLEX VARIABLES

BIBHAS CHANDRA MONDAL ${ }^{1}$, MONALISA MIDDYA ${ }^{2}$ AND CHETNA SINGH ${ }^{3}$
${ }^{1}$ Department of Mathematics, Surendranath College, 24/2, M.G. Road, Kolkata 700009, India
${ }^{2}$ Department of Mathematics, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
${ }^{3}$ Department of Basic Science and Humanities,
Institute of Engineering \& Management, D-1, Sector 5, Salt Lake Electronics Complex, Kolkata 700091, India

Abstract

In this paper the concept of Proximate Gol'dberg order in several complex variables has been introduced and the existence has been proved.

1. Introduction

Let $f: \mathcal{C}^{n} \rightarrow \mathcal{C}$ be an entire function and $D \subset \mathcal{C}^{n}$ be an arbitrary bounded complete n-circular domain, centered at the origin, that is $D=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathcal{C}^{n}:\left|z_{1}\right| \leq\right.$ $\left.r_{1}, \ldots,\left|z_{n}\right| \leq r_{n}\right\}$ for some $r_{1}, \ldots, r_{n}>0$ For $R>0, R$ Real, the maximum modulus function is $M_{f, D}(R)=\sup \left\{|f(z)|: z \in D_{R}\right\}$ where $D_{R}=\left\{z: \frac{z}{R} \in D\right\}$ The Gol'dberg order ρ of f with respect to the domain D is defined as [1]

Key Words : Gol'dberg order, Proximate Gol'dberg order.
AMS Subject Classification : Primary 30B50, Secondary 30D99.
(c) http: //www.ascent-journals.com

$$
\rho=\limsup _{R \rightarrow \infty} \frac{\log \log M_{f, D}(R)}{\log R}
$$

The growth rate of entire functions are measured by order and type of the function. To refine the growth of functions whose orders are same but are of infinite type, the concept of proximate order was introduced by G. Valiron[3]. Proximate order is considered as the intermediate comparison function which refines the growth scale of functions with same order but of types at infinity and therefore it makes no sense to consider the maximal or minimal types of a function. The proof of existence of Proximate order, given by G. Valiron [3] was simplified by S. M. Shah [2], without using any special properties of maximum modulus function and hence that proof has wider scope.
In this paper we have proved the existence of proximate order of an entire function in several complex variables with finite Gol'dberg order. To prove this, we follow the path shown by S. M. Shah [2] in which he simplified the proof of existence of proximate order in single variable.
Definition 1.1 : The positive continuous function $\rho_{D}(R)$, satisfying the following properties:

1. $\rho_{D}(R)$ is differentiable for all large R except for some isolated points where $\rho_{D}^{\prime}(R-$ $0)$ and $\rho_{D}^{\prime}(R+0)$ exists.
2. $\lim _{R \rightarrow \infty} \rho_{D}(R)=\rho$
3. $\lim _{R \rightarrow \infty} R \rho_{D}^{\prime}(R) \log R=0$
4. $\lim \sup _{R \rightarrow \infty} \frac{\log M_{f, D}(R)}{R^{\rho} D^{(R)}}=1$,
is called the proximate Gol'dberg order of an entire function f in several complex variables.

Although the order of a function independent of domain D, proximate Gol'dberg order depends on the domain D. We now give proof of the existence of such proximate Gol'dberg order in several variables.

Proof : The Gol'dberg order ρ of a multiple entire function f is given by

$$
\rho=\limsup _{R \rightarrow \infty} \frac{\log \log M_{f, D}(R)}{\log R}
$$

Let us take $\sigma_{D}(R)=\frac{\log \log M_{f, D}(R)}{\log R}$.
Then $\lim \sup _{R \rightarrow \infty} \sigma_{D}(R)=\rho$.
There are two possible cases:

- Case (A) : $\sigma_{D}(R)>\rho$ for a sequence of values of R tending to infinity
- Case (B) : $\sigma_{D}(R) \leq \rho$ for all large R

Case (A) : $\sigma_{D}(R)>\rho$ for a sequence of values of R tending to infinity. Here we define, for all real $R>0$,

$$
\phi_{D}(R)=\max _{X \geq R}\left\{\sigma_{D}(X)\right\}
$$

Such maximum value exists because $\sigma_{D}(R)$ is continuous by it's definition, $\limsup _{R \rightarrow \infty} \sigma_{D}(R)=$ ρ exists finitely and also $\sigma_{D}(R)>\rho$ for a sequence of values of R tending to infinity. Now

$$
\max _{X \geq X_{1}}\left\{\sigma_{D}(X)\right\} \geq \max _{X \geq X_{2}}\left\{\sigma_{D}(X)\right\} \quad \text { for } \quad X_{1} \leq X_{2}
$$

Therefore $\phi_{D}(R)$ is a non-increasing function of R.
Let R_{1} be a sufficiently large positive real number such that $\phi_{D}\left(R_{1}\right)=\sigma_{D}\left(R_{1}\right)$ that is $\max _{X \geq R_{1}}\left\{\sigma_{D}(X)\right\}$ occurs at R_{1}. Such R_{1} will exist for a sequence of values tending to infinity.
We now define the function $\rho_{D}(R)$ by

$$
\rho_{D}\left(R_{1}\right)=\phi_{D}\left(R_{1}\right)
$$

Let S_{1} be the smallest integer not less than $1+R_{1}$ such that $\phi_{D}\left(R_{1}\right)>\phi_{D}\left(S_{1}\right)$
For $R_{1} \leq R \leq S_{1}$, let

$$
\rho_{D}(R)=\rho_{D}\left(R_{1}\right)=\phi_{D}\left(R_{1}\right)
$$

Define $U_{1}>S_{1}$ as follows

$$
\begin{aligned}
& \rho_{D}(R)=\rho_{D}\left(R_{1}\right)-\log \log \log R+\log \log \log S_{1} \text { for } S_{1} \leq R \leq U_{1} \\
& \rho_{D}(R)=\phi_{D}(R) \text { at } R=U_{1}
\end{aligned}
$$

Now for $S_{1} \leq R \leq U_{1}, \log \log \log S_{1} \leq \log \log \log R$

$$
\begin{equation*}
\rho_{D}(R)>\phi_{D}(R) \text { on } S_{1} \leq R<U_{1} \tag{1.1}
\end{equation*}
$$

Let R_{2} be the smallest value of R for which $R_{2} \geq U_{1}$ and $\phi_{D}\left(R_{2}\right)=\sigma_{D}\left(R_{2}\right)$. that is $\max _{X \geq R_{2}}\left\{\sigma_{D}(X)\right\}$ has been attained at R_{2}.
If $R_{2}>U_{1}$, then let

$$
\rho_{D}(R)=\phi_{D}(R) \quad \text { on } \quad U_{1} \leq R \leq R_{2}
$$

Now $\phi_{D}(R)$ is constant on $U_{1} \leq R \leq R_{2}$ therefore $\rho_{D}(R)$ also will be constant on $U_{1} \leq R \leq R_{2}$
Repeating this argument, we obtain that $\rho_{D}(R)$ is differentiable except for a countable number of isolated points and in the adjacent intervals $\rho_{D}^{\prime}(R)=0$ or $\rho_{D}^{\prime}(R)=$ $-\frac{1}{R \log R \log \log R}$.
By construction of $\rho_{D}(R)$ and the argument in definition (1.1), we have $\rho_{D}(R) \geq \phi_{D}(R)$.
Also since $\phi_{D}(R)=\max _{X \geq R}\left\{\sigma_{D}(X)\right\}$, therefore $\rho_{D}(R) \geq \phi_{D}(R) \geq \sigma_{D}(R)$ for all $R \geq R_{1}$
Further we choose R_{1}, R_{2}, \ldots tending to infinity such that

$$
\rho_{D}(R)=\phi_{D}(R)=\sigma_{D}(R)
$$

where $\rho_{D}(R)$ is non-increasing and $\lim _{R \rightarrow \infty} \sigma_{D}(R)=\rho$.
Therefore

$$
\lim _{R \rightarrow \infty} \rho_{D}(R)=\rho
$$

Thus proposition (2) of definition of proximate order is proved.
Now if $\rho_{D}^{\prime}(R)=0$,

$$
\lim _{R \rightarrow \infty} R \rho_{D}^{\prime}(R) \log R=0
$$

. Otherwise $\rho_{D}^{\prime}(R)=-\frac{1}{R \log R \log \log R}$ implies

$$
\lim _{R \rightarrow \infty} R \rho_{D}^{\prime}(R) \log R=\lim _{R \rightarrow \infty}-\frac{1}{\log \log R}=0
$$

Thus proposition (3) of definition of proximate order is also proved.
Since $\sigma_{D}(R)=\frac{\log \log M_{f, D}(R)}{\log R}$ that implies

$$
\begin{aligned}
\log (R)^{\sigma_{D}(R)} & =\log \log M_{f, D}(R) \\
& \Rightarrow \log M_{f, D}(R)=R^{\sigma_{D}(R)} \\
& =R^{\rho_{D}(R)}
\end{aligned}
$$

for an infinite number of values of R tending to infinity and for remaining R,

$$
\log M_{f, D}(R)<R^{\rho_{D}(R)}
$$

Therefore

$$
\limsup _{R \rightarrow \infty} \frac{\log M_{f, D}(R)}{R^{\rho_{D}(R)}}=1
$$

Case (B) : $\sigma_{D}(R) \leq \rho$ for all large R. There are two subcases under this case.

- subcase (i) : $\sigma_{D}(R)=\rho$ for at least a sequence of values of R tending to infinity.
- subcase(ii) : $\sigma_{D}(R)<\rho$ for all large R
subcase (i): Here we define $\rho_{D}(R)=\rho$ for all values of R.
subcase (ii): Let us take X, sufficiently large positive number such that $\sigma_{D}(R)<\rho$ whenever $R>X$.
Let

$$
\xi_{D}(R)=\max _{X \leq X^{\prime} \leq R}\left\{\sigma_{D}\left(X^{\prime}\right)\right\} \quad \text { for } \quad R>X
$$

Now for $X<R_{1} \leq R_{2}$

$$
\max _{X \leq X^{\prime} \leq R_{1}}\left\{\sigma_{D}\left(X^{\prime}\right)\right\} \leq \max _{X \leq X^{\prime} \leq R_{2}}\left\{\sigma_{D}\left(X^{\prime}\right)\right\}
$$

Hence $\xi_{D}(R), R>X$, is a non decreasing function. Now we take suitably large $R_{1}>X$ and define

$$
\rho_{D}\left(R_{1}\right)=\rho
$$

Let us take a point $S_{1}<R_{1}$ such that

$$
\begin{aligned}
& \rho_{D}(R) \\
\text { and } & \rho_{D}(R) \\
\text { a } & =\xi_{D}(R) \text { at } \log \log R-\log \log \log R_{1} \quad \text { for } \quad S_{1} \leq R \leq R_{1}
\end{aligned}
$$

If $\xi_{D}\left(S_{1}\right) \neq \sigma_{D}\left(S_{1}\right)$, that is the $\max _{X \leq X^{\prime} \leq S_{1}}\left\{\sigma_{D}\left(X^{\prime}\right)\right\}$ is not attained at $X=S_{1}$, then there must be some point $T_{1}<S_{1}$ nearest to S_{1} at which $\max _{X \leq X^{\prime} \leq T_{1}}\left\{\sigma_{D}\left(X^{\prime}\right)\right\}$ is attained i.e. $\xi_{D}\left(T_{1}\right)=\sigma_{D}\left(T_{1}\right)$.
We define

$$
\rho_{D}(R)=\xi_{D}(R) \text { for } T_{1} \leq R \leq S_{1}
$$

Since $\xi_{D}\left(S_{1}\right) \neq \sigma_{D}\left(S_{1}\right)$ but $\xi_{D}\left(T_{1}\right)=\sigma_{D}\left(T_{1}\right)$, therefore $\rho_{D}(R)$ will be constant on $T_{1} \leq R \leq S_{1}$, as $\xi_{D}(R)$ is so.
If $\xi_{D}\left(S_{1}\right)=\sigma_{D}\left(S_{1}\right)$ then let $T_{1}=S_{1}$.

Choose $R_{2}>R_{1}$ suitably large and let

$$
\rho_{D}\left(R_{2}\right)=\rho
$$

Similarly we take some point $S_{2}<R_{2}$ such that

$$
\begin{aligned}
& \rho_{D}(R)=\rho+\log \log \log R-\log \log \log R_{2} \quad \text { for } \quad S_{2} \leq R \leq R_{2} \\
& \rho_{D}(R)=\xi_{D}(R) \text { at } R=S_{2}
\end{aligned}
$$

If $\xi_{D}\left(S_{2}\right) \neq \sigma_{D}\left(S_{2}\right)$, then choose $T_{2}<S_{2}$, the nearest point to S_{2} at which $\xi_{D}\left(T_{2}\right)=$ $\sigma_{D}\left(T_{2}\right)$.
We define

$$
\rho_{D}(R)=\xi_{D}(R) \text { for } T_{2} \leq R \leq S_{2}
$$

If $\xi_{D}\left(S_{2}\right)=\sigma_{D}\left(S_{2}\right)$ then let $T_{2}=S_{2}$.
For $R<T_{2}$, let

$$
\rho_{D}(R)=\rho_{D}\left(T_{2}\right)+\log \log \log T_{2}-\log \log \log R \quad \text { for } \quad U_{1} \leq R \leq T_{2}
$$

where $U_{1}<T_{2}$ is the point of intersection of

$$
\begin{aligned}
Y & =\rho \text { with } \\
Y & =\rho_{D}\left(T_{2}\right)+\log \log \log T_{2}-\log \log \log R
\end{aligned}
$$

Set

$$
\rho_{D}(R)=\rho \quad \text { for } \quad R_{1} \leq R \leq U_{1}
$$

It is always possible to choose R_{2} so large that $R_{1}<U_{1}$ and satisfies the above properties.
Repeating the argument we get

$$
\begin{aligned}
& \rho_{D}(R) \geq \xi_{D}(R) \geq \sigma_{D}(R) \text { and } \\
& \rho_{D}(R)=\sigma_{D}(R) \text { for } R=T_{1}, T_{2}, T_{3}, \ldots
\end{aligned}
$$

So,

$$
\begin{aligned}
& \limsup _{R \rightarrow \infty} \sigma_{D}(R)=\rho \\
& \Rightarrow \lim _{R \rightarrow \infty} \xi_{D}(R)=\rho
\end{aligned}
$$

as $\xi_{D}(R)$ is non decreasing and $\xi_{D}(R)<\rho$ for all $R>X$.
Hence

$$
\lim _{R \rightarrow \infty} \rho_{D}(R)=\rho
$$

Also $\rho_{D}(R)$ is differentiable in adjacent intervals and $\rho_{D}^{\prime}(R)=0$ or $\rho_{D}^{\prime}(R)=-\frac{1}{R \log R \log \log R}$ and hence $\lim _{R \rightarrow \infty} R \rho_{D}(R)=0$ in both of these cases. Also by the similar argument in first case, we obtain that

$$
\limsup _{R \rightarrow \infty} \frac{\log M_{f, D}(R)}{R^{\rho_{D}^{(R)}}}=1 .
$$

Hence all the propositions for definition of proximate order are proved in second case also and this completes the proof.

References

[1] Fuks B. A., Introduction to the theory of analytic functions of several complex variables, (1965).
[2] Shah S. M., On proximate orders of integral functions. Bull. Amer. Math. Soc., 52, 326.
[3] Valiron G., Lectures on the general teory of integral functions, private, Toulouse (1922).

