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Abstract

In this article, we use the Laplace Transform and Inverse Laplace Transform to
prove the identities of beta function. It is possible that this technique of proof may
be applied to solve the other problems involving beta function.

1. Introduction

The beta function [1], also called the Euler integral of the first kind, is a special function

defined by B(p, q) =
∫ 1

0 x
p−1(1− x)q−1dx ,for Re(p) > 0, Re(q) > 0.

The gamma function [2], also called the Euler integral of the second kind, is defined as

convergent improper integral Γ (n) =
∞∫
0

e−xxn−1dx for Re(n) > 0.

Properties of beta function:

1. B(p, q) = B(q, p)

2. B(p, q) =
∫∞

0
xp−1

(1+x)p+q
dx, Re(p) > 0, Re(q) > 0

3. B(p, q) = 2
∫ π

2
0 sinθ2p−1cosθ2q−1dx, Re(p) > 0, Re(q) > 0
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The key property of beta function is B(p, q) = Γ(p)Γ(q)
Γ(p+q) , which is proved by using Laplace

transform by Charng-Yih Yu in [3].

Identities of beta and gamma function:

1. B(p, q) = B(p+ 1, q) +B(p, q + 1), p, q > 0

2. B(p, q + 1) = q
pB(p+ 1, q) = q

p+qB(p, q), p, q > 0

3. Γ (p+ 1) = pΓ (p), p > 0

The proof of identities of beta function requires the following definitions and results.

Definition 1.1 [4] : If f(t) is defined for all positive values of t, then the Laplace

transform of f(t) is defined as the integral, L[f(t)] = F (s) =
∫∞

0 e−stf(t)dt, provided

that integral exists for complex parameter s, and f(t) = L−1[F (s)] is called as the

inverse Laplace transform of F (s).

Lemma 1.2 [4] : Convolution Theorem: L−1[F (s)] = f(t), and L−1[G(s)] = g(t), then

L−1[F (s)G(s)] =
∫ t

0 f(x)g(t − x)dx = f(t) ∗ g(t), where ∗ denotes the convolution of

f(t) and g(t).

Lemma 1.3 [3] : If p > 0, q > 0, then
∫ 1

0 (1− x)p−1xq−1dx = Γ(p)Γ(q)
Γ(p+q) .

2. Main Results

Lemma 2.1 [4] : Relation between Gamma function and Laplace transform: If s > 0,

then L[tn] = Γ(n+1)
sn+1 .

Proof : Consider L[tn] =
∫∞

0 e−sttndt

put st = x, t = x
s and dt = dx

s (new limits are x = 0 to x = ∞ ), therefore L[tn] =∫∞
0 e−x(xs )n dx

s = 1
sn+1

∫∞
0 e−xx(n+1)−1dx = Γ(n+1)

sn+1 2

Theorem 2.2 : If p > 0, q > 0, then

1. B(p, q) = B(p+ 1, q) +B(p, q + 1)

2. B(p, q + 1) = q
pB(p+ 1, q) = q

p+qB(p, q)

Proof : 1.

ConsiderR.H.S. = B(p+ 1, q) +B(p, q + 1) (1)

=

∫ 1

0
x(p+1)−1(1− x)q−1dx+

∫ 1

0
xp−1(1− x)(q+1)−1dx (2)
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put x = y
t ,dx = dy

t , in above integrals. (new limits are y=0, y=t)

R.H.S. =

∫ t

0
(
y

t
)(p+1)−1(1− y

t
)q−1dy

t
+

∫ t

0
(
y

t
)p−1(1− y

t
)(q+1)−1dy

t
(3)

=

∫ t

0

y(p+1)−1(t− y)q−1

tp+q
dy +

∫ t

0

yp−1(t− y)(q+1)−1

tp+q
dy (4)

=
1

tp+q

∫ t

0
y(p+1)−1(t− y)q−1dy +

1

tp+q

∫ t

0
yp−1(t− y)(q+1)−1dy (5)

By Lemma 1.2

R.H.S. =
1

tp+q
L−1[L[t(p+1)−1]L[tq−1]] +

1

tp+q
L−1[L[tp−1]L[t(q+1)−1]] (6)

By Lemma 2.1

R.H.S. =
1

tp+q
L−1[

Γ (p+ 1)

sp+1

Γ (q)

sq
] +

1

tp+q
L−1[

Γ (p)

sp
Γ (q + 1)

sq+1
] (7)

=
1

tp+q
Γ (p+ 1) Γ (q)L−1[

1

sp+q+1
] +

1

tp+q
Γ (p) Γ (q + 1)L−1[

1

sp+q+1
] (8)

Since L−1[ 1
sn ] = tn−1

Γ(n) ,

R.H.S. =
1

tp+q
Γ (p+ 1) Γ (q)

tp+q

Γ (p+ q + 1)
+

1

tp+q
Γ (p) Γ (q + 1)

tp+q

Γ (p+ q + 1)
(9)

=
Γ (p+ 1) Γ (q) + Γ (p) Γ (q + 1)

Γ (p+ q + 1)
(10)

By identity Γ (p+ 1) = pΓ (p),

R.H.S. =
(p+ q)Γ (p) Γ (q)

(p+ q)Γ (p+ q)
(11)

=
Γ (p) Γ (q)

Γ (p+ q)
(12)

= B(p, q) (13)

2.

ConsiderB(p, q + 1) =

∫ 1

0
xp−1(1− x)(q+1)−1dx (14)
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put x = y
t ,dx = dy

t , in above integral. (new limits are y=0, y=t)

B(p, q + 1) =

∫ t

0
(
y

t
)p−1(1− y

t
)(q+1)−1dy

t
(15)

=

∫ t

0

yp−1(t− y)(q+1)−1

tp+q
dy (16)

=
1

tp+q

∫ t

0
yp−1(t− y)(q+1)−1dy (17)

By Lemma 1.2

B(p, q + 1) =
1

tp+q
L−1[L[tp−1]L[t(q+1)−1]] (18)

By Lemma 2.1

B(p, q + 1) =
1

tp+q
L−1[

Γ (p)

sp
Γ (q + 1)

sq+1
] (19)

=
1

tp+q
Γ (p) Γ (q + 1)L−1[

1

sp+q+1
] (20)

Since L−1[ 1
sn ] = tn−1

Γ(n) ,

B(p, q + 1) =
1

tp+q
Γ (p) Γ (q + 1)

tp+q

Γ (p+ q + 1)
(21)

=
qΓ (p) Γ (q)

(p+ q)Γ (p+ q)
(22)

=
q

(p+ q)
B(p, q) (23)

Also,B(p, q + 1) =
Γ (p) Γ (q + 1)

Γ (p+ q + 1)
(24)

=
qpΓ (p) Γ (q)

pΓ (p+ q + 1)
(25)

=
qΓ (p+ 1) Γ (q)

pΓ (p+ 1 + q)
(26)

=
q

p
B(p+ 1, q) (27)

2
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3. Conclusion

The Laplace transform technique can be used to solve problems involving Beta function

instead of probability theory.
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