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Abstract
We give two different structures of F∗

pn ,where p is prime and n is a positive integer.
Further, we characterize the elements of both the structures of F∗

pn to identify the
irreducible polynomials of degree n over finite fields Fp. Also, we show the corre-
spondence of the elements of these structures.

1. Introduction

Irreducible polynomials play an important role to construct the elements of exten-

sion fields and have wide applications in many areas such as design theory [10, 11, 15],

combinatorics [8] and cryptography [6, 8, 9, 12, 13, 16]. Irreducible polynomials are also

used to form the generator polynomials which are important in the construction of

cyclic codes and BCH codes in coding theory over binary and non-binary finite fields,

see [1, 3, 4, 7]. The security of many cryptographic schemes, such as identity-based en-

cryption, attribute-based encryption, keyword searchable encryption, short signature,
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functional encryption depends on the difficulty of the discrete logarithm problem (DLP)

over finite fields GF (3), see [5, 22]. Beuchat et al.[2] discuss irreducible polynomials

over GF (3) to develop an accelerator for pairing-based cryptosystem. Several authors

have studied the counting and construction of irreducible polynomials over finite fields.

Sharma et al. [17] discuss the counting of irreducible polynomials with some prescribed

coefficients, and show the construction of infinite sequences of irreducible polynomials,

see [18] and references therein.

In case of F2n , the non zero elements of F ∗
2n = {α, α2, ..., α2n−2, α2n−1} are arranged as

follows [20],

α

α2 α3

α22
α5 α6 α7

α23
α9 α10 α11 α12 α13 α14 α15

. ..

Structure of F∗2n

The structure of F∗3n is also discussed in [20]. The characterization of the structure F∗2n

to obtain the irreducible polynomials is discussed in [21]. Further, Sharma et al. [19]

discuss the characterization of the structure F∗3n to identify the irreducible polynomials

of degree n over F3. In this paper we arrange the non zero elements of Fpn that is

F∗pn = {α, α2, α3, α4, ..., αpn−2, αpn−1} in two different structures. We construct these

structures by begining with elements α and αpn−1 respectively. Further, we characterize

both the structures in conjugate classes. Let [αi] or [[i]] be the conjugate classes of αi,

and [[[i]]] be the ith row containing αi. Therefore, we show that[
αpn−1+r

]
=
[
αpr+1

]
(1)

that is αpn−1+r, αpr+1 lie in the same conjugate class for r = 0, 1, . . . , ((p−1).pn−1)−1.We

also show that

[αpn−r] = [αpn−(pr−p+1)] (2)
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for r = 1, 2, 3, ..., (p − 1)pn−1. The conjugate classes (1) and (2) help to identify the

irreducible polnomials of degree n over Fp respectively for both the structures. Further,

we give the correspondence between the elements of each column and the elements of

the nth row for these structures.

2. Structure of F∗
pn

In this section, we discuss the structure

F∗pn = {α, α2, α3, α4, ..., αpn−2, αpn−1}

in two different ways. First structure begin with the element α and the second one

begin with αpn−1 as discussed below.

2.1 Structure of the elements of F∗pn beginning with the primitive element α

The elements of F∗pn are arranged in (pn − pn−1) columns and n rows. The elements in

the first column are ranging from α to αpn−1
and every element (except the first) in each

column is the conjugate of the previous element of the same column. The elements in

the rows are in geometric progression with common ratio α. In the (p+1)th column , we

obtain one more element in the (n− 1)th row whose conjugate lies in the same column

under the nth row. Similarly, in the (p2 + 1)th column , we obtain one more element in

(n − 2)th row whose conjugate lies in the same column under the (n − 1)th row. The

structure of F∗pn beginning from the element α is as follows:

α

αp

αp2

αp3

...

αpn−3

αpn−2
αpn−2+1 αpn−2+2

αpn−1
αpn−1+1 αpn−1+2 ... αpn−1+p αpn−1+p+1 αpn−1+p+2...αpn−1+p+p

Structure of F∗pn − (I)− Part(1)
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αpn−3+1

αpn−2+3 αpn−2+p

αpn−1+2p+1 αpn−1+2p+2... αpn−1+2p+p... αpn−1+p.p...αpn−1+p2+1 αpn−1+p2+2...

Structure of F∗pn − (I)− Part(2)

αpn−2+p+1 αpn−2+p+2

αpn−1+p2+p αpn−1+p2+p+1 αpn−1+p2+p+2... αpn−1+p2+p+p αpn−1+p2+2p+1

Structure of F∗pn − (I)− Part(3)

αpn−3+2

αpn−2+p+3 ... αpn−2+p+p

αpn−1+p2+2p+2 ... αpn−1+p2+2p+p ... αpn−1+p2+p.p αpn−1+p2+p2+1...

Structure of F∗pn − (I)− Part(4).

2.2 Structure of the elements of F∗pn beginning with the element αpn−1

The elements of the structure of F∗pn are arranged in (pn − pn−1) columns and n rows

beginning from the element αpn−1. In the pth column, we obtain one more element in

the (n − 1)th row whose conjugate lies in the same column under the nth row, and in

the
(
p2
)th column, we obtain one element in (n − 2)th row whose conjugate lies in the

same column under the (n− 1)th row. Also, the elements in the rows are in geometric

progression with common ratio 1/α. The structure of F∗pn beginning from the element

αpn−1 is as follows:

αpn−1−1 αpn−1−2

αpn−1 αpn−2 αpn−3... αpn−p αpn−p−1 αpn−p−2 αpn−p−3... αpn−p−p
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Structure of F∗pn − (II)− Part(1)

αpn−2−1

αpn−1−p αpn−1−p−1

αpn−2p−1 αpn−2p−2 ... αpn−p.p αpn−p2−1 αpn−p2−2 ... αpn−p2−p...

Structure of F∗pn − (II)− Part(2)

αpn−1−p−2

αpn−p2−p−1 αpn−p2−p−2 αpn−p2−p−3... αpn−p2−p−p αpn−p2−2p−1...

Structure of F∗pn − (II)− Part(3)

αpn−2−2

αpn−1−p−p αpn−1−2p−1

αpn−p2−p.p αpn−p2−p2−1 αpn−p2−p2−2...αpn−2p2−p αpn−2p2−p−1

Structure of F∗pn − (II)− Part (4)

αpn−3−1

αpn−2−3 αpn−2−p

αpn−1−2p−p αpn−1−3p−1 αpn−1−p.p

αpn−2p2−p−2 ...αpn−2p2−p−p...αpn−2p2−p.p αpn−2p2−p2−1... αpn−3p2−p... αpn−p3
...

Structure of F∗pn − (II)− Part (5).

3. Characterization of the Structure F∗
pn beginning with the element α

In this section,we characterize the structure of F∗pn−(I) and show some conjugate classes.

We also give an illustration which show the identification of irreducible polynomials of

degree 2 over F5.

Proposition 3.1 : The elements αpn−1+r and αpr+1 are in the same conjugate class for

r = 0, 1, . . . , ((p− 1).pn−1)− 1.



24 P. L. SHARMA & SHABNAM SHARMA

Proof :

[αpn−1+r] = [(αpn−1+r)p]

= [αp.pn−1+pr]

= [αpn+pr].

Since,

αpn
= α1

Therefore,

[αpn−1+r] = [αpr+1]. (3.1.1)

3.1 Classes of type [[pn−1 + r]] for r = 0, 1, . . . , ((p− 1).pn−1)− 1.

From the above proposition, we get the conjugates of every element in the nth row as

below:

For r = 0, the equation (3.1.1) becomes

[αpn−1
] = [α1] = [αpn

].

The length of [[[1]]] is n and there are n conjugates of αpn−1
in [[[1]]].

For r = 1, the equation (3.1.1) becomes

[αpn−1+1] = [αp+1].

The length of [[[p+ 1]]] is n− blogp(p+ 1)c and there are n− blogp(p+ 1)c conjugates

of αpn−1+1 in [[[p+ 1]]].

For r = 2, the equation (3.1.1) becomes

[αpn−1+2] = [α2p+1].

The length of [[[2p+1]]] is n−blogp(2p+1)c and there are n−blogp(2p+1)c conjugates

of αpn−1+2 in [[[2p+ 1]]].
...

For r = pn−1, the equation (3.1.1) becomes

[αpn−1+pn−1
] = [αp.pn−1+1] = [αpn+1] = [α2].
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The length of [[[pn + 1]]] is n − blogp(2)c and there are n − blogp(2)c conjugates of

αpn−1+pn−1
in [[[pn + 1]]].

For r = pn−1 + 1,the equation (3.1.1) becomes

[αpn−1+pn−1+1] = [αp.(pn−1+1)+1] = [αpn+p+1] = [αp+2].

The length of [[[p+ 2]]] is n− blogp(p+ 2)c.
...

For r = pn−1 + pn−1, the equation (3.1.1) becomes

[αpn−1+pn−1+pn−1+1] = [αp.(pn−1+pn−1)+1] = [αpn+pn+1] = [α3].

The length of [[[pn + pn + 1]]] is n− blogp(pn + pn + 1)c.
and so on.

Now using Proposition 3.1, we give an illustration which shows the identification of the

irreducible polynomials of the structure of F∗5n .

3.2 Illustration: Identification of irreducible polynomials of degree 2 over F5:

Here, we illustrate the structure discussed in 2.1 for F∗pn − (I), where p = 5 and n = 2.

Futher, we identify all the irreducible polynomials of degree 2 over F5. We allocate the

number for each column ranging from (0 − 9) in the brackets and empty bracket ( )

according to the Proposition 3.1. The elements lying in the same conjugate class are

denoted by the same number. Further, using these elements of the same conjugate class,

we obtain irreducible polynomials as discussed above. The illustration of the structure

is as follows:

α α2 α3

α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16

(0) ( ) (1) (2) (3) (4) (1) ( ) (5) (6) (7) (2)

Structure of F∗52 − Part(1)

α4

α17 α18 α19 α20 α21 α22 α23 α24

(5) ( ) (8) (9) (3) (6) (8) ( )
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Structure of F∗52 − Part(2)

Proposition 3.1 suggests that the elements α7 and α11 lie in the same conjugate class.

Therefore, we denote the conjugates of the same class by the same number. Here

α7 and α11, we denote by (1) and so on. Such elements are combined to obtain an

irreducible polynomial as shown below in p1(x). The empty bracket “( )” indicates that

no irreducible polynomial can be formed by using the corresponding element. Thus, we

obtain the irreducible polynomials of degree 2 over F5 as follows:

p0(x) = (x− α)(x− α5) = (x2 + 4x+ 2),

p1(x) = (x− α7)(x− α11) = (x2 + 3x+ 3),

p2(x) = (x− α8)(x− α16) = (x2 + x+ 1),

p3(x) = (x− α9)(x− α21) = (x2 + 2),

p4(x) = (x− α2)(x− α10) = (x2 + 3x+ 4),

p5(x) = (x− α13)(x− α17) = (x2 + x+ 2),

p6(x) = (x− α14)(x− α22) = (x2 + 2x+ 4),

p7(x) = (x− α3)(x− α15) = (x2 + 3),

p8(x) = (x− α19)(x− α23) = (x2 + 2x+ 3),

and

p9(x) = (x− α4)(x− α20) = (x2 + 4x+ 1).

4. Characterization of the Structure F∗
pn beginning with the element

αpn−1

Here, first we discuss the conjugate classes and then show the irreducible polynomial of

degree 2 over F7 with the help of an illustration.

Proposition 4.1 : The elements αpn−r and αpn−(pr−p+1)are in the same conjugate

class, for r = 1, 2, 3, . . . , (p− 1)pn−1.

Proof : Let

β = αpn−r
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then

βp = (αpn−r)p

= (αp.pn−p.r)

= (αpn+pn+pn+.....pn(p tmes)−p.r)

= (αpn+(p−1)−p.r)

= αpn−(pr−p+1).

2

Theorem 4.2 : Let l1, l2, l3, ..., lt be positive integers such that l1 > l2 > l3 > ...lt ≥
0and r + l ≤ n− 2, where r is a non negative integer. Then conjugate of

αpn−(pr+l1+pr+l2+pr+l3+...+pr+lt+1)

is

αpn−(pr+l1+1+pr+l2+1+pr+l3+1+...+pr+lt+1+1).

Also,

[[pn − (pl1 + pl2 + pl3 + ...plt + 1]] = [[pn − (pl1+1 + pl2+1 + pl3+1 + ...plt+1 + 1]]

= [[pn − (pl1+2 + pl2+2 + pl3+2 + ...plt+2 + 1]]

= ...

Proof : Since,

(αpn−(pr+l1+pr+l2+pr+l3+.....+pr+lt+1)p = αpn+1−(pr+l1+1+pr+l2+1+pr+l3+1+...+pr+lt+1+p)

= αp.pn−(pr+l1+1+pr+l2+1+pr+l3+1+...+pr+lt+1+p)

=
αpn+pn+pn+...+pn

(p times)
αpr+l1+1+pr+l2+1+pr+l3+1+...+pr+lt+1+p

= αpn+(p−1)−(pr+l1+1+pr+l2+1+pr+l3+1+...+pr+lt+1+p)

= αpn−(pr+l1+1+pr+l2+1+pr+l3+1+...+pr+lt+1+1),

and

[[pn − (pl1 + pl2 + pl3 + ...plt + 1)]] = [[pn − (p(pl1 + pl2 + pl3 + ...plt + 1)− (p− 1)]]

= [[pn − (pl1+1 + pl2+1 + pl3+1 + ...plt+1 + p− p+ 1)]]

= [[pn − (pl1+1 + pl2+1 + pl3+1 + ...plt+1 + 1)]].
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2

Now, we discuss the special cases of the above theorem.

Classes of type αpn−(pr+1) : Theorem 4.2, suggests that the conjugates of αpn−2 are

given by αpn−(pr+1) for r = 0, 1, 2, . . . , n− 1,that is,

[[pn − 2]] = [[pn − (p+ 1)]]

= [[pn − (p2 + 1)]]

.

.

.

= [[pn − (pn−1 + 1)]].

Therefore, the irreducible polynomial is

n−1∏
r=0

(x− αpn−(pr+1)).

In the same way, we obtain the following irreducible polynomials:

Class of type αpn−(pr+1+pr+1) : The irreducible polynomial is

n−1∏
r=0

(x− αpn−(pr+1+pr+1)).

Class of type αpn−(pr+2+pr+1) : The irreducible polynomial is

n−1∏
r=0

(x− αpn−(pr+2+pr+1)).

Class of type αpn−(pr+3+pr+1) : The irreducible polynomial is

n−1∏
r=0

(x− αpn−(pr+3+pr+1)).

Class of type αpn−(pr+4+pr+1) : The irreducible polynomial is

n−1∏
r=0

(x− αpn−(pr+4+pr+1)).

4.3 Illustration : Identification of irreducible polynomials of degree 2 over F7:
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Here, we illustrate the structure discussed in 2.2 for F∗pn − (II), where p = 7 and n = 2.

Further, we identify all the irreducible polynomials of degree 2 over F7.We allocate the

number for each column ranging from (0 − 20) in the brackets and empty bracket ( )

according to the Proposition 4.1. The elements lying in the same conjugate class are

denoted by the same number. Further, using the elements of the same conjugate class,

we obtain irreducible polynomials as discussed above. The illustration of the structure

is as follows:

α6

α48 α47 α46 α45 α44 α43 α42 α41 α40 α39 α38 α37

( ) (1) (2) (3) (4) (5) (6) (1) () (7) (8) (9)

Structure of F∗72 − Part (1)

α5 α4

α36 α35 α34 α33 α32 α31 α30 α29 α28 α27 α26 α25

(10) (11) (2) (7) ( ) (12) (13) (14) (15) (3) (8) (12)

Structure of F∗72 − Part (2)

α3 α2

α24 α23 α22 α21 α20 α19 α18 α17 α16 α15 α14 α13

( ) (16) (17) (18) (4) (9) (13) (16) ( ) (19) (20) (5)

Structure of F∗72 − Part (3)

α1

α12 α11 α10 α9 α8 α7

(10) (14) (17) (19) ( ) (0)

Structure of F∗72 − Part (4)
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Proposition 4.1 suggests that the elements α47 and α41 lie in the same conjugate class.

Therefore, we denote the conjugates of the same class by the same number. Here α47 and

α41, we denote by (1) and so on. Such elements are combined to obtain an irreducible

polynomial. The empty bracket “( )” indicates that no irreducible polynomial can be

formed by using the corresponding element. Therefore, the irreducible polynomials of

degree 2 over F7 are as follows:

p0(x) = (x− α)(x− α7) = (x2 + x+ 3),

p1(x) = (x− α41)(x− α47) = (x2 + 5x+ 5),

p2(x) = (x− α34)(x− α46) = (x2 + 6x+ 4),

p3(x) = (x− α27)(x− α45) = (x2 + x+ 6),

p4(x) = (x− α20)(x− α44) = (x2 + 2),

p5(x) = (x− α13)(x− α43) = (x2 + 2x+ 3),

p6(x) = (x− α6)(x− α42) = (x2 + 4x+ 1),

p7(x) = (x− α33)(x− α39) = (x2 + 4x+ 6),

p8(x) = (x− α26)(x− α38) = (x2 + 2x+ 2),

p9(x) = (x− α19)(x− α37) = (x2 + 5x+ 3),

p10(x) = (x− α12)(x− α36) = (x2 + 1),

p11(x) = (x− α5)(x− α35) = (x2 + 3x+ 5),

p12(x) = (x− α25)(x− α31) = (x2 + 6x+ 3),

p13(x) = (x− α18)(x− α30) = (x2 + 3x+ 1),

p14(x) = (x− α11)(x− α29) = (x2 + 4x+ 5),

p15(x) = (x− α4)(x− α28) = (x2 + 4),

p16(x) = (x− α17)(x− α23) = (x2 + 2x+ 5),

p17(x) = (x− α10)(x− α22) = (x2 + x+ 4),

p18(x) = (x− α3)(x− α21) = (x2 + 6x+ 6),

p19(x) = (x− α9)(x− α15) = (x2 + 3x+ 6),
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and p20(x) = (x− α2)(x− α14) = (x2 + 5x+ 2).

5. Correspondence Between the Elements of Columns and Rows of

Structure F∗
pn − (I)

The elements of F ∗
pn − (I) are arranged in its structure with some criteria and are

associated with some correspondence which is discussed in this section. Let

α(i, j, k) = αpi−1+pj−k

be the elements introduced in new columns of the ith row, where i = 1, 2, ..., n and j

stands for number of spells in which new columns are to be introduced (for example, in

first row of the structure F ∗
52 has four spells),

j =
{

1 for i = 1
1, 2, ..., pi−2(p− 1) for i 1

}
;

k = 1, 2, ..., (p− 1).

Now, we consider nth row and (n− 1)th row for detail description.

For i = n;

j = 1, 2, ..., pi−2(p− 1); k = 1, 2, ..., (p− 1),

the elements in the new columns are introduced as follows:

Let us take j = 1; k = 1, 2, ..., (p− 1), therefore α(i, j, k) becomes

αpi−1+pj−1 = αpn−1+p.1−1 = αpn−1+p−1,

αpi−1+pj−2 = αpn−1+p.1−2 = αpn−1+p−2,
...

αpi−1+pj−(p−1) = αpn−1+p.1−(p−1) = αpn−1+1.

For j = 2; k = 1, 2, ..., (p− 1), α(i, j, k) becomes

αpi−1+pj−1 = αpn−1+p.2−1 = αpn−1+2p−1,

αpi−1+pj−2 = αpn−1+p.2−2 = αpn−1+2p−2,
...

αpi−1+pj−(p−1) = αpn−1+p.2−(p−1) = αpn−1+p+1.

Likewise, we can obtain the corresponding elements for j = 3, 4, ..., pi−2(p − 1). Here,

the number of new columns introduced for i = n are pn−1(p− 2) + pn−2.

For i = n− 1.
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Let us take j = 1; k = 1, 2, ..., (p− 1), therefore α(i, j, k) becomes

αpi−1+pj−1 = αpn−1−1+p.1−1 = αpn−2+p−1,

αpi−1+pj−2 = αpn−1−1+p.1−2 = αpn−2+p−2,
...

αpi−1+pj−(p−1) = αpn−1−1+p.1−(p−1) = αpn−2+1.

For j = 2; k = 1, 2, ..., (p− 1), α(i, j, k) becomes

αpi−1+pj−1 = αpn−1−1+p.2−1 = αpn−2+2p−1,

αpi−1+pj−2 = αpn−1−1+p.2−2 = αpn−2+2p−2,
...

αpi−1+pj−(p−1) = αpn−1−1+p.2−(p−1) = αpn−2+p+1.

Likewise, we can obtain the corresponding elements for j = 3, 4, ..., pi−2(p − 1). Here,

the number of new columns introduced for i = n− 1 are pn−2(p− 2) + pn−3.

Similarly, we can proceed for i = (n − 2), (n − 3), ..., 3, 2, 1. The number of columns

introduced for i = 3, 2, 1 are respectively p2(p− 2) + p, p(p− 2) + 1, p− 2.

6. Correspondence Between the Elements of Columns and Rows of

Structure F ∗
pn − (II)

The elements of F ∗
pn − (II) are associated with some correspondence in the structure

which is discussed in this section. Let

α(i, j, k) = αpi+pj−k

be the elements introduced in new columns of the ith row, where i = 1, 2, ..., n and j

stands for number of spells in which new columns are to be introduced (for example, in

first row of the structure F ∗
72 has six spells,

j =
{

1 for i = 1
0,−1,−2, ...,−[pi−2(p− 1)− 1] for i 1

}
;

k = 1, 2, ..., (p− 1).

We consider nth row and (n− 1)th row for detail description.

For i = n;

j = 0,−1,−2, ...,−[pi−2(p− 1)− 1]; k = 1, 2, ..., (p− 1),
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the elements in the new columns are introduced as follows:

Let us take j = 0; k = 1, 2, ..., (p− 1), therefore α(i, j, k) becomes

αpi+pj−1 = αpn−1,

αpi+pj−2 = αpn−2,
...

αpi+pj−(p−1) = αpn−p+1.

For j = −1; k = 1, 2, ..., (p− 1), α(i, j, k) becomes

αpi+pj−1 = αpn−p.1−1 = αpn−p−1,

αpi+pj−2 = αpn−p.1−2 = αpn−p−2,
...

αpi+pj−(p−1) = αpn−p.1−(p−1) = αpn−2p+1.

Likewise, we can obtain the corresponding elements for j = −2, ...,−[pi−2(p − 1) − 1].

Here, the number of new columns introduced for i = n are pn−1(p− 2) + pn−2.

For i = n− 1.

Let us take j = 0; k = 1, 2, ..., (p− 1), thereore α(i, j, k) becomes

αpi+pj−1 = αpn−1−1,

αpi+pj−2 = αpn−1−2,
...

αpi+pj−(p−1) = αpn−1−(p−1) = αpn−1−p+1.

For j = −1; k = 1, 2, ..., (p− 1), α(i, j, k) becomes

αpi+pj−1 = αpn−p.1−1 = αpn−1−p−1,

αpi+pj−2 = αpn−p.1−2 = αpn−1−p−2,
...

αpi+pj−(p−1) = αpn−1−p.1−(p−1) = αpn−1−2p+1.

Likewise, we can obtain the corresponding elements for j = −2,−3, ...,−[pi−2(p−1)−1].

Here, the number of new columns introduced for i = n− 1 are pn−2(p− 2) + pn−3.
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Similarly, we can proceed for i = (n − 2), (n − 3), ..., 3, 2, 1. The number of columns

introduced for i = 3, 2, 1 are respectively p2(p− 2) + p, p(p− 2) + 1, p− 1.
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