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Abstract

In this article the authors studied a local asymptotic attractivity and stability re-
sult for a hybrid nonlinear fractional integral equations under the mixed weaker
partially Lipschitz and compactness type conditions. Our investigations is to prove
that the comparable solutions of the considered hybrid nonlinear fractional integral
equation are uniformly locally ultimately attractive and asymptotically stable on
unbounded intervals of the real line. We base our theory on a recent measure the-
oretic fixed point theorem of Dhage (2014) in partially ordered spaces.

1. Introduction

This article is to investigate the qualitative analysis of the following nonlinear quadratic

fractional integral equation (in short QFIE),

x(t) = q(t) +
[
f(t, x(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds

)
(1.1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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for all t ∈ R+ = [0,∞), where q : R+ → R, k : R+×R+ → R and f, g : R+×R→ R
are continuous, , λ ∈ (0, 1] and 1 ≤ α < 2 and Γ is the Euler’s gamma function.

By a solution of the QFIE (1.1) we mean a function x ∈ C(R+,R) that satisfies the

equation (1.1), where C(R+,R) is the space of continuous real-valued functions on R+.

The QFIE (1.1) is more general and includes several nonlinear quadratic integral . For

example, if α = 1, and J = [0, T ] ⊂ R+, then it reduces to the quadratic integral

equation

x(t) = q(t) +
[
f(t, x(t))

](∫ t

0
k(t, s) g(s, x(λs)) ds

)
, t ∈ J, (1.2)

which is studied in Zhu et.al. [16] for monotonicity of the solutions on the bounded

interval J of R. This equation (1.2) is also studied in [8] by Mule D. V. and Ahirrao

B. R. for approximate positive solution in partially ordered normed linear space. In

this paper we studied qualitative analysis of the nonlinear quadratic fractional integral

equation (1.1), which is more general than equations studied in [10]. Throughout this

paper we study some local existence results for the above QFIE (1.1) and prove that

solutions are locally attractive in the long period of time t. Our analysis will be carried

out in a measure theoretic fixed point theorem of Dhage (2013) in partially ordered Ba-

nach space and it is shown that the sequence of successive approximations constructed

in a certain way converges to the solution of QFIE (1.1) under certain mixed Lipschitz

and compactness type conditions on the nonlinearities involved in it.

2. Auxiliary Results

Let (E,�, ‖ · ‖) be a partially ordered normed linear space. We frequently need the

concept of regularity of E in what follows. It is known that E is regular if {xn} is a

nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as n→∞, then

xn � x∗ (resp. xn � x∗) for all n ∈ N. The conditions guarantying the regularity of the

partially ordered normed linear space E may be found in Carl and Heikkilä [4] and the

references therein.

The following definitions are frequently used in the subsequent part of this paper.

A subset S of E is called partially bounded if every chain C in S is bounded. Again S

is called a uniformly partially bounded if all chains in S are bounded with a unique

constant.

Note that every bounded subset of a partially ordered normed linear space is uniformly
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partially bounded and uniformly partially bounded set in E is partially bounded, but

the converse implications may hold.

Definitioin 2.1 : A mapping T : E → E is called isotonic or monotonic if it is

either a monotone nondecreasing or monotone non-increasing, that is, if x � y implies

T x � T y or T x � T y for all x, y ∈ E.

Definition 2.2 [6] : A mapping T : E → E is called partially continuous at a

point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x − T a‖ < ε whenever x is

comparable to a and ‖x− a‖ < δ. T is called partially continuous on E if it is partially

continuous at every point of it. It is clear that if T is a partially continuous on E, then

it is continuous on every chain C contained in E. T is called partially bounded if

T (C) is a bounded subset of E for all totally ordered sets or chains C in E.

If C is a chain in E, then C ′ denotes the set of all limit points of C in E. The symbol

C stands for the closure of C in E defined by C = C ∪ C ′. Thus set C is called a

closed chain in E. Thus, C is the intersection of all closed chains containing C. Clearly,

inf C, supC ∈ C provided inf C and supC exist. The supC is an element z ∈ E such

that for every ε > 0 there exists a c ∈ C such that d(c, z) < ε and x ≤ z for all x ∈ C.

Similarly, inf C is defined in the same way.

In what follows, we denote by Pcl(E), Pbd(E), Prcp(E), Pch(E), Pbd,ch(E), Prcp,ch(E)

the family of all nonempty and closed, bounded, relatively compact, chains, bounded

chains and relatively compact chains of E respectively. Now we introduce the concept

of partially measure of noncompactness in E on the lines of usual classical theory.

We accept the following definition of partially measure of noncompactness given in

Dhage [6].

Definition 2.3 : A mapping µp : Pbd,ch(E) → R+ = [0,∞) is said to be a partially

measure of noncompactness in E if it satisfies the following conditions:

1 ∅ 6= (µp)−1({0}) ⊂ Prcp,ch(E),

2 µp(C) = µp(C)

3 µp is nondecreasing, i.e., if C1 ⊂ C2 ⇒ µp(C1) ≤ µp(C2)

4 If {Cn} is a sequence of closed chains from Pbd,ch(E) such that Cn+1 ⊂ Cn (n =

1, 2, ...) and if lim
n→∞

µp(Cn) = 0, then the intersection set C∞ =
⋂∞
n=1Cn is

nonempty.



92 DHYANESHWAR V. MULE & BHIMRAO R. AHIRRAO

The partially measure µp of noncompactness is called sublinear if it satisfies

5 µp(C1 + C2) ≤ µp(C1) + µp(C2) for all C1, C2 ∈ Pbd,ch(E) and

6 µp(λC) = |λ|µp(C) for λ ∈ R.

Remark 2.1 : The family of sets described in 1 is said to be kernel of the measure of

noncompactness µp and is defined as

ker µp =
{
C ∈ Pbd,ch(E)

∣∣µp(C) = 0
}
.

Clearly, ker µp ⊂ Prcp,ch(E). Observe that the intersection set C∞ from condition (4) is

a member of the family ker µp. In fact, since µp(C∞) ≤ µp(Cn) for any n, we infer that

µp(C∞) = 0. This yields that C∞ ∈ ker µp. This simple observation will be essential in

our further investigations.

Definition 2.4 : A mapping T : E → E is called a partially k-set-contraction if there

exists a constant k > 0 such that for any bounded chain C of E, T (C) is a bounded

chain and µp(T (C)) ≤ k µp(C).

We need the following definition in what follows.

Definition 2.5 [6] : The order relation � and the metric d on a non-empty set E are

said to be compatible if {xn} is a monotone, that is, monotone a nondecreasing or

monotone nonincreasing sequence in E and if a subsequence {xnk
} of {xn} converges

to x∗ implies that the whole sequence {xn} converges to x∗. Similarly, given a partially

ordered normed linear space (E,�, ‖·‖), the order relation � and the norm ‖·‖ are said

to be compatible if � and the metric d defined through the norm ‖ · ‖ are compatible.

The following applicable hybrid fixed point theorem for monotone mappings proved in

Dhage [6] is the key tool for proving the main existence results of this paper.

Theorem 2.1 [7] : Let S be a non-empty, closed and partially bounded subset of a

regular partially ordered complete normed linear space (E,�, ‖ · ‖) such that the order

relation � and the norm ‖ · ‖ are compatible in every compact chain C of E. Let

T : S → S be a partially continuous, nondecreasing and partially k-set-contraction

with k < 1. If there exists an element x0 ∈ S such that x0 � T x0 or x0 � Tx0, then T
has a fixed point x∗ and the sequence {T nx0} of successive iterations converges to x∗.

Proof : The proof is given in Dhage [9] and so we omit the details. 2
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Remark 2.2 : The regularity of E and the partial continuity of T in above Theorem

2.1 may be replaced with a stronger condition of the continuity of the operator T on E.

Remark 2.3 : If the set S of solutions to the above operator equation is a chain, then

all the solutions belonging to S are comparable. Further, if µp(S) > 0, then µp(S) =

µp(T S) ≤ ψ(µp(S)) < µp(S) which is a contradiction. Consequently, S ∈ ker µp.

This simple fact has been utilized in the study of qualitative properties of the dynamic

systems under consideration. See Dhage ([6], [7]), Dhage and Dhage et.al. [11].

Remark 2.4 : Suppose that the order relation � is introduced in E with the help of

an order cone K which is a non-empty closed set K in E satisfying (i) K + K ⊆ K, (ii)

λK ⊆ K and (iii) {−K} ∩K = {0} (cf. [13]). Then the order relation � in E is defined

as x � y ⇐⇒ y − x ∈ K. The element x0 ∈ E satisfying x0 � T x0 in above Theorem

2.1 is called a lower solution of the operator equation x = T x. If the operator equation

x = T x has more than one lower solution and the set of all these lower solutions are

comparable, then the corresponding set S of the solutions to above operator equation

is a chain and hence all solutions in S are comparable. To see this, let x0 and y0 be any

two lower solutions of the above operator equation such that x0 � y0 and let x∗ and y∗

respectively be the corresponding solutions under the conditions of Theorem 2.1. Now,

by definition of �, one has y0 − x0 ∈ K and from the monotone nondecreasing nature

of T it follows that T ny0 − T nx0 ∈ K. Since K is closed, we have that y∗ − x∗ ∈ K or

x∗ � y∗.

For our purpose we introduce a handy tool for the partial measure of noncompactness

in the space BC(R+,R) which is useful in the study of the solutions of certain nonlin-

ear integral equations. To define this partial measure of noncompactness, let us fix a

nonempty and bounded chain X in the partially ordered Banach space BC(R+,R) and

a positive real number T . For a fixed element x ∈ X and a real number ε ≥ 0 denote

by ωT (x, ε) the modulus of continuity of the function x on the interval [0, T ] defined by

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε} .

Next, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X} ,

ωT0 (X) = lim
ε→0

ωT (X, ε)
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and

ω0(X) = lim
T→∞

ωT0 (X) . (2.1)

The partial Hausdorff measure of noncompactness βp in the function space C([0, T ],R)

of continuous real-valued functions defined on closed and bounded interval [0, T ], is very

much useful in the applications to nonlinear differential and integral equations and it

can be shown that

βp(X) =
1

2
ωT0 (X)

for all bounded chain X in C([0, T ],R). Similarly, ω0 is a handy tool of partial mea-

sure of noncompactness in the ordered Banach space BC(R+,R) useful for practical

applications to nonlinear differential and integral equations.

Now, for a fixed number t ∈ R+ and a fixed bounded chain X in BC(R+,R), let us

denote

X(t) = {x(t) : x ∈ X}.

Let

δa(X(t)) = |X(t)| = sup{|x(t)| : x ∈ X} ,

δTa (X(t)) = sup
t≥T

δa(X(t)) = sup
t≥T
|X(t)|

and

δa(X) = lim
T→∞

δTa (X(t)) = lim sup
t→∞

|X(t)|. (2.2)

The details of the function δa appear in Dhage [6]. Finally, let us consider the function

µpa defined on the family of bounded chains in BC(R+,R) by the formula

µpa(X) = ω0(X) + δa(X). (2.3)

It can be shown that the function µpa is a partial measure of noncompactness in the

space BC(R+,R). The components ω0 and δa are called the characteristic values of the

partial measure of noncompactness µpa in BC(R+,R).

Remark 2.5 : The kernel ker µpa of the partial measure of noncompactness µpa consists

of all nonempty and bounded chains X of the Banach space BC(R+,R) such that func-

tions from X are locally equicontinuous on R+ and the thickness of the bundle formed

by functions from X tends to zero at infinity. This particular characteristic of ker µpa

has been useful in establishing the local attractivity and local asymptotic stability of
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the comparable solutions for the fractional integral equations on R.

3. Attractivity and Stability Results

Our considerations will be placed in the Banach space BC(R+,R) consisting of the all

real functions x = x(t) which are defined, continuous and bounded on R+. This space

is equipped with the standard supremum norm

||x|| = sup{|x(t)| : t ∈ R+} . (3.1)

Define the order relation ≤ in BC(R+,R) as follows. Let x, y ∈ BC(R+,R). Then

x ≤ y ⇐⇒ x(t) ≤ y(t) (3.2)

for all t ∈ R+. It is clear that (BC(R+,R),≤, ‖ · ‖) is a regular partially ordered Banach

space which is also a lattice (cf. Nieto and Lopez [15]).

The following lemma follows immediately by an application of Arzellá-Ascoli theorem.

Lemma 3.1 : Let
(
BC(R+,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the

norm ‖ · ‖ and the order relation ≤ defined by (3.1) and (3.2) respectively. Then the

norm ‖ · ‖ and the order relation ≤ are compatible in every partially compact subset of

BC(R+,R).

Proof : The proof of the lemma appears in Dhage [7]. Since it is not well-known, we

give the details of it. Let S be a partially compact subset of BC(R+,R) and let {xn}
be a monotone nondecreasing sequence of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , (∗)

for each t ∈ R+.

Suppose that a subsequence {xnk
} of {xn} is convergent and converges to a point x in

S. Then the subsequence {xnk
(t)} of the monotone real sequence {xn(t)} is convergent.

By monotone characterization, the whole sequence {xn(t)} is convergent and converges

to a point x(t) in R for each t ∈ R+. This shows that the sequence {xn} converges

point-wise to x in S. To show the convergence is uniform, it is enough to show that

the sequence {xn(t)} is equicontinuous. Since S is partially compact, every chain or

totally ordered set and consequently {xn} is an equicontinuous sequence by Arzelá-

Ascoli theorem. Hence {xn} is convergent and converges uniformly to x. As a result

‖ · ‖ and ≤ are compatible in S. This completes the proof.
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In order to introduce further concepts used in the paper let us assume that Ω is a

nonempty chain of the space BC(R+,R). Moreover, let Q be an operator defined on Ω

with values in BC(R+,R).

Consider the operator equation of the form

x(t) = Qx(t), t ∈ R+ . (3.3)

Definition 3.1 : We say that comparable solutions of the equation (3.3) are locally

asymptotically stable or locally asymptotically attractive to the line x(t) = c

for all t ∈ R+ if there exists an open ball B(x0, r) in the space BC(R+,R) such that for

arbitrary comparable solution x = x(t) of the equation (3.3) belonging to B(x0, r) ∩ Ω

we have that

lim
t→∞

[x(t)− c] = 0 . (3.4)

In the case when limit (3.4) is uniform with respect to the set B(x0, r) ∩ Ω, i.e. when

for each ε > 0 there exists T > 0 such that

|x(t)− c| ≤ ε (3.5)

for all x ∈ B(x0, r) ∩ Ω being the comparable solutions of (3.3) and for t ≥ T , we will

say that the comparable solutions of the operator equation (3.3) are uniformly locally

asymptotically attractive or uniformly locally asymptotically stable to the line

x(t) = c defined on R+.

The equation (1.1) will be considered under the following assumptions:

(H1) The function q : R+ → R is continuous and bounded. Moreover, lim
t→∞

q(t) = 0.

(H2) The function k is continuous and nonnegative on R+ × R+.

(H3) f and g define the functions f, g : J × R → R+. Moreover, f(t, 0) = 0 for all

t ∈ R+.

(H4) There exists a constant L > 0 such that

0 ≤ f(t, x)− f(t, y) ≤ L(x− y)

for all t ∈ R+ and x, y ∈ R with x ≥ y.
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(H5) g(t, x) is nondecreasing in x for each t ∈ J .

(H6) There exists an element u ∈ C(J,R) such that

u(t) ≤ q(t) +
[
f(t, u(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, u(λs))) ds

)
for all t ∈ J .

(H7) There exists a continuous function b : R+ → R+ such that g(t, x) ≤ b(t) for

t ∈ R+ and x ∈ R. Moreover, we assume that

lim
t→∞

t∫
0

k(t, s)

(t− s)1−α b(s) ds = 0 .

Remark 3.1 : If we define the function v : R+ → R+ by

v(t) =

∫ t

0

k(t, s)

(t− s)1−α b(s) ds, (3.6)

then it is continuous on R+ and which further in view of hypothesis (H7) implies that

the number V = supt≥0 v(t) exists.

The hypotheses (H1) through (H7) are standard and have been widely used in the litera-

ture on nonlinear differential and integral equations. The hypothesis (H3) is considered

recently in Nieto and Lopez [15]. Now we formulate the main existence results for the

integral equation (1.1) under above mentioned natural conditions.

Theorem 3.1 : Assume that the hypotheses (H1) through (H7) hold. Furthermore

if LV
Γ(α) < 1, then the fractional QFIE (1.1) has at least one solution x∗ in the space

BC(R+,R) and the sequence {xn} of successive approximations defined by

xn+1(t) = q(t) +
[
f(t, xn(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, xn(λs)) ds

)
, t ∈ R+, (3.7)

for each n ∈ N with x0 = u converges monotonically to x∗. Moreover, the comparable

solutions of the QFIE (1.1) are uniformly locally asymptotically attractive and stable

to zero on R+.

Proof : We seek the solutions of the HFIE (1.1) in the function space BC(R+,R) of

continuous and bounded real-valued functions defined on R+. Set E = BC(R+,R).

Then, in view of Lemma 3.1, every compact chain in E possesses the compatibility

property with respect to the norm ‖ · ‖ and the order relation ≤ in E.
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Define the operator Q defined on the space E by the formula

Qx(t) = q(t) +
[
f(t, x(t))]

 1

Γ(α)

t∫
0

k(t, s)

(t− s)1−α g(s, x(λs)) ds

 (3.8)

for all t ∈ R+. Observe that in view of our assumptions, for any function x ∈ E, the

function Qx is continuous on R+. As a result, Q defines a mapping Q : E → E. We

show that Q satisfies all the conditions of Theorem 2.1 on E. This will be achieved in

a series of following steps:

Step I : Q is a nondecreasing on E.

Let x, y ∈ E be such that x ≤ y. Then by hypothesis (H3)-(H4), we obtain

Qx(t) = q(t) +
[
f(t, x(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds

)
≤ q(t) +

[
f(t, y(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds

)
= Qy(t)

for all t ∈ R+. This shows that Q is a nondecreasing operator on E.

Step II : Q maps a closed and partially bounded set into itself.

Define an open ball B(x0, r), where r =
‖x0‖+ ‖q‖

1− LV
Γ(α)

. Let X be a chain in B(x0, r) and

let x ∈ X be arbitrary. If x ≥ θ, then for arbitrarily fixed t ∈ R+ we obtain:

|x0(t)−Qx(t)| ≤ |x0(t)|+ ‖q‖+
[
|f(t, x(t))|

]
×

×
(

1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α |g(s, x(λs))| ds
)

≤ |x0(t)|+ ‖q‖+
[
|f(t, x(t))− f(t, 0)|

]
×

×
(

1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α b(s) ds

)
≤ |x0(t)|+ ‖q‖+ L |x(t)| v(t)

Γ(α)

≤ ‖x0‖+ ‖q‖+ L ‖x‖ V

Γ(α)

≤ ‖x0‖+ ‖q‖+
LV r

Γ(α)

= r. (3.9)
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Similarly, if x ≤ θ, then it can be shown that |x0(t)−Qx(t)| ≤ r for all t ∈ R+. Taking

the suremum over t, we obtain ‖x0 − Qx‖ ≤ r for all x ∈ X. This means that the

operator Q transforms any bounded chain X into a bounded chain QX in E. More

precisely, we infer that the operator Q transforms the chain X belonging to B(x0, r)

into the chain Q(X) contained in the ball B(x0, r). As a result, Q defines a mapping

Q : Pch(B(x0, r))) → Pch(B(x0, r))) and that Q is partially bounded on S = B(x0, r)

into itself.

Step III : Q is a partially continuous on S.

Now we show that the operator Q is a partially continuous on the ball B(x0, r). To

do this, let us fix an arbitrary ε > 0 and take x, y ∈ X ⊂ B(x0, r) such that x ≥ y and

||x− y|| ≤ ε. Then we get:

∣∣Qx(t)−Qy(t)
∣∣ ≤ ∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds
)∣∣∣∣

≤
∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0
(t− s)α−1 g(s, x(λs)) ds

)
−[f(t, y(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds
)∣∣∣∣

+

∣∣∣∣[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds
)∣∣∣∣

≤ 1

Γ(α)

∣∣f(t, x(t))− f(t, y(t))
∣∣ ∫ t

0

k(t, s)

(t− s)1−α b(s) ds

+
2

Γ(α)
|f(t, y(t))|

∫ t

0

k(t, s)

(t− s)1−α b(s) ds

≤ LV

Γ(α)
|x(t)− y(t)|+ 2Lr

Γ(α)
v(t).

Hence, by virtue of hypothesis (B6), we infer that there exists T > 0 such tha v(t) ≤ ε
2Lr
Γ(α)

for t ≥ T . Thus, for t ≥ T we derive that

|Qx(t)−Qy(t)| <
(
LV

Γ(α)
+ 1

)
ε . (3.10)
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Further, let us assume that t ∈ [0, T ]. Then, evaluating as above with the Similar

arguments, we get:

∣∣Qx(t)−Qy(t)
∣∣ ≤ ∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds
)∣∣∣∣

≤
∣∣∣∣[f(t, x(t))]

( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds
)∣∣∣∣

+

∣∣∣∣[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, x(λs)) ds
)

−[f(t, y(t))]
( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, y(λs)) ds
)∣∣∣∣

≤ 1

Γ(α)

∣∣f(t, x(t))− f(t, y(t))
∣∣ ∫ t

0

k(t, s)

(t− s)1−α b(s) ds

+
1

Γ(α)
|f(t, y(t))|

∫ t

0

k(t, s)

(t− s)1−α |g(s, x(λs))− g(s, y(λs))| ds

≤ LV

Γ(α)
|x(t)− y(t)|+ 1

Γ(α)
|f(t, y(t))|

∫ t

0

k(t, s)

(t− s)1−α ωTr (g, ε) ds

< ε+
CMT p

Γ(α+ 1)
ωTr (g, ε) , (3.11)

where we have denoted

C = sup{k(t, s) : t, s ∈ [0, T ]},

M = sup
{
f(t, y) : t ∈ [0, T ] and y ∈ [−r, r]

}
,

and

ωTr (g, ε) = sup{|g(s, x)− g(s, y)| : t, s ∈ [0, T ], x, y ∈ [−r, r], |x− y| ≤ ε} .

Now, from the uniform continuity of the function g(s, x) on the set [0, T ] × [−r, r]
we derive that ωTr (g, ε) → 0 as ε → 0. Now, linking ((3.10), (3.11)) and the above

established facts we conclude that the operator Q maps partially continuously the ball

B(x0, r) into itself.

Step IV : Q is a k-set-contraction w.r.t. the characteristic value ω0.
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Further on let us take a chain X belonging to the ball B(x0, r). Next, fix an arbitrary

T > 0 and ε > 0. Let us choose x ∈ X and t1, t2 ∈ [0, T ] with |t2 − t1| ≤ ε. Without

loss of generality we may assume that x(t1) ≥ x(t2). Then, taking into account our

assumptions, we get:∣∣Qx(t1)−Qy(t2)
∣∣ ≤ |q(t1)− q(t2)|

+

∣∣∣∣[f(t1, x(t1))]
( 1

Γ(α)

∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(λs)) ds
)

−[f(t2, y(t2))]
( 1

Γ(α)

∫ t2

0

k(t2, s)

(t2 − s)1−α g(s, y(λs)) ds
)∣∣∣∣

≤ |q(t1)− q(t2)|

+

∣∣∣∣[f(t1, x(t1))]
( 1

Γ(α)

∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(λs)) ds
)

−[f(t2, y(t2))]
( 1

Γ(α)

∫ t1

0

k(t2, s)

(t2 − s)1−α g(s, y(λs)) ds
)∣∣∣∣

+

∣∣∣∣[f(t2, y(t2))]
( 1

Γ(α)

∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(λs)) ds
)

−[f(t2, y(t2))]
( 1

Γ(α)

∫ t2

0

k(t2, s)

(t2 − s)1−α g(s, y(λs)) ds
)∣∣∣∣

≤ |q(t1)− q(t2)|

+
1

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣( ∫ t1

0

k(t1, s)

(t1 − s)1−α b(s) ds
)

+
1

Γ(α)
|f(t2, y(t2))|

∣∣∣∣∫ t1

0

k(t1, s)

(t1 − s)1−α |g(s, x(λs))| ds

−
∫ t2

0

k(t2, s)

(t2 − s)1−α | g(s, x(λs)) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ t1

t2

k(t2, s)

(t2 − s)1−α g(s, x(λs)) ds

∣∣∣∣
≤ |q(t1)− q(t2)|+

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣v(t1)

+
M

Γ(α)

∣∣∣∣∫ t1

0

k(t1, s)

(t1 − s)1−α g(s, x(λs)) ds−
∫ t2

0

k(t2, s)

(t2 − s)1−α g(s, x(λs)) ds

∣∣∣∣
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≤ |q(t1)− q(t2)|+ 1

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣v(t1)

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+

∣∣∣∣ 1

Γ(α)

∫ t1

t2

k(t2, s)

(t2 − s)1−α g(s, x(λs)) ds

∣∣∣∣
≤ |q(t1)− q(t2)|

+
V

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t2))
∣∣

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+
GTr

Γ(α)
|t1 − t2|, (3.12)

where

GTr = sup{|g̃(t, s, x)| : t ∈ [0, T ], s ∈ [0, T ], x ∈ [−r, r]}

which does exists in view of the fact that the function

g̃(t, s, x) =
k(t, s)

(t− s)1−α g(s, x)

is continuous on compact [0, T ]× [0, T ]× [−r, r]. Now combining the inequalities (3.11)

and (3.12) we obtain,

|Qx(t2)−Qx(t1)| ≤ |q(t1)− q(t2)|

+
V

Γ(α)

∣∣f(t1, x(t1))− f(t2, x(t1))
∣∣

+
LV

Γ(α)
|x(t1)− x(t2)|

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+
GTr

Γ(α)
|t1 − t2|

≤ ωT (q, ε) +
LV

Γ(α)
ωT (x, ε) +

LV

Γ(α)
ωTr (f, ε)

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+
GTr

Γ(α)
|t1 − t2|, (3.13)
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where we have denoted

ωT (q, ε) = sup{|q(t2)− q(t1)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε} ,

ωT (x, ε) = sup{|x(t2)− x(t1)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε}

and

ωTr (f, ε) = sup{|f(t2, x)− f(t1, x)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, x ∈ [−r, r]} .

From the above estimate we derive the following one:

ωT (Q(X), ε) ≤ ωT (q, ε) +
LV

Γ(α)
ωT (X, ε) +

LV

Γ(α)
ωTr (f, ε)

+
1

Γ(α)

∫ T

0

∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ b(s) ds
+
GTr

Γ(α)
ε. (3.14)

Observe that ωTr (f, ε) → 0 and
∣∣∣ k(t1, s)

(t1 − s)1−α −
k(t2, s)

(t2 − s)1−α

∣∣∣ → 0 as ε → 0, which is a

simple consequence of the uniform continuity of the functions f and
k(t, s)

(t− s)1−α on the

sets [0, T ]×[−r, r] and [0, T ]×[0, βT ] respectively. Moreover, from the uniform continuity

of q on [0, T ], it follows that ωT (q, ε)→ 0 as ε→ 0. Thus, linking the established facts

with the estimate (3.14) we get

ωT0 (Q(X)) ≤ LV

Γ(α)
ωT0 (X) .

Consequently, we obtain

ω0(Q(X)) ≤ LV

Γ(α)
ω0(X) . (3.15)

Step V : Q is a k-set-contraction w.r.t. characteristic value δc.

Next, we show that Q is k-set-contraction with respect to the characteristic value δa.

Now, taking into account our assumptions, for arbitrarily fixed t ∈ R+ and for x ∈ X
with x ≥ 0, we deduce the following estimate:

|(Qx)(t)| ≤ |q(t)|+ |f(t, x(t))− f(t, 0)|
(

1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α b(s) ds

)
≤ |q(t)|+ L |x(t)| v(t)

Γ(α)

≤ |q(t)|+ LV

Γ(α)
|x(t)|.



104 DHYANESHWAR V. MULE & BHIMRAO R. AHIRRAO

From the above inequality it follows that

|QX(t)| ≤ |q(t)|+ LV

Γ(α)
|X(t)|

for each t ∈ R+. Therefore, taking limit superior over t→∞, we obtain

δa(QX) = lim sup
t→∞

|Q(X(t))|

≤ LV

Γ(α)
lim sup
t→∞

|X(t)|

=
LV

Γ(α)
δa(X). (3.16)

Step VI : Q is a partially k-set-contraction on S.

Further, using the measure of noncompactness µpa defined by the formula (2.3) and

keeping in mind the estimates (3.15) and (3.16), we obtain

µpc(QX) = ω0(QX) + δa(QX)

≤ LV

Γ(α)
ω0(X) +

LV

Γ(α)
δa(X)

=
LV

Γ(α)
µpa(X).

This shows that Q is a partially nonlinear k-set-contraction on S with k = LV
Γ(α) < 1.

Again, by hypothesis (H5), there exists an element x0 = u ∈ S such that x0 ≤ Qx0,

that is, x0 is a lower solution of the QFIE (1.1) defined on R+.

Thus Q satisfies all the conditions of Theorem 2.1 on S. Hence we apply it to the

operator equation Qx = x and deduce that the operator Q has a fixed point x∗ in the

ball B(x0, r). This further implies that x∗ is a solution of the fractional integral equation

(??) and the sequence {xn} of successive approximations defined by

xn+1(t) = q(t) +
[
f(t, xn(t))

]( 1

Γ(α)

∫ t

0

k(t, s)

(t− s)1−α g(s, xn(λs)) ds

)
for each t ∈ R+ converges monotonically to x∗. Moreover, taking into account that the

image of every chain X under the operator Q is again a chain Q(X) contained in the

ball B(x0, r) we infer that the set F(Q) of all fixed points of Q is contained in B(x0, r). If

the set F(Q) contains all comparable solutions of the equation (1.1), then we conclude

from Remark 2.3 that the set F(Q) belongs to the family ker µpa. Now, taking into
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account the description of sets belonging to ker µpa (given in Section 2) we deduce that

all comparable solutions of the equation (1.1) are uniformly locally ultimately attractive

on R+. This completes the proof. 2
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