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Abstract

Association rules are initially discovered in the market basket analysis [1] to identify
frequently purchased items by customers. Usually support and confidence measures
are used to assess the quality of association rules. Here we identify the set of trans-
actions that are not in favour of the rule and categorize them as true positive, true
negative, false positive and false negative examples based on the presence and ab-
sence of items in the transactions. In this paper, we analyzed the true semantics
of these rule quality measures based on this categorization and defined some confi-
dence measures with fuzzy operators, and identified them with precision, specificity,
sensitivity, interest, conviction of association rules.

1. Introduction

Data mining is the process of extracting previously unknown and potentially useful

hidden predictive information from large amounts of data [1]. Association rules are
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initially discovered in the market basket analysis to identify frequently purchased items

by customers. It give certain regularities and dependencies within a data by finding

frequent co-occurrence of items with a set of transactions and relationships hidden in

large data sets. The uncovered relationships can be expressed as association rules or

frequent itemsets. In classical association rules, it is not possible to use every data for

mining. In most real life applications, the database contains many attributes which are

difficult to represent using binary values. In such cases fuzzy sets play a major role.

So in the process of association rule mining, fuzzy sets can handle both quantitative

and categorical data, providing the necessary support to use uncertain data types with

existing algorithms. The approach of quantitative mining allow attributes to be either

members or non-members of an interval which tends to make an under or over estimation

of values leading to sharp boundary problems. The use of fuzzy sets in association

analysis widens the type of relationships between attributes by allowing the intervals to

overlap, giving partial memberships to different sets thus avoiding unnatural boundaries

in the partitioning of the attribute domain and thus making the interpretation of rules

in linguistic terms easier. Thus the obtained results using fuzzy approaches are easy to

understand and to apply.

An association rule is of the form A ⇀ B, where A and B are attributes or sets

of attributes, which tells the idea that when A occurs in a transaction, B is likely

to occur as well. The strength of association rules can be realized by a number of

quality measures. Support and confidence are the two important quality measures used

essentially. Support measures the validity of an association rule where as confidence

measures the quality of the rule. Thus mining association rules means, to generate

all association rules A ⇀ B that have support and confidence greater than the user

specified thresholds. These measures can be generalized for fuzzy association rules as

well. Here we study about the transaction types and redefined their terminologies as

true positive, true negative, false positive, false negative examples to understand the

true semantics of the transactions. In this paper we tried to define the different quality

measures based on confusion matrix terminology and analyzed the semantics of these

measures and identified them with precision, specificity, sensitivity , interest, conviction

of association rules using fuzzy operators.

The next section explains the definition of association rules, transaction classification,
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their support and confidence measures. Sections 3 is devoted to fuzzy association rules,

fuzzy support and confidence measures. Section 4 explains the semantics of the defined

measures based on confusion matrix. Section 5 gives some more fuzzy support and con-

fidence measures which explains the precision, specificity, sensitivity of each association

rule using the new defined terminologies.

2. Association Rules

2.1 Transaction Classification and Support Measures

Definition 2.1 : The support count and respectively support of an association rule

A ⇀ B is defined as:

supp#(A ⇀ B) = |TA ∩ TB|

and respectively

supp(A ⇀ B) =
|TA ∩ TB|
|T |

This definition of support count positive examples as it represents the transactions that

explicitly support the association expressed by the rule.

De Cock et al. ([5], [6]) classified transactions with respect of an association rule as

positive example, non-positive example, negative example, non-negative example.

In order to explore the true semantics of the transaction classification, we introduce

some new terminologies encouraging from the definition of confusion matrix. Thus we

define.

Definition 2.2 : Let A ⇀ B be an association rule and t be a transaction. Then

• t is a true positive example iff t ∈ TA ∧ t ∈ TB.

• t is a true negative example iff t /∈ TA ∨ t /∈ TB.

• t is a false positive example iff t ∈ TA ∧ t /∈ TB.

• t is a false negative example iff t /∈ TA ∨ t ∈ TB.

This indicates how effective our expectations. In true positive and true negative exam-

ple, we got what we expect, according as presence or absence of items. In false positive

examples we assume the presence of some items, but it was a false one and in false

negative examples, we assume the absence of some items and it appeared to be false.

Based on this classification, we get the following different measures:
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• minimum support count: minsupp#(A ⇀ B) = |TA ∩ TB|

• maximum opposition count: maxopp#(A ⇀ B) = |T̃A ∪ T̃B|

• minimum opposition count: minopp#(A ⇀ B) = |TA ∩ T̃B|

• maximum support count: maxsupp#(A ⇀ B) = |T̃A ∪ TB|

and the corresponding measures is given by

• minimum support: minsupp(A ⇀ B) = |TA∩TB |
|T |

• maximum opposition: maxopp(A ⇀ B) = |T̃A∪T̃B |
|T |

• minimum opposition: minopp(A ⇀ B) = |TA∩T̃B

|T |

• maximum support: maxsupp(A ⇀ B) = |T̃A∪TB |
|T |

Remark 2.3 :

minsupp(A ⇀ B) ≤ maxsupp(A ⇀ B)

minopp(A ⇀ B) ≤ maxopp(A ⇀ B)

2.3 Confidence Measures

Definition 2.4 : The confidence of a rule A ⇀ B is defined as:

conf(A ⇀ B) =
supp#(A ⇀ B)
supp#(A)

=
supp#(A ⇀ B)

supp#(A ⇀ B) + supp#(A ⇀ B̃)
(1)

Confidence can be treated as the conditional probability (P (B|A)) or the relative car-

dinality of B with respect to A.

Definition 2.5 : The confidence measure, n-confidence is defined as:

confn(A ⇀ B) =
minsupp#(A ⇀ B)
minopp#(A ⇀ B)

(2)

Definition 2.6 : The pessimistic confidence p-confidence and the optimistic confidence

o-confidence are defined as:

confp(A ⇀ B) =
minsupp#(A ⇀ B)
maxopp#(A ⇀ B)

(3)
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confo(A ⇀ B) =
maxsupp#(A ⇀ B)
minopp#(A ⇀ B)

(4)

Definition 2.7 : Given a pair (M1,M2) of quality measures for association rules, with

the property M1R ≤ M2R, the inferior confidence and superior confidence are defined

as

(a) inferior confidence

conf∗R =
α.M1R

(1− β).M1R + β.M2(A ⇀ B)
(5)

(a) superior confidence

conf∗R =
α.M2R

(1− β).M1R + β.M1(A ⇀ B)
(6)

Remark 2.8 :

confp(A ⇀ B) ≤ confn(A ⇀ B) ≤ confo(A ⇀ B)conf∗R ≤ conf∗R

3. Fuzzy Association Rules

3.1 Fuzzy Set and Fuzzy Set Operations

A fuzzy set A in a given universal set X is a mapping from X → [0, 1], usually denoted

as A = {(x,A(x)) : x ∈ X} where A(x) is called the grade of membership of each x ∈ A.

The cardinality of a fuzzy set A in X is defined as |A| = Σx∈XA(x).

A monotonic, associative and commutative mapping from [0, 1]2 → [0, 1] is called t −
norm T , if it satisfies T (x, 1) = x for all x ∈ [0, 1] and a t − conorm S if it satisfies

S(x, 0) = x for all x ∈ [0, 1]. A fuzzy complement N is a decreasing mapping from

[0, 1]→ [0, 1] satisfying N (0) = 1 and N(1) = 0.

For the fuzzy sets A and B in X, the complement, intersection and union can be defined

by

coA(x) = Ã(x) = N (A(x))

(A ∩T B)(x) = T (A(x), B(x))

(A ∪S B)(x) = S(A(x), B(x))

3.2 Fuzzy Support Measures
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Definition 3.1 : The fuzzy support count and respectively fuzzy support of a fuzzy

association rule 〈A,FA〉⇀ 〈B,FB〉 is usually defined as:

fsupp#(〈A,FA〉⇀ 〈B,FB〉) = Σx∈T (FA ∩T FB)(x)

and respectively

fsupp(〈A,FA〉⇀ 〈B,FB〉) =
Σx∈T (FA ∩T FB)(x)

|T |

Definition 3.2 : Let 〈A,FA〉⇀ 〈B,FB〉 be a fuzzy association rule. Then we define:

a) fuzzy minimum support:

fminsupp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(FA ∩T FB)(x)

|T |

b) fuzzy maximum opposition:

fmaxopp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(F̃A ∪S F̃B)(x)

|T |

c) fuzzy minimum oppposition:

fminopp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(FA ∩T F̃B)(x)

|T |

d) fuzzy maximum support:

fmaxopp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(F̃A ∪S FB)(x)

|T |

Similarly we can define the corresponding count measures: fminsupp#,fmaxopp#,

fminopp#, fmaxsupp#.

3.3 Fuzzy Confidence Measures

Definition 3.3 : The fuzzy confidence of a fuzzy association rule 〈A,FA〉⇀ 〈B,FB〉 is

defined as:

fconf(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(FA ∩T FB)(x)

Σx∈TFA(x)
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Now we define fuzzy version of confn, confp, confo defined by Hullermeier [10] and

DeCook et al., [5].

Definition 3.4 : The fuzzy confidence measures n-confidence, p-confidence and o-

confidence of a fuzzy association rule 〈A,FA〉⇀ 〈B,FB〉 is defined as:

a) fuzzy n-confidence

fconfn(〈A,FA〉⇀ 〈B,FB〉) =
fminsupp#(〈A,FA〉⇀ 〈B,FB〉)
fminopp#(〈A,FA〉⇀ 〈B,FB〉)

(7)

b) fuzzy pessimistic confidence

fconfp(〈A,FA〉⇀ 〈B,FB〉) =
fminsupp#(〈A,FA〉⇀ 〈B,FB〉)
fmaxopp#(〈A,FA〉⇀ 〈B,FB〉)

(8)

c) fuzzy optimistic confidence

fconfo(〈A,FA〉⇀ 〈B,FB〉) =
fmaxsupp#(〈A,FA〉⇀ 〈B,FB〉)
fminopp#(〈A,FA〉⇀ 〈B,FB〉)

(9)

4. Into the Semantics of the Defined Measures

Based on the confusion matrix terminology (Table 1), we divide the transaction into true

positive(TP), true negatives(TN), False Positive(FP) and False Negative (FN) examples.

For an association rule A ⇀ B,where A is the antecedent and B is the consequent of the

rule, TP is the number of instances which match with rule antecedent and consequent,

TN is the number of instances which match rule antecedent and consequent FP is the

number of instances which match only with rule antecedent and FN is the number of

instances which match only with rule consequent.

Table 1 : Confusion Matrix

Predicted class
Actual class Yes No

Yes TP: True Positive FP: False Negative
No FP: False Positive TN: True Negative

So we can view fminsupp as the rate of true positive example, fmaxopp as the rate

of true negative example, fminopp as the rate of false positive example, fmaxsupp as
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the rate of false negative example. Thus fminopp is termed as positive error rate and

fmaxsupp is termed as negative error rate. fcompsupp and fentireopp represent the

rate of presence and absence of items respectively. Also using different fuzzy confidence

measures which are defined using fuzzy support measures, we can effectively explains

the precision, specificity, sensitivity of each association rules which are discussed in the

following sections.

5. Measures Based on Rule Prediction

A rule’s prediction can be represented by a confusion matrix (Table 1). Studying its

terminologies, we arrived at the following measures.

5.1 Fuzzy Support Measures

Definition 5.1 :

a) fuzzy complete support: It is defined as the rate of presence of items in the fuzzy

association rule 〈A,FA〉⇀ 〈B,FB〉 and is given by

fcompsupp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(F̃A ∪S FB)(x) +
∑
x∈T

(FA ∩T FB)(x)

|T |

b) fuzzy complete opposition: It is defined as the rate of absence of items in the fuzzy

association rule 〈A,FA〉⇀ 〈B,FB〉 and is given by

fcompopp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(F̃A ∪S F̃B)(x) +
∑
x∈T

(FA ∩T F̃B)(x)

|T |

(c) fuzzy accurate support: It is defined as the accuracy of a fuzzy association rule

〈A,FA〉⇀ 〈B,FB〉 and is given by

faccuratesupp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(F̃A ∪S F̃B)(x) +
∑
x∈T

(FA ∩T FB)(x)

|T |

(b) fuzzy entire opposition: It is defined as the error rate of a fuzzy association rule

〈A,FA〉⇀ 〈B,FB〉 and is given by

fentireopp(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(F̃A ∪S FB)(x) +
∑
x∈T

(FA ∩T F̃B)(x)

|T |
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Similarly we can define the corresponding count measures: fcompsupp#, fcompopp#,

fentireopp#, fentireopp#.

5.2 Fuzzy Confidence Measures

Definition 5.2 : The precision of a fuzzy association rule 〈A,FA〉⇀ 〈B,FB〉 is defined

as a confidence measure, called fuzzy actual confidence which is given by

factconf(〈A,FA〉⇀ 〈B,FB〉) =

∑
x∈T

(FA ∩T FB)(x)

Σx∈T (FA ∩T FB)(x) + Σx∈T (FA ∩T F̃B)(x)

Remark 5.3 : The equalities in Definition 3.3 for confidence is not automatically

transferred into fuzzy case, since

Σx∈T (FA ∩T FB)(x) + Σx∈T (FA ∩T F̃B)(x) = Σx∈TFA(x)

does not always hold.

Definition 5.4 : The fuzzy confidence measure m-confidence of a fuzzy assocaition rule

〈A,FA〉⇀ 〈B,FB〉 is defined as:

fconfm(〈A,FA〉⇀ 〈B,FB〉) =
fmaxsupp#(〈A,FA〉⇀ 〈B,FB〉)
fmaxopp#(〈A,FA〉⇀ 〈B,FB〉)

(10)

Definition 5.5 : The sensitivity or true positive rate of a fuzzy assocaition rule

〈A,FA〉⇀ 〈B,FB〉 is termed as fuzzy true confidence and is given by

fconfT (〈A,FA〉⇀ 〈B,FB〉) =
fminsupp#(〈A,FA〉⇀ 〈B,FB〉)
fcompsupp#(〈A,FA〉⇀ 〈B,FB〉)

(11)

Definition 5.6 : The false positive rate of a fuzzy assocaition rule 〈A,FA〉⇀ 〈B,FB〉
is termed as fuzzy false confidence and is given by

fconfF (〈A,FA〉⇀ 〈B,FB〉) =
fminopp#(〈A,FA〉⇀ 〈B,FB〉)
fcompopp#(〈A,FA〉⇀ 〈B,FB〉)

(12)

Definition 5.7 : The specificity of a fuzzy assocaition rule 〈A,FA〉⇀ 〈B,FB〉 is termed

as fuzzy specific confidence and is given by

fconfSP (〈A,FA〉⇀ 〈B,FB〉) =
fmaxopp#(〈A,FA〉⇀ 〈B,FB〉)
fcompopp#(〈A,FA〉⇀ 〈B,FB〉)

(13)

Definition 5.8 : The interest of a fuzzy assocaition rule 〈A,FA〉⇀ 〈B,FB〉 is given by

interest(〈A,FA〉⇀ 〈B,FB〉) =
factconf#(〈A,FA〉⇀ 〈B,FB〉)
fcompsupp#(〈A,FA〉⇀ 〈B,FB〉)

(14)
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Definition 5.9 : The conviction of a fuzzy assocaition rule 〈A,FA〉⇀ 〈B,FB〉 is given

by

conviction =
fconfn#(〈A,FA〉⇀ 〈B,FB〉)fentireopp#(〈A,FA〉⇀ 〈B,FB〉)

factconf#(〈A,FA〉⇀ 〈B,FB〉)
(15)

6. Conclusion

In this paper we extend some quality measures defined for crisp association rule to

fuzzy association rule. Here we study about the transaction types and redefined their

terminologies as true positive, true negative, false positive, false negative examples to

understand the true semantics of the transactions. Based on that we defined various

support and confidence measures and extended to fuzzy complete support, fuzzy ac-

curate support, fuzzy complete opposition, fuzzy entire opposition measures. We also

analyzed the semantics of these measures and defined some confidence measures using

fuzzy operators and identified them with precision, specificity, sensitivity, interest, con-

viction of association rules.
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