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Abstract

The notion of chromatic topological and irregularity indices has been defined and
studied in recent literature as an extended coloring version of some Zagreb indices.
This paper deals with the chromatic topological and irregularity indices of certain
cycle related graphs such as wheels, double wheels, helms and closed helms.

1. Introduction

Being a real number preserved under graph isomorphism, a topological index of graphs

(see [10]) are extensively studied in recent literature on graph theory. These numerical

quantities representing the structure of a graph has contributed much to the progress

of mathematical chemistry as molecular descriptors and also have a plethora of other

applications. A new research area has been initialized recently in [8] by interchanging
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the vertex degrees with minimal coloring, keeping up certain additional coloring con-

ditions. The graphs considered here are finite, non-trivial, undirected, connected and

without loops or multiple edges. For notation and terminology not explicitly defined

here, see [3, 4, 7, 11].

Graph coloring is a mapping of the vertices of a graph under consideration to a set of

colors C = {c1, c2, . . . , c`}. A proper vertex coloring of a graph G is a coloring in which

adjacent vertices of G have different colors. The minimum number of colors required to

apply a proper vertex coloring to G is called the chromatic number of G and is denoted

χ(G). The set of all vertices of G which have the color ci is named as the color class of

that color ci in G. The strength of the color class, denoted by θ(ci) is the cardinality of

each color class of color ci. A vertex coloring consisting of the colors having minimum

subscripts may be called a minimum parameter coloring (see [8]). A ϕ−-coloring of a

graph G is a minimum parameter coloring C = {c1, c2, c3, . . . c`} of G in which maximum

possible number of vertices are colored with c1, maximum possible number of remaining

uncolored vertices are colored with c2, then the maximum possible number of remaining

uncolored vertices are colored with c3 and proceed in this manner until all vertices are

colored (see [8]). In a similar manner, if c` is assigned to maximum possible number

of vertices first, then c`−1 is assigned to the maximum possible number of remaining

uncolored vertices and proceed in this manner until all vertices are colored, then such

a coloring is called ϕ+-coloring of G (see [8]).

For computational convenience, we define function ζ : V (G)→ {1, 2, 3, . . . , `} such that

ζ(vi) = s ⇐⇒ ϕ(vi) = cs, cs ∈ C. The total number of edges with end points having

colors ct and cs is denoted by ηts, where t < s, 1 ≤ t, s ≤ χ(G).

Analogous to the notions of Zagreb and irregularity indices of graphs (see [1, 6, 12, 13]),

the two chromatic Zagreb indices Mϕt
1 (G) and Mϕt

2 (G) and the chromatic irregularity

indices Mϕt
3 (G) of a graph G corresponding to a proper coloring C = {ci : 1 ≤ i ≤ n}

have been defined in (see [8]) as follows:

(i) Mϕt
1 (G) =

n∑
i=1

(ζ(vi))
2;

(ii) Mϕt
2 (G) =

n−1∑
i=1

n∑
j=2

(ζ(vi) · ζ(vj)), vivj ∈ E(G);
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(iii) Mϕt
3 (G) =

n−1∑
i=1

n∑
j=2
|ζ(vi)− ζ(vj)|, vivj ∈ E(G).

The chromatic total irregularity index of a graph G has been defined in [9] as

Mϕt
4 (G) =

1

2

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)|, vi, vj ∈ V (G).

The minimum and maximum values of the above chromatic topological indices are

denoted by Mϕ−

i (G) and Mϕ+

i (G) respectively.

Motivated by the studies mentioned above, we study the chromatic Zagreb indices and

chromatic irregularity indices of certain fundamental graph classes in the following dis-

cussion.

2. New Results

A wheel graph is defined as Wn = Cn + K1. The following theorem determines the

chromatic topological indices of a wheel graph.

Theorem 2.1 : For a wheel Wn = Cn +K1, we have

(i) Mϕ−

1 (Wn) =

{
5n+18

2 ; if n is even
5n+45

2 ; if n is odd;

(ii) Mϕ−

2 (Wn) =

{
13n
2 ; if n is even

13n+31
2 ; if n is odd;

(iii) Mϕ−

3 (Wn) =

{
5n
2 ; if n is even
5(n+1)

2 ; if n is odd;

(iv) Mϕ−

4 (Wn) =

{
n2+6n

8 ; if n is even
n2+14n−11

8 ; if n is odd.

Proof : Note that a wheel graph Wn has chromatic number 3 when n is even and

chromatic number 4 when n is odd. Let v1, v2, · · · vn be the vertices of Cn on the rim of

the wheel and u be the central vertex.

Part (i): In order to calculate Mϕ−

1 of Wn, we consider the following cases.

Case-1: If n is even, then the rim vertices of Wn can be coloured using two colors,

say c1 and c2 and the central vertex by c3. Hence, we have θ(c1) = θ(c2) = n
2 and
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θ(c3) = 1. Therefore, the corresponding chromatic Zagreb index is given by Mϕ−

1 (Wn) =
n∑
i=1

(ζ(vi))
2 = n

2 (12 + 22) + 1 · 32 = 5n+18
2 .

Case-2: Let n be odd. Then, the n−1
2 rim vertices each can be colored using c1 and

c2, the remaining single rim vertex gets the color c3 and the central vertex gets the

color c4. Therefore, θ(c1) = θ(c2) = n−1
2 and θ(c3) = θ(c4) = 1. Then, we have

Mϕ−

1 (Wn) =
4∑
i=1

θ(ci) · i2 = n−1
2 (12 + 22) + (32 + 42) = 5n+45

2 .

Part (ii): We color the vertices as mentioned in part(i). Now consider the following

cases:

Case- 1: If n is even, we observe that η12 = n, η23 = η13 = n
2 . Hence,

Mϕ−

2 (Wn) =

t<s∑
1≤t,s≤3

tsηts = 2n+ 3n+
3n

2
=

13n

2
.

Case- 2: If n is odd, then η12 = n− 2, η13 = η23 = η34 = 1, η14 = η24 = n−1
2 . Hence, we

have the sum Mϕ−

2 (Wn) =
t<s∑

1≤t,s≤4
tsηts = 2(n−2)+ 3(n−1)

2 +3(n−1)+4+8+12 = 13n+31
2 .

Part (iii): We calculate the minimum irregularity measurement by considering the

following cases:

Case- 1: Let n be even. Then, in this case, η12 +η23 = 3n
2 edges contribute the distance

1 to the total sum, while η13 = n
2 edges contribute the distance 2. Then, we have

Mϕ−

3 (Wn) =
n−1∑
i=1

n∑
j=2
|ζ(vi)− ζ(vj)| = 3n

2 + n
2 = 5n

2 .

Case- 2: Let n be odd. Here, η12+η23+η34 edges contribute 1 to the color distance, η13+

η24 edges contribute 2, while η14 edges contribute 3. Then, Mϕ−

3 (Wn) =
n−1∑
i=1

n∑
j=2
|ζ(vi)−

ζ(vj)| = (n− 2) + (n− 1) + n−1
2 + 3 + 2 + 1 = 5(n+1)

2 .

Part (iv): To calculate the chromatic total irregularity indices of wheel graphs, we have

to consider all the possible vertex pairs and all color combinations contributing non zero

distances are considered according to the following two cases:

Case- 1: Let n be even. The combinations possible are charted as {1, 2}, {2, 3} con-

tributing a distance 1 and {1, 3} contributing 2. Observe that θ(c1) = θ(c2) = n
2 and
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θ(c3) = 1. Thus, we have

Mϕ−

4 (Wn) =
1

2

∑
u,v∈V (Wn)

|ζ(u)− ζ(v)|

=
n2

4
+
n

2
+ n =

n2 + 6n

8
.

Case- 2: Let n be odd. Here, the possible combinations which contributes to the color

distances are {1, 2}, {2, 3} and {3, 4} contributing 1, {1, 3} and {2, 4} contributing 2

and {1, 4} contributing 3. We calculate the chromatic total irregularity index as given

below:

Mϕ−

4 (Wn) =
1

2

∑
u,v∈V (Wn)

|ζ(u)− ζ(v)|

=
(n− 1)2

4
+ 4(n− 1) + 1 =

n2 + 14n− 11

8

2

Instead of ϕ− coloring, one can also work with a ϕ+ coloring of wheels using minimum

parameter coloring. The results obtained are charted below as next theorem.

Theorem 2.2 : For a wheel Wn = Cn +K1, we have

(i) Mϕ+

1 (Wn) =

{
13n+2

2 ; if n is even
25n−15

2 ; if n is odd;

(ii) Mϕ+

2 (Wn) =

{
17n
2 ; if n is even

19n− 22; if n is odd;

(iii) Mϕ+

3 (Wn) =

{
5n
2 ; if n is even
5n+7

2 ; if n is odd;

(iv) Mϕ+

4 (Wn) =

{
n2+6n

8 ; if n is even
n2+14n−11

8 ; if n is odd.

Proof : Here, we consider a ϕ+ coloring of wheel to obtain desired results. When

n is even, the vertices S1 = {v1, v3, · · · vn−1} and S2 = {v2, v4, · · · vn} forms the two

maximum independent sets with same cardinality n
2 . We color them with maximum

colors c3 and c2 respectively. The remaining central vertex u is colored with c1. Then

η12 = η13 = n
2 and η23 = n.
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Let n be odd, we have chromatic number 4. Here the maximum independent sets

S1 = {v1, v3, · · · vn−1}, S2 = {v2, v4, · · · vn−2} have same cardinality n−1
2 and colored

with c4 and c3 where the vertices vn and u are colored with c1 and c2 respectively to

get maximum values. Thus η12 = η13 = η14 = 1, η23 = η24 = n−1
2 and η34 = n− 2. The

balance of the proof follows exactly as mentioned in the proof Theorem 2.1. 2

Chromatic Topological Indices of Double Wheels

Joining all the vertices of two disjoint cycles to an external vertex will give us the double

wheel graph. A double wheel graph DWn is a graph defined by 2Cn+K1. The following

result discusses the chromatic topological indices of a double wheel graph by using ϕ−

coloring.

Theorem 3.1 : For a double wheel DWn = 2Cn +K1, we have

(i) Mϕ−

1 (DWn) =

{
5n+ 9; if n is even

5n+ 29; if n is odd;

(ii) Mϕ−

2 (DWn) =

{
13n; if n is even

16n+ 22; if n is odd;

(iii) Mϕ−

3 (DWn) =

{
5n; if n is even

7n− 1; if n is odd;

(iv) Mϕ−

4 (DWn) =

{
n2+3n

2 ; if n is even
n2+9n−8

2 ; if n is odd.

Proof : As we know, the double wheel DWn = 2Cn+K1 has chromatic number 3 when

n is even and chromatic number 4 when n is odd. Let v1, v2, · · · vn be the vertices on the

outer cycle, u1, u2, · · ·un be the vertices on the inner cycle and u be the central vertex.

To obtain the minimum values of the chromatic topological indices we follow the ϕ−

coloring pattern to DWn as described below.

Let n be even. When n is even, we can find two maximum independent sets S1 =

{v1, v3, · · · vn−1, u1, u3, · · ·un−1}, S2 = {v2, v4, · · · vn, u2, u4, · · ·un} with same cardinal-

ity n taking alternative vertices from both cycles of DWn. We color them with minimum

colors c1 and c2 respectively. We color the central vertex u with c3.

Let n be odd. Here S1 = {v1, v3, · · · vn−1, u1, u3, · · ·un−1}, S2 = {v2, v4, · · · vn−2,
u2, u4, · · ·un−2} are the two maximum independent sets. Since S1, S2 have same cardi-
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nality n − 1 we color it with c1 and c2. The color c3 is assigned to vertices vn, un and

the central vertex u is colored with c4. Now we proceed to the following four parts of

the theorem :

Part (i): In order to find Mϕ−

1 of DWn, we first color the vertices as mentioned above

and then proceed to consider the following cases.

Case-1: Let n be even, then we have θ(c1) = θ(c2) = n and θ(c3) = 1. Therefore, the

corresponding chromatic Zagreb index is given by

Mϕ−

1 (DWn) =

n∑
i=1

(ζ(vi))
2 = n+ 4n+ 9 = 5n+ 9.

Case-2: Let n be odd. Then, we have θ(c1) = θ(c2) = n − 1, θ(c3) = 2 and θ(c4) = 1.

Now, by the definition of first chromatic Zagreb index, we have

Mϕ−

1 (DWn) =
4∑
i=1

(θ(ci))i
2 = (n− 1) + 4(n− 1) + 18 + 16 = 5n+ 29.

Part (ii): We color the vertices as per the instructions in introductory part for even

and odd cases of n. Now consider the following cases:

Case- 1: Let n be even. Here we see that η12 = 2n, η23 = η13 = n. The definition of

second chromatic Zagreb index, gives the sum

Mϕ−

2 (DWn) =

t<s∑
1≤t,s≤χ(DWn)

tsηts = 4n+ 3n+ 6n = 13n.

Case- 2: Let n be odd. Here we see that η12 = 2(n− 2), η13 = η23 = η34 = 2,

η14 = η24 = n− 1. Hence, we have the sum

Mϕ−

2 (DWn) =

t<s∑
1≤t,s≤χ(Wn)

tsηts = 4(n−2)+6+12+24+4(n−1)+8(n−1) = 16n+22.

Part (iii): To find the minimum irregularity measurement, consider the following cases:

Case- 1: Let n be even. Here η12 + η23 = 3n edges contribute the distance 1 to the

total summation while η13 = n contribute the distance 2. The result follows from the

following calculations:

Mϕ−

3 (DWn) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n+ 2n+ n = 5n.
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Case- 2: Let n be odd. Here we see that, η12 + η23 + η34 edges contribute 1 to the color

distance, η13 + η24 edges contribute 2, while η14 edges contribute 3. Then the result

follows from the following calculations:

Mϕ−

3 (DWn) =
n−1∑
i=1

n∑
j=2

|ζ(vi)−ζ(vj)| = 2(n−2)+4+2+2+3(n−1)+2(n−1) = 7n−1.

Part (iv): To calculate the total irregularity of DWn, all the possible vertex pairs from

DWn have to be considered and their possible color distances are determined. The

possibility of the vertex pairs which contribute to the color distance can be classified

according to the following two cases.

Case- 1: Let n be even. The combinations possible are charted as {1, 2}, {2, 3} con-

tributing 1 and {1, 3} contributing 2. Observe that θ(c1) = θ(c2) = n and θ(c3) = 1.

Thus, we have

Mϕ−

4 (DWn) =
1

2

∑
u,v∈V (DWn)

|ζ(u)− ζ(v)|

=
n2 + 3n

2
.

Case- 2: Let n be odd. Here the possible combinations which contributes to the color

distances are {1, 2}, {2, 3}, {3, 4} contributing 1, {1, 3}, {2, 4} contributing 2 and {1, 4}
contributing 3. We calculate the total irregularity as given below:

Mϕ−

4 (DWn) =
1

2

∑
u,v∈V (DWn)

|ζ(u)− ζ(v)|

=
n2 + 9n− 8

2

2

Using the minimum parameter coloring we can also work on ϕ+ coloring of double

wheels. Next theorem deals with this matter.

Theorem 3.2 : For a double wheel DWn = 2Cn +K1, we have

(i) Mϕ+

1 (DWn) =

{
13n+ 1; if n is even

25n− 16; if n is odd;

(ii) Mϕ+

2 (DWn) =

{
17n; if n is even

31n− 23; if n is odd;
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(iii) Mϕ+

3 (DWn) =

{
5n; if n is even

7n− 1; if n is odd;

(iv) Mϕ+

4 (Wn) =

{
n2+3n

2 ; if n is even
n2+9n−8

2 ; if n is odd.

2

Here, we follow ϕ+ coloring of double wheel to obtain desired results.

When n is even, we have the color classes of c2 and c3 with same cardinality n. The

remaining central vertex u is colored with c1. Then η12 = η13 = n and η23 = 2n

Let n be odd, we have chromatic number 4. Here we have, θ(c4) = θ(c3) = n−1, θ(c2) =

2 and θ(c1) = 1. Thus η12 = η23 = η24 = 2, η13 = η14 = n− 1 and η34 = 2(n− 2).

The balance of the proof follows exactly as mentioned in the proof of Theorem 3.1. 2

4. Chromatic Topological Indices of Helm Graph

A helm graph Hn is a graph obtained by attaching a pendant edge to every vertex of

the rim Cn of a wheel graph Wn. The following result provides the chromatic indices of

the helm graphs with ϕ− coloring.

Theorem 4.1 : For a helm graph Hn, we have

(i) Mϕ−

1 (Hn) =

{
15n+2

2 ; if n is even
15n+21

2 ; if n is odd;

(ii) Mϕ−

2 (Hn) =

{
11n; if n is even

11n+ 11; if n is odd;

(iii) Mϕ−

3 (Hn) =

{
4n; if n is even

4n+ 4; if n is odd;

(iv) Mϕ−

4 (Hn) =

{
7n2+6n

8 ; if n is even
7n2+18n−1

8 ; if n is odd.

Proof : Let v1, v2, · · · vn be the vertices on the rim of the wheel, u1, u2, · · ·un be the

pendant vertices and u be the central vertex. As we know, the helm graph has chromatic

number 3 when n is even and chromatic number 4 when n is odd. To obtain the minimum

values of the chromatic topological indices we follow the ϕ− coloring pattern to Hn as

described below.
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Let n be even. When n is even, the pendant vertices along with the central vertex u

comprises the largest independent set S1 and it is colored with c1. Now we can find two

more independent sets S2, S3 with same cardinality n
2 taking alternative vertices on the

rim of the helm graph, Hn. We color them with minimum colors c2 and c3 respectively.

Let n be odd. Here again the set comprising of the pendant vertices and the central

vertex form the largest independent set S1 and it is colored with c1. The balance vertices

are on the rim of the wheel. We can find two more independent sets S2, S3 with same

cardinality n−1
2 taking alternative vertices on the rim of the helm graph, Hn. Also, one

more vertex forms S4 and is colored with the color c4. Now we proceed to the four parts

of the theorem.

Part (i): In order to find Mϕ−

1 of Hn, we first color the vertices as mentioned above

and then proceed to consider the following cases:

Case-1: Let n be even, then we have θ(c1) = n + 1 and θ(c2) = θ(c3) = n
2 . Therefore,

the corresponding chromatic topological index is given by

Mϕ−

1 (Hn) =
n∑
i=1

(ζ(vi))
2 =

15n+ 2

2
.

Case-2: Let n be odd. Then, we have θ(c1) = n+ 1, θ(c2) = θ(c3) = n−1
2 and θ(c4) = 1.

Now, by the definition of first chromatic Zagreb index, we have

Mϕ−

1 (Hn) =

4∑
i=1

(θ(ci))i
2 =

15n+ 21

2
.

Part (ii): We color the vertices as per the instructions in introductory part for even

and odd cases of n. Now consider the following cases:

Case- 1: Let n be even. Here we see that η12 = η23 = η13 = n. The definition of second

chromatic Zagreb index, gives the sum

Mϕ−

2 (Hn) =
t<s∑

1≤t,s≤χ(Hn)

tsηts = 11n.

Case- 2: Let n be odd. Here we see that η12 = η13 = n− 1, η23 = n− 2, η14 = 2,

η34 = η24 = 1. Hence, we have the sum

Mϕ−

2 (Hn) =
t<s∑

1≤t,s≤χ(Hn)

tsηts = 11n+ 11.
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Part (iii): To find the minimum irregularity measurement, consider the following cases:

Case- 1: Let n be even. Here η12 + η23 = 2n edges contribute the distance 1 to the

total summation while η13 = n contribute the distance 2. The result follows from the

following calculations:

Mϕ−

3 (Hn) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 4n.

Case- 2: Let n be odd. Here we see that, η12 + η23 + η34 edges contribute 1 to the color

distance, η13 + η24 edges contribute 2, while η14 edges contribute 3. Then the result

follows from the following calculations:

Mϕ−

3 (Hn) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 4n+ 4.

Part (iv): To calculate the total irregularity of Hn, all the possible vertex pairs from Hn

have to be considered and their possible color distances are determined. The possibility

of the vertex pairs which contribute to the color distance can be classified according to

the following two cases.

Case- 1: Let n be even. The combinations possible are charted as {1, 2}, {2, 3} con-

tributing 1 and {1, 3} contributing 2. Observe that θ(c1) = θ(c2) = θ(c3) = n. Thus,

we have

Mϕ−

4 (Hn) =
1

2

∑
u,v∈V (Hn)

|ζ(u)− ζ(v)|

=
7n2 + 6n

8
.

Case- 2: Let n be odd. Here the possible combinations which contributes to the color

distances are {1, 2}, {2, 3}, {3, 4} contributing 1, {1, 3}, {2, 4} contributing 2 and {1, 4}
contributing 3. We calculate the total irregularity as given below:

Mϕ−

4 (Hn) =
1

2

∑
u,v∈V (Hn)

|ζ(u)− ζ(v)|

=
7n2 + 18n− 1

8

2



140 SMITHA ROSE & SUDEV NADUVATH

Using the minimum parameter coloring we can also work on ϕ+ coloring of helm graphs.

Next theorem deals with this matter.

Theorem 4.2 : For a helm graph Hn, we have

(i) Mϕ+

1 (Hn) =

{
23n+18

2 ; if n is even
45n+21

2 ; if n is odd;

(ii) Mϕ+

2 (Hn) =

{
11n; if n is even

26n− 19; if n is odd;

(iii) Mϕ+

3 (Hn) =

{
4n; if n is even

4n+ 4; if n is odd;

(iv) Mϕ+

4 (Hn) =

{
7n2+6n

8 ; if n is even
7n2+16n+1

8 ; if n is odd.

Proof : The proof follows exactly as mentioned in the proof Theorem 4.1. 2

5. Chromatic Topological Indices of Closed Helm Graphs

A closed helm graph CHn is a graph obtained from the helm graph Hn, by joining a

pendant vertex vi to the pendant vertex vi+1, where 1 ≤ i ≤ n and vn+i = vi. That is,

the pendant vertices in Hn induce a cycle in CHn. Then, we have the following results

about chromatic topological indices of the closed helm graphs.

Theorem 5.1 : For the closed helm graph CHn =, we have

(i) Mϕ−

1 (CHn) =

{
5n+9

2 ; if n is even
5n+29

2 ; if n is odd;

(ii) Mϕ−

2 (CHn) =

{
21n
2 ; if n is even

21n+53
2 ; if n is odd;

(iii) Mϕ−

3 (CHn) =

{
9n
2 ; if n is even
9n+11

2 ; if n is odd;

(iv) Mϕ−

4 (CHn) =

{
n2+3n

2 ; if n is even
n2+9n−8

2 ; if n is odd.

Proof : It is so clear that the closed helm graph CHn has chromatic number 3 and

4 as n possess values odd and even respectively. In CHn let’s put v1, v2, · · · vn be the
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vertices on the outer cycle , u1, u2, · · ·un be the vertices on the inner cycle and u be the

central vertex. Now we apply the ϕ− coloring pattern to CHn as described below.

When n is even, both the outer and inner cycles can be colored with c1 and c2 alter-

natively such that both color classes have cardinality n and we color the central vertex u

with color c3. Now let n be odd. Here we color the vertices {v1, v3, · · · vn−2, u2, u4, · · ·un−2}
with color c1 and {v2, v4, · · · vn−1, u3, u5, · · ·un} with color c2. The vertices {vn, u} are

colored with color c3 and the vertex u1 with color c4. Now we proceed to the four parts

of the theorem.

Part (i): In order to find Mϕ−

1 of CHn, we first color the vertices as mentioned above

and then proceed to consider the following cases.

Case-1: Let n be even, then we have θ(c1) = θ(c2) = n and θ(c3) = 1. Therefore, the

corresponding chromatic topological index is given by

Mϕ−

1 (CHn) =

n∑
i=1

(ζ(vi))
2 = 5n+ 9.

Case-2: Let n be odd. Then, we have θ(c1) = θ(c2) = n − 1, θ(c3) = 2 and θ(c4) = 1.

Now, by the definition of first chromatic Zagreb index, we have

Mϕ−

1 (CHn) =

4∑
i=1

(θ(ci))i
2 = 5n+ 29.

Part (ii): We color the vertices as per the instructions in the introductory part for even

and odd cases of n and consider the following cases:

Case- 1:Let n be even. Here we see that η12 = 3n, η23 = η13 = n
2 . The definition of

second chromatic Zagreb index, gives the sum

Mϕ−

2 (CHn) =
t<s∑

1≤t,s≤χ(CHn)

tsηts = 6n+
3n

2
+

6n

2
=

21n

2
.

Case- 2: Let n be odd. Here we see that η12 = 3(n− 2), η13 = n+1
2 , η23 = n+3

2 ,

η14 = 2, η34 = η24 = 1. Hence, we have the sum

Mϕ−

2 (CHn) =

t<s∑
1≤t,s≤χ(CHn)

tsηts =
21n+ 53

2
.

Part (iii): To find the minimum irregularity measurement, consider the following cases:
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Case- 1: Let n be even. Here η12 + η23 edges contribute the distance 1 to the total

summation while η13 contribute the distance 2. The result follows from the following

calculations:

Mϕ−

3 (CHn) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 3n+ n+
n

2
=

9n

2
.

Case- 2: Let n be odd. Here we see that, η12 + η23 + η34 edges contribute 1 to the color

distance, η13 + η24 edges contribute 2, while η14 edges contribute 3. Then the result

follows from the following calculations:

Mϕ−

3 (CHn) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 3(n− 2) + (n+ 1) +
n+ 3

2
+ 9 =

9n+ 11

2
.

Part (iv): To calculate the total irregularity of CHn, all the possible vertex pairs from

CHn have to be considered and their possible color distances are determined. The

possibility of the vertex pairs which contribute to the color distance can be classified

according to the following two cases.

Case- 1: Let n be even. The combinations possible are charted as {1, 2}, {2, 3} con-

tributing 1 and {1, 3} contributing 2. Observe that θ(c1) = θ(c2) = n and θ(c3) = 1.

Thus, we have

Mϕ−

4 (CHn) =
1

2

∑
u,v∈V (CHn)

|ζ(u)− ζ(v)|

=
n2 + 3n

2
.

Case- 2: Let n be odd. Here the possible combinations which contributes to the color

distances are {1, 2}, {2, 3}, {3, 4} contributing 1, {1, 3}, {2, 4} contributing 2 and {1, 4}
contributing 3. We calculate the total irregularity as given below:

Mϕ−

4 (CHn) =
1

2

∑
u,v∈V (CHn)

|ζ(u)− ζ(v)|

=
n2 + 9n− 8

2

2

Using the minimum parameter coloring we can also work on ϕ+ coloring of closed helm

graphs. Next theorem deals with this matter.

Theorem 5.2 : For a closed helm graph CHn, we have
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(i) Mϕ+

1 (CHn) =

{
13n+ 1; if n is even

25n− 16; if n is odd;

(ii) Mϕ+

2 (CHn) =

{
23n
2 ; if n is even

43n− 46; if n is odd;

(iii) Mϕ+

3 (CHn) =

{
9n
2 ; if n is even
9n+11

2 ; if n is odd;

(iv) Mϕ+

4 (CHn) =

{
n2+3n

2 ; if n is even
n2+9n−8

2 ; if n is odd.

Proof : The proof follows exactly as mentioned in the proof Theorem 5.1. 2

6. Conclusion

Chromatic topological indices can find a variety of applications in mathematical chem-

istry, optimization techniques, distribution theory and even in sociology. An overview

of chromatic Zagreb indices and irregularity indices of some cycle related graphs are

provided in this paper. More research areas will be opened if other graph classes like

antiprisms and antiladders are considered. Also, comparative study on chromatic Zagreb

indices and irregularity indices of graph classes and their operations will be interesting.

One can also work on chromatic Zagreb indices and irregularity indices of some asso-

ciated graphs such as line graphs, subdivision of graphs, total graphs, etc. Even the

chromatic version of other topological indices gives fresh areas of research with tremen-

dous applications.

Acknowledgment

The first author would like to acknowledge the academic help rendered by Centre for

Studies in Discrete Mathematics, Vidya Academy of Science and Technology, Thrissur,

Kerala, India.



144 SMITHA ROSE & SUDEV NADUVATH

References

[1] Abdo H., Brandt S. and Dimitrov D., The total irregularity of a graph, Discrete
Math. Theor. Computer Sci., 16(1) (2014), 201-206.

[2] Alberton M. O., The irregularity of a graph, Ars Combin., 46 (1997), 219-225.

[3] Bondy J. A. and Murthy U. S. R., Graph Theory with Applications, Macmillian
Press, London, (1976).

[4] Chartrand G. and Lesniak L., Graphs and Digraphs, CRC Press, (2000).

[5] Fath-Tabar G. H., Old and new Zagreb indices of graphs, MATCH Commun.
Math. Comput. Chem., 65 (2011), 79-84.

[6] Gutman I. and Trinajstic N., Graph theory and molecular orbitals, total π
electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-
538, DOI:10.1016/0009-2614 (72)85099-1.

[7] Harary F., Graph Theory, New Age International, New Delhi, (2001).

[8] Kok J., Sudev N. K. and Mary U., On chromatic Zagreb indices of certain graphs,
Congr. Numer., 58 (1987), 7-14.

[9] Rose S. and Sudev N. K., On Certain Chromatic Topological Indices of Some
Mycielski Graphs, J. Math. Fund. Sci., communicated.

[10] Timmerman H., Roberto T., Consonni V., Mannhold R. and Kubinyi H., Hand
-book of molecular descriptors, Wiley-VCH, (2002).

[11] West D. S., Introduction to Graph Theory, Pearson Education Inc., Delhi,
(2001).

[12] Zhou B., Zagreb indices, MATCH Commun. Math. Comput. Chem., 52
(2004), 113-118.

[13] Zhou B. and Gutman I., Further properties of Zagreb indices, MATCH
Commun. Math. Comput. Chem., 54 (2005), 233-239.


