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Abstract

Muzzle print recognition is the process of finding any muzzle in the image. It is a
two-dimension procedure used for detecting muzzles and analyzing the information
contained in the muzzle image. Here the muzzle images are projected to a fea-
ture space or face space to encode the variation between the known muzzle images.
In this paper Eigen Muzzle Recognition is used for dimension reduction and the
projected feature space is formed using fuzzy membership functions. The above
method can be used to recognize a new muzzle in unsupervised manner.

1. Introduction

Now-a-days need for positive identification for cattle trace ability, have prompted the

implementation of animal identification and verification programs. The major compo-

nents of a secure animal identification and source verification system include: rapid,

inexpensive and accurate acquisition of information, security against fraud, human
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administration and easy transmission storage and retrieval of data [5]. Animal ear tags

proved to be not very successful as a means of identification for reasons such as the

loss of tags and tampering. The insertion of ear tags normally results in inflammatory

response and the ear tags could cause both short-term and long-term complications of

the integrity of the ears [3].

An animal with unique identification number can be considered as tamper proof and is

beneficial to verify an animals identity particularly in case of suspected fraud. There

are various methods of identifying a livestock through biometric markers which include

DNA, iris scanning, retinal scanning, muzzle print matching [1]. Facial images are

the most common biometric characteristic used by human to gain personal recognition.

Likewise is cattles muzzle images describe personal identification. The pattern structure

of cattle muzzle patterns is complex than that of human fingerprints, and since the

structure features are changed or deformed during the growing stage and these pattern

structures cannot be skillfully recognized by using a technique like the one used for

conventional fingerprint comparison [8]. A robust algorithm is required to identify

cattle using their muzzle prints.

In this paper, we use Eigen Muzzle Recognition for dimension reduction and a fuzzy

logic, Eigen-Muzzle method and Euclidean distance classifier for feature extraction and

muzzle print recognition.

2. Principal Component Analysis

2.1 Mathematical Definitions

Definition 2.1 : If A is an m × n matrix over the field F , the transpose of A is the

n×m matrix AT defined by

ATij = Aji

Definition 2.2 :Let A be an m×n matrix over the field F and let B be an n×p matrix

over F . The product AB is the m× p matrix C whose i, j entry is

Cij =
n∑
r=1

AirBrj

Definition 2.3 : Let A = [aij ]n×n be a matrix of order n× n and λ an indeterminate.

Then the matrix A−λI, where I is a unit matrix of order n, is called the characteristic
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matrix of A. The equation | A− λI |= 0 is called the characteristic equation of A and

its roots are called the characteristic roots or eigen values of A.

Definition 2.4 : Let A = [aij ]n×n be given n− rowed square matrix. Let
x1

x2
...
xn


be a column vector.

Consider the matrix equation

AX = λX

where λ is a scalar. A value of λ for which the equation AX = λX has a solution X 6= 0

is called an eigen value or characteristic value of the matrix A. The corresponding

solutions X 6= 0 are called characteristic vectors or eigen vectors of A corresponding to

that value of λ.

Definition 2.5 : A set of n-dimensional vectors xi ∈ Rn, are said to be linearly

independent if none of them can be written as a linear combination of the others. In

other words,

c1x1 + c2x2 + · · ·+ ckxk = 0

iffc1 = c2 = · · · = ck = 0

Definition 2.6 : A span of a set of vectors x1, x2 · · · , xk is the set of vectors that can

be written as a linear combination of x1, x2, · · · , xk.

span(x1, x2, · · · , xk) = {c1x1 + c2x2 + · · ·+ ckxk|c1, c2, · · · , ck ∈ R}

Definition 2.7 : A basis for Rn is a set of vectors which spans Rn, i.e., any vector

in this n-dimensional space can be written as linear combination of these basis vectors

are linearly independent. Clearly, any set of n-linearly independent vectors form basis

vectors for Rn.

Eigen Muzzle Recognition transforms a set of data from possibly correlated variables

into a set of uncorrelated variables called principal components. In the language of

information theory, it is necessary to extract information from muzzle images, encode

it and compare it with encoded images into the database. An easier way to extract
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information contained in an image of a muzzle is to capture variation in collection of

muzzle images, independent of any features, and use this information for encoding and

comparison. In mathematical terms find the eigen components of the muzzle images(M

images) [6], i.e the eigen vectors (M eigen vectors) of the covariance matrix of the set of

muzzle images, considering as an image as a point(vectors) in a very high dimensional

space. These eigen vectors are accounting for a different amount of variation among the

face images. These eigen vectors can be considered as a set of features that together

characterize the variation between muzzle images. Each image location contributes to

eigen vector;so that we can display eigen vector as a ghostly face called eigen face. Some

of the muzzle images are shown in figure 1.

Each eigen face deviates from uniform gray where some muzzle features differ among

the set of training muzzles, they are a sort of variation between muzzles.

Each individual muzzles can be represented exactly in terms of a linear combination of

the eigen faces. Each muzzles can be approximated using best eigen faces, that have

largest eigen values, which corresponds to most variance within set of eigen faces. The

best M
′

eigen faces from M eigen vectors in the database span on M
′
-dimensional

subspace called face space among all images. Initialization steps are given below.
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1 Collect training set muzzles images.

2 Calculate the eigen faces from training set,using M
′

images that corresponds to

highest eigen values. These M
′

images define face space. For new faces eigen faces

are updated or recalculated.

3 By projecting muzzle images into face space M
′
-dimensional weight vectors are

calculated.

To recognize new face images the following steps are used.

1 Using input image and M
′

eigen faces, calculate weight vector.

2 Check whether the given image is muzzle image or not.

3 If it is a muzzle, classify it to a known or unknown muzzle image of a cow.

4 If an unknown muzzle is seen several times calculate its weight pattern and incor-

porate into known muzzles.

3. Calculation of Eigen faces

Let f(x, y) be the two-dimensional muzzle image of size N×N eight bit intensity values.

This can be considered as N2 vector so that typical image of size 300× 300 becomes a

vector of dimension 9000. An ensemble of images then maps to a collection of points in

this huge space.

Images of muzzles, will not be randomly distributed to huge image space due to its

similarity, and thus can be represented in low dimensional subspace. The basic idea of

the principal component analysis is to find the vectors for the distribution of muzzle

images within the entire image space. These vectors define the subspace of face images,

which we call facespace. Each vector of length N2 describes an N × N image and is

linear combination of face images. Since these vectors are eigen vectors of the covariance

matrix corresponding to the original muzzle images and have muzzle-like in appearance,

they are called eigen faces.

Let the training set of images be Γ1,Γ2, ....ΓM . The average muzzle image of the set is

defined by

Ψ =
1
M

M∑
n=1

Γn (1)
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Each muzzle differ from the average by the vector

Φi = Γi −Ψ (2)

An example of training set is shown in figure 1. Then build a matrix of size N2 ×M
which is

A = [Φ1,Φ2, . . .ΦM ] (3)

The covariance matrix is given by

C = AAT (4)

The matrix C is N2 ×N2 and finding the N2 eigen vectors and eigen values is difficult

task for typical image sizes. Compute another matrix which is M ×M .

L = ATA (5)

Find M eigen values and eigen vectors of L. Eigen vectors of C and L are equivalent.

Build matrix V from eigen vectors of L. With this analysis calculations are reduced

from number of pixels (N2)in the images to number of images in the training set (M).

In practice number of images in database will be small (M << N2) and the number

of operations becomes very less. Since accurate reconstruction of the image is not

required, onlyM
′

(M
′
< M) eigen vectors with highest eigenvalues is sufficient for

identification. Thus identification becomes a pattern recognition task. Eigen faces span

over M
′

dimensional subspace of the original N2 image space. In our work, for 20

test images (M = 20),M
′

= 9 eigen faces are used. Eigen vectors V determine linear

combinations of M training set of muzzle images to form eigen faces U .

U = AV (6)

Thus eigen vectors represents variation in muzzle images. Each muzzle is transformed

into eigen face components.

Ωi = UTΦi (7)

fori = 1, 2, . . .M . Thus each image in the training set is converted to a weight vector Ωi

of size M
′×1 describes the contribution of each eigen face. Then compute the threshold

θ = 0.45max‖Ωi − Ωj‖ (8)
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fori = 1, 2, . . .M, j = 1, 2, . . .M .

4. Recognition

A new muzzle image Γ is transformed into its eigen face components by simple operation

Ω = UT .r (9)

where Γ of size N2 × 1, r is a vector of size N2 × 1 with r = Γ − Ψ;Ψ is average

muzzle image for recognition. The weight vector ΩT = [ω1, ω2, . . . ωM ′ ] may be used in

standard pattern recognition algorithm to find the number of predefined muzzle class.

Thus compute the distance in the face space between the muzzle and all known muzzle

images using Euclidean distance

ε2i = ‖Ω− Ωi‖2 (10)

for i = 1, 2, . . .M where Ωi is a vector describing kth muzzle. A muzzle is classified

as belonging to class i when the minimum ε is below some chosen threshold θ. Other-

wise the muzzle is classified as unknown and optionally used to create a new muzzle.

Reconstruct the muzzle from eigen faces of size N2 × 1.

s = UΩ (11)

Compute the distance between the muzzle and its reconstruction

ζ2 = ‖r − s‖2 (12)

For recognition a membership function defined

µθ =


0 if θ ≤ ζ

2(
θ − ζ

εmin − ζ
)2 if θ > ζ, θ < εmin

1 if θ > ζ, θ ≥ εmin

(13)

is used according to equation(12).

The given membership function can be identified as if µθ takes the value zero it is not a

muzzle image, if µθ takes the value one it is a known muzzle with image corresponding

to εmin, otherwise it is a new muzzle image.
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5. Summary of Eigen Face Recognition

5.1 Procedure

To summarize the eigen faces approach to muzzle recognition it involves the following

steps.

1 Collect a set of muzzle images. (for eg:M = 20)

2 Calculate the matrix L according to the equation(4). Find its eigen values and

eigen vectors, and choose M
′

eigen vectors with the highest eigen values. (Let

M
′

= 8 is our example)

3 Combine the normalized training set of images according to equation (5) to pro-

duce eigen faces U .

4 Calculate the weight vector Ωi according to equation (6) and the threshold θ from

equation (7) for each known input images.

5 For each new muzzle image to be identified, calculate its pattern vector Ω and

classification is done as per fuzzy membership value for the function.

6. Results and Conclusion

Here using eigen muzzle recognition muzzle images from 20 cows of size 300× 300 were

collected and it is stored in database. These are converted to weight vectors. When a

new image is given it is also converted to weight vector and compared. In our exper-

iment all images are correctly recognized. One of our difficulties is nonavailability of

cow’s muzzle images.

7. Applications

Muzzle print recognition has wide range of applications.

1. It protects consumers from potential health risks.

2. It prevents and controls animal diseases.

3. It prevents fraudulent claims in insurance field.

4. It helps to verify production and genetic claims.
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5. It helps to enhance quality standards.
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