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Abstract

After the recent works of Prajapati and Rastogi [1] on the idea of pth Gol’dberg
relative order, we introduce in this paper (p, q)th relative Gol’dberg order of entire
functions of several complex variables and extend their results for (p+ 1, p)th rela-
tive Gol’dberg order.

1. Introduction and Definitions

We denote the point (z1, z2, ..., zn) ∈ Cn by z, where Cn denote the n-dimensional

complex space. Let D ⊆ Cn be bounded complete n-circular domain with centre at the

origin. For an entire function f(z) of n complex variables, let Mf,D(R) = sup
z∈DR

|f(z)|.

For R > 0, a point z ∈ DR if and only if z
R ∈ D.

If f(z) is non-constant, then Mf,D(R) is strictly increasing and its inverse
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M−1f,D : (|f(0)|,∞)→ (0,∞)

exists such that lim
R→∞

M−1f,D(R) =∞.

The Gol’dberg order of an entire function of n complex variables is defined as follows.

Definition 1.1 [2] : The Gol’dberg order (briefly G-order) ρf,D of f with respect to

the domain D is defined as

ρf,D = lim sup
R→∞

loglogMf,D(R)

logR
.

The lower Gol’dberg order λf,D of f with respect to the domain D is defined as

λf,D = lim inf
R→∞

loglogMf,D(R)

logR
.

It is known [2] that ρf,D is independent of the choice of the domain D, so we write ρf

instead of ρf,D.

In 2010, Mondal and Roy introduced the concept of relative order of an entire function

in Cn with respect to another entire function of several variables.

Definition 1.2 [3]: Let f and g be entire functions of n-variables and D be a bounded

complete n-circular domain with centre at the origin in Cn. Then the relative order

ρg,D(f) of f with respect to g and the domain D is defined by

ρg,D(f) = inf{µ > 0 : Mf,D(R) < Mg,D(Rµ), for all R > R0(µ) > 0}

= lim sup
R→∞

logM−1g,D(Mf,D(R))

logR
.

In [3] Mondal and Roy proved that the relative order of f with respect to g is independent

of the choice of the domain D. So the relative Gol’dberg order of f with respect to g

will be denoted by ρg(f).

In a recent paper, Prajapati and Rastogi [1] introduced the concept of pth relative

Gol’dberg order λ
[p]
g,D(f) of f with respect to g in the domain D as

λ
[p]
g,D(f) = lim inf

R→∞

log[p]M−1g,D(Mf,D(R))

logR
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where p = 1, 2, 3, ... .

In the case of relative order it therefore seems reasonable to define suitably (p, q)th

Gol’dberg order and (p, q)th relative Gol’dberg order of an entire function with respect

to another entire function of n complex variables in a domain D and to investigate its

basic properties, which we attempt in this paper. With this in view we introduce the

following definitions.

Definition 1.3 : Let f and g be two non-constant entire functions of n-complex vari-

ables and D be a bounded complete n-circular domain with centre at the origin in Cn.

If p, q are positive integers such that p > q ≥ 1 then the (p, q)th Gol’dberg order and

(p, q)th Gol’dberg lower order are respectively denoted by ρ
[p,q]
f,D and λ

[p,q]
f,D and are defined

by

ρ
[p,q]
f,D = lim sup

R→∞

log[p]Mf,D(R)

log[q]R

and

λ
[p,q]
f,D = lim inf

R→∞

log[p]Mf,D(R)

log[q]R
, p = 2, 3, 4, ... .

When p = 2 and q = 1 then these are equivalent to the definition of Gol’dberg order

and lower Gol’dberg order.

Definition 1.4 : Let f and g be entire functions of n-complex variables and D be

a bounded complete n-circular domain with centre at the origin in Cn. Then (p, q)th

relative Gol’dberg order ρ
[p,q]
g,D (f) of f with respect to g in the domain D is defined by

ρ
[p,q]
g,D (f) = lim sup

R→∞

log[p−1]M−1g,D(Mf,D(R))

log[q]R
.

Similarly (p, q)th relative Gol’dberg lower order λ
[p,q]
g,D (f) with respect to g in the domain

D is defined by

λ
[p,q]
g,D (f) = lim inf

R→∞

log[p−1]M−1g,D(Mf,D(R))

log[q]R
.

We say that f is of (p, q)th regular growth if ρ
[p,q]
g,D (f) = λ

[p,q]
g,D (f).

Definition 1.5 : An entire function g is said to have property (A) if for any α > 1 and

for all large R,

{Mg,D(exp[p−1]R)}2 < {Mg,D(exp[p−1]Rα)}.
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2. Basic Results

The following theorem shows that (p, q)th relative Gol’dberg order is independent of the

choice of the domain.

Theorem 2.1 : Let f and g be entire functions of n-complex variables then (p, q)th

relative Gol’dberg order of f with respect to g is independent of the choice of the domain

D.

Proof : Let D1 and D2 be any two bounded complete n-circular domains. Then there

exist two real numbers α, β > 0 such that αD1 ⊂ D2 ⊂ βD1 and so,

Mf,αD1(R) ≤Mf,D2(R) ≤Mf,βD1(R).

Hence for any bounded complete n-circular domain D

M−1g,D(Mf,αD1(R)) ≤M−1g,D(Mf,D2(R)) ≤M−1g,D(Mf,βD1(R)). (2.1)

Since for any λ > 0 and D,

Mf,λD(R) = Mf,D(λR),

so we have

lim sup
R→∞

log[p]M−1g,D(Mf,λD(R))

log[q]R
= lim sup

R→∞

log[p]M−1g,D(Mf,D(λR))

log[q]R

= lim sup
R→∞

log[p]M−1g,D(Mf,D(R))

log[q]Rλ

= lim sup
R→∞

log[p]M−1g,D(Mf,D(R))

log[q]R
.
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Hence from (2.1)

lim sup
R→∞

log[p]M−1g,D(Mf,D1(R))

log[q]R
= lim sup

R→∞

log[p]M−1g,D(Mf,αD1(R))

log[q]R

≤ lim sup
R→∞

log[p]M−1g,D(Mf,D2(R))

log[q]R

≤ lim sup
R→∞

log[p]M−1g,D(Mf,βD1(R))

log[q]R

≤ lim sup
R→∞

log[p]M−1g,D(Mf,D1(R))

log[q]R
.

Thus

lim sup
R→∞

log[p]M−1g,D(Mf,D1(R))

log[q]R
= lim sup

R→∞

log[p]M−1g,D(Mf,D2(R))

log[q]R
.

Hence the theorem.

So after this we shall always write, ρ
[p,q]
g (f) instead of ρ

[p,q]
g,D (f).

Theorem 2.2 :Let f and g be entire functions of n complex variables such that

0 < λ
[p+1,p]
f ≤ ρ[p+1,p]

f and 0 < λ
[p+1,p]
g ≤ ρ[p+1,p]

g .Then

λ
[p+1,p]
f

ρ
[p+1,p]
g

≤ λ
[p+1,p]
g (f) ≤ min{λ

[p+1,p]
f

λ
[p+1,p]
g

,
ρ
[p+1,p]
f

ρ
[p+1,p]
g

} ≤ max{λ
[p+1,p]
f

λ
[p+1,p]
g

,
ρ
[p+1,p]
f

ρ
[p+1,p]
g

} ≤ ρ
[p+1,p]
g (f) ≤

ρ
[p+1,p]
f

λ
[p+1,p]
g

.

Proof : From the definition of (p + 1, p)th Gol’dberg order and Gol’dberg lower order

we get for arbitrary ε > 0 and for all large values of R

Mf,D(exp[p−1]R) < exp[p]Rρ
[p+1,p]
f +ε (2.2)

Mg,D(exp[p−1]R) < exp[p]Rρ
[p+1,p]
g +ε (2.3)

Mf,D(exp[p−1]R) > exp[p]Rλ
[p+1,p]
f −ε (2.4)

Mg,D(exp[p−1]R) > exp[p]Rλ
[p+1,p]
g −ε. (2.5)

Also for a sequence {Rn} tending to infinity we get that

Mf,D(exp[p−1]Rn) > exp[p]R
ρ
[p+1,p]
f −ε
n (2.6)

Mg,D(exp[p−1]Rn) > exp[p]R
ρ
[p+1,p]
g −ε
n (2.7)
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Mf,D(exp[p−1]Rn) < exp[p]R
λ
[p+1,p]
f +ε
n (2.8)

Mg,D(exp[p−1]Rn) < exp[p]R
λ
[p+1,p]
g +ε
n (2.9)

Now from the definition of (p + 1, p)th relative Gol’dberg order, we get for arbitrary

ε1 > 0 and for all large values of R that

ρ[p+1,p]
g (f) + ε1 >

log[p]M−1g,D(Mf,D(exp[p−1]R))

logR
.

Now from (2.6) we get for a sequence {Rn} tending to infinity that,

ρ[p+1,p]
g (f) + ε1 >

log[p]M−1g,D(exp[p]R
ρ
[p+1,p]
f −ε
n )

logRn

=
log[p]M−1g,D(exp[p](R

ρ
[p+1,p]
f

−ε

ρ
[p+1,p]
g +ε

n )ρ
[p+1,p]
g +ε)

logRn

>
log[p]M−1g,DMg,D(exp[p−1](R

ρ
[p+1,p]
f

−ε

ρ
[p+1,p]
g +ε

n ))

logRn
, using(2.3)

=
ρ
[p+1,p]
f − ε

ρ
[p+1,p]
g + ε

.

As ε1(> 0) and ε(> 0) are arbitrary, we get

ρ[p+1,p]
g (f) ≥

ρ
[p+1,p]
f

ρ
[p+1,p]
g

. (2.10)

Also from (2.2) we get for arbitrary ε > 0 and for all large values of R that

log[p]M−1g,DMf,D(exp[p−1]R)

logR
<
log[p]M−1g,D(exp[p]Rρ

[p+1,p]
f +ε)

logR

=
log[p]M−1g,D(exp[p](R

ρ
[p+1,p]
f

+ε

ρ
[p+1,p]
g −ε )ρ

[p+1,p]
g −ε)

logR
.

Now from (2.7) we get for a sequence {Rn} tending to infinity that

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn
<
log[p]M−1g,DMg,D(exp[p−1](R

ρ
[p+1,p]
f

+ε

ρ
[p+1,p]
g −ε
n ))

logRn
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Therefore

lim inf
Rn→∞

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn
≤
ρ
[p+1,p]
f + ε

ρ
[p+1,p]
g − ε

.

Since ε > 0 is arbitrary, we have

λ[p+1,p]
g (f) ≤

ρ
[p+1,p]
f

ρ
[p+1,p]
g

. (2.11)

Now from the definition of (p+1, p)th relative Gol’dberg lower order, we get for arbitrary

ε2 > 0 and for all large values of R that

λ[p+1,p]
g (f)− ε2 <

log[p]M−1g,D(Mf,D(exp[p−1]R))

logR
.

Now from (2.8) we get for a sequence {Rn} tending to infinity

λ[p+1,p]
g (f)− ε2 <

log[p]M−1g,D(exp[p]R
λ
[p+1,p]
f +ε
n )

logRn

=
log[p]M−1g,D(exp[p](R

λ
[p+1,p]
f

+ε

λ
[p+1,p]
g −ε

n )λ
[p+1,p]
g −ε)

logRn

<
log[p]M−1g,DMg,D(exp[p−1]R

λ
[p+1,p]
f

+ε

λ
[p+1,p]
g −ε

n )

logRn
, using(2.5)

=
λ
[p+1,p]
f + ε

λ
[p+1,p]
g − ε

.

Since ε2(> 0) and ε(> 0) are arbitrary, we obtain that

λ[p+1,p]
g (f) ≤

λ
[p+1,p]
f

λ
[p+1,p]
g

. (2.12)

Now from (2.4) we get for arbitrary ε > 0 and for large values of R that

log[p]M−1g,DMf,D(exp[p−1]R)

logR
>
log[p]M−1g,D(exp[p]Rλ

[p+1,p]
f −ε)

logR

=
log[p]M−1g,D(exp[p](R

λ
[p+1,p]
f

−ε

λ
[p+1,p]
g +ε )λ

[p+1,p]
g +ε)

logR
.
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Now from (2.9) we obtain for a sequence {Rn} tending to infinity that

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn
>
log[p]M−1g,DMg,D(exp[p−1]R

λ
[p+1,p]
f

−ε

λ
[p+1,p]
g +ε

n )

logRn
.

So,

lim sup
Rn→∞

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn
≥
λ
[p+1,p]
f − ε

λ
[p+1,p]
g + ε

.

Since ε > 0 is arbitrary, we have

ρ[p+1,p]
g (f) ≥

λ
[p+1,p]
f

λ
[p+1,p]
g

. (2.13)

Again from definition, we get for arbitrary ε3 > 0 and for a sequence {Rn} tending to

infinity that

ρ[p+1,p]
g (f)− ε3 <

log[p]M−1g,D(Mf,D(exp[p−1]Rn))

logRn

<
log[p]M−1g,D(exp[p]R

ρ
[p+1,p]
f +ε
n )

logRn
, using(2.2)

=
log[p]M−1g,D(exp[p](R

ρ
[p+1,p]
f

+ε

λ
[p+1,p]
g −ε

n )λ
[p+1,p]
g −ε)

logRn

<
log[p]M−1g,DMg,D(exp[p−1]R

ρ
[p+1,p]
f

+ε

λ
[p+1,p]
g −ε

n )

logRn
, using(2.5)

=
ρ
[p+1,p]
f + ε

λ
[p+1,p]
g − ε

.

Since ε3(> 0) and ε(> 0) are arbitrary, we have

ρ[p+1,p]
g (f) ≤

ρ
[p+1,p]
f

λ
[p+1,p]
g

. (2.14)

Also from definition, we get for arbitrary ε4 > 0 and for a sequence {Rn} tending to
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infinity that

λ[p+1,p]
g (f) + ε4 >

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn

>
log[p]M−1g,D(exp[p]R

λ
[p+1,p]
f −ε
n )

logRn
, using(2.4)

=
log[p]M−1g,D(exp[p](R

λ
[p+1,p]
f

−ε

ρ
[p+1,p]
g +ε

n )ρ
[p+1,p]
g +ε)

logRn

>
log[p]M−1g,DMg,D(exp[p−1]R

λ
[p+1,p]
f

−ε

ρ
[p+1,p]
g +ε

n )

logRn
, using(2.3)

=
λ
[p+1,p]
f − ε

ρ
[p+1,p]
g + ε

.

Since ε4(> 0) and ε(> 0) are arbitrary, we get

λ[p+1,p]
g (f) ≥

λ
[p+1,p]
f

ρ
[p+1,p]
g

(2.15)

The theorem follows from (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15).

Theorem 2.3 : Let f and g be entire functions of n complex variables such that

ρ
[p+1,p]
f = 0 and 0 < ρ

[p+1,p]
g <∞. Then λ

[p+1,p]
g (f) = 0.

Proof : From the definition, we have for arbitrary ε > 0 and for all large values of R

that

Mf,D(exp[p−1]R) < (exp[p]Rε).

So,
log[p]M−1g,DMf,D(exp[p−1]R)

logR
<
log[p]M−1g,D(exp[p]Rε)

logR

=
log[p]M−1g,D(exp[p](R

ε

ρ
[p+1,p]
g −ε )ρ

[p+1,p]
g −ε)

logR
.

Now from (2.7) we get for a sequence {Rn} tending to infinity that

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn
<
log[p]M−1g,DMg,D(exp[p−1](R

ε

ρ
[p+1,p]
g −ε
n ))

logRn
.
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Therefore,

lim inf
Rn→∞

log[p]M−1g,DMf,D(exp[p−1]Rn)

logRn
≤ ε

ρ
[p+1,p]
g − ε

.

Since ε > 0 is arbitrary it follows that

λ[p+1,p]
g (f) = 0.

Theorem 2.4 : Let f and g be entire functions of n complex variables such that

0 < ρ
[p+1,p]
f <∞ and ρ

[p+1,p]
g = 0. Then ρ

[p+1,p]
g (f) =∞.

Proof : From the definition of (p+1, p)th relative Gol’dberg order, we get for arbitrary

ε1 > 0 and for all large values of R that

ρ[p+1,p]
g (f) + ε1 >

log[p]M−1g,DMf,D(exp[p−1]R))

logR
.

Now from (2.6) we get for a sequence {Rn} tending to infinity that,

ρ[p+1,p]
g (f) + ε1 >

log[p]M−1g,D(exp[p]R
ρ
[p+1,p]
f −ε
n )

logRn

=
log[p]M−1g,D(exp[p](R

ρ
[p+1,p]
f

−ε
ε

n )ε)

logRn

>
log[p]M−1g,DMg,D(exp[p−1]R

ρ
[p+1,p]
f

−ε
ε

n )

logRn
, using(2.3) and ρ[p+1,p]

g = 0

=
ρ
[p+1,p]
f − ε

ε
.

Since ε1(> 0) and ε(> 0) are arbitrary it follows that

ρ[p+1,p]
g (f) =∞.

Theorem 2.5 : Let f and g be two entire functions and ρ
[p+1,p]
f and ρ

[p+1,p]
g be the

(p+1, p)th Gol’dberg order of f and g respectively.Then the (p+1, p)th relative Gol’dberg

order ρ
[p+1,p]
g (f) of f(z) with respect to g(z) satisfies

(i) ρ[p+1,p]
g (f) ≥

ρ
[p+1,p]
f

ρ
[p+1,p]
g
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(ii) If g is of (p+ 1, p)th regular growth then

ρ[p+1,p]
g (f) =

ρ
[p+1,p]
f

ρ
[p+1,p]
g

.

Proof : From the definition of (p+ 1, p)th Gol’dberg order we have for arbitrary ε > 0

and for all large values of R

Mf,D(exp[p−1]R) < exp[p]Rρ
[p+1,p]
f +ε (2.16)

and

Mg,D(exp[p−1]R) < exp[p]Rρ
[p+1,p]
g +ε (2.17)

Also for a sequence {Rn} tending to infinity, we get that

Mf,D(exp[p−1]Rn) > exp[p]R
ρ
[p+1,p]
f −ε
n . (2.18)

Now,

ρ[p+1,p]
g (f) = lim sup

R→∞

log[p]M−1g,D(Mf,D(exp[p−1]R))

logR

≥ lim sup
Rn→∞

log[p]M−1g,D(exp[p−1]R
ρ
[p+1,p]
f −ε
n )

logRn
by (2.18)

= lim sup
Rn→∞

log[p]M−1g,D(exp[p−1](R

ρ
[p+1,p]
f

−ε

ρ
[p+1,p]
g +ε

n )ρ
[p+1,p]
g +ε)

logRn

≥ lim sup
Rn→∞

log[p]M−1g,DMg,D(exp[p−1]R

ρ
[p+1,p]
f

−ε

ρ
[p+1,p]
g +ε

n )

logRn
, using (2.17)

=
ρ
[p+1,p]
f − ε

ρ
[p+1,p]
g + ε

.

Since ε > 0 is arbitrary,

ρ[p+1,p]
g (f) ≥

ρ
[p+1,p]
f

ρ
[p+1,p]
g

(2.19)

This proves (i).

When g is of (p+ 1, p)th regular growth, we have for ε > 0 and for all R > R0

Mg,D(exp[p−1]R) > exp[p]Rρ
[p+1,p]
g −ε. (2.20)
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Now,

ρ[p+1,p]
g (f) = lim sup

R→∞

log[p]M−1g,D(Mf,D(exp[p−1]R))

logR

≤ lim sup
R→∞

log[p]M−1g,D(exp[p]Rρ
[p+1,p]
f +ε)

logR
from (2.16)

= lim sup
R→∞

log[p]M−1g,D(exp[p](R

ρ
[p+1,p]
f

+ε

ρ
[p+1,p]
g −ε )ρ

[p+1,p]
g −ε)

logR

≤ lim sup
R→∞

log[p]M−1g,D(exp[p−1]R

ρ
[p+1,p]
f

+ε

ρ
[p+1,p]
g −ε )

logR
from (2.20)

=
ρ
[p+1,p]
f + ε

ρ
[p+1,p]
g − ε

.

Since ε > 0 is arbitrary, so

ρ[p+1,p]
g (f) ≤

ρ
[p+1,p]
f

ρ
[p+1,p]
g

. (2.21)

Hence from (2.19) and (2.21) we have

ρ[p+1,p]
g (f) =

ρ
[p+1,p]
f

ρ
[p+1,p]
g

.

3. Sum and Product Theorems

Theorem 3.1 : Let f1, f2 and g be three transcendental entire functions. If ρ
[p+1,p]
g (f1)

and ρ
[p+1,p]
g (f2) be the (p+1, p)th relative Gol’dberg order of f1 and f2 respectively with

respect to g and

ρ
[p+1,p]
g (f1) 6= ρ

[p+1,p]
g (f2), then the (p+1, p)th relative Gol’dgerg order of f1+f2 is given

by

ρ
[p+1,p]
g (f1 + f2) = max{ρ[p+1,p]

g (f1), ρ
[p+1,p]
g (f2}.

Proof : We have,

ρ[p+1,p]
g (f1) = lim sup

R→∞

log[p]M−1g,D(Mf1,D(exp[p−1]R))

logR
,

ρ[p+1,p]
g (f2) = lim sup

R→∞

log[p]M−1g,D(Mf2,D(exp[p−1]R))

logR
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and

ρ[p+1,p]
g (f1 + f2) = lim sup

R→∞

log[p]M−1g,D(Mf1+f2,D(exp[p−1]R))

logR
.

Without loss of generality, we assume that ρ
[p+1,p]
g (f1) > ρ

[p+1,p]
g (f2).

Now,

Mf1+f2,D(exp[p−1]R) ≤Mf1,D(exp[p−1]R) +Mf2,D(exp[p−1]R)

< Mg,D(exp[p−1]Rρ
[p+1,p]
g (f1)+ε) +Mg,D(exp[p−1]Rρ

[p+1,p]
g (f2)+ε) for large R

< 2Mg,D(exp[p−1]Rρ
[p+1,p]
g (f1)+ε)

< Mg,D(exp[p−1]Rρ
[p+1,p]
g (f1)+2ε), for sufficiently large R.

Therefore,

lim sup
R→∞

log[p]M−1g,D(Mf1+f2,D(exp[p−1]R))

logR
≤ ρ[p+1,p]

g (f1) + 2ε.

So,

ρ[p+1,p]
g (f1 + f2) ≤ ρ[p+1,p]

g (f1). (3.1)

On the other hand, there exists a sequence {Rn} of value of R, tending to infinity, such

that,

Mf1,D(exp[p−1]Rn) > Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f1)−ε
n ). (3.2)

We have

Mf1+f2,D(exp[p−1]Rn) ≥Mf1,D(exp[p−1]Rn)−Mf2,D(exp[p−1]Rn).

Let ε > 0 such that ρ
[p+1,p]
g (f1)− ε > ρ

[p+1,p]
g (f2) + ε.

Then

Mf2,D(exp[p−1]Rn) < Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f2)+ε
n ), (3.3)

for sufficiently lagre n.

So from (3.2) and (3.3) we have,

Mf1+f2,D(exp[p−1]Rn) > Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f1)−ε
n )−Mg,D(exp[p−1]R

ρ
[p+1,p]
g (f2)+ε
n )

= Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f1)−ε
n )[1−

Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f2)+ε
n )

Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f1)−ε
n )

]

>
1

2
Mg,D(exp[p−1]R

ρ
[p+1,p]
g (f1)−ε
n ) for sufficiently large n

> Mg,D(exp[p−1]R
ρ
[p+1,p]
g (f1)−2ε
n ) for large n
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or,

lim sup
R→∞

log[p]M−1g,D(Mf1+f2,D(exp[p−1]R))

logR
≥ ρ[p+1,p]

g (f1)− 2ε.

So,

ρ[p+1,p]
g (f1 + f2) ≥ ρ[p+1,p]

g (f1). (3.4)

Hence from (3.1) and (3.4) we get ρ
[p+1,p]
g (f1 + f2) = max{ρ[p+1,p]

g (f1), ρ
[p+1,p]
g (f2}.

This proves the theorem.

Theorem 3.2 : Let f1 and f2 be two entire functions of (p+ 1, p)th relative Gol’dberg

order ρ
[p+1,p]
g (f1) and ρ

[p+1,p]
g (f2) respectively. If g has the property (A), then the (p+

1, p)th relative Gol’dberg order of f1.f2 is

ρ
[p+1,p]
g (f1.f2) ≤ max{ρ[p+1,p]

g (f1), ρ
[p+1,p]
g (f2)}.

Proof : Without loss of generality, let us assume that ρ
[p+1,p]
g (f1) ≥ ρ[p+1,p]

g (f2).

For ε > 0 and for all large R, we have

Mf1,D(exp[p−1]R) < Mg,D(exp[p−1]Rρ
[p+1,p]
g (f1)+ε)

and

Mf2,D(exp[p−1]R) < Mg,D(exp[p−1]Rρ
[p+1,p]
g (f2)+ε).

Now we have

Mf1.f2,D(exp[p−1]R) ≤Mf1,D(exp[p−1]R).Mf2,D(exp[p−1]R)

< Mg,D(exp[p−1]Rρ
[p+1,p]
g (f1)+ε).Mg,D(exp[p−1]Rρ

[p+1,p]
g (f2)+ε)

< [Mg,D(exp[p−1]Rρ
[p+1,p]
g (f1)+ε)]2

< Mg,D(exp[p−1]Rα(ρ
[p+1,p]
g (f1)+ε)), α > 1from property(A).

Hence,

log[p−1]M−1g,DMf1.f2,D(exp[p−1]R) < Rα(ρ
[p+1,p]
g (f1)+ε)

or, lim supR→∞
log[p]M−1

g,DMf1.f2,D
(exp[p−1]R)

logR ≤ α(ρ
[p+1,p]
g (f1) + ε).

Letting α→ 1+ and since ε > 0 is arbitrary, so we have

ρ
[p+1,p]
g (f1.f2) ≤ ρ[p+1,p]

g (f1).

Hence the theorem.

Theorem 3.3 : Let f be an entire function of (p + 1, p)th relative Gol’dberg order

ρ
[p+1,p]
g (f) 6= 0 and P (z) be a polynomial. If g has the property (A), then the (p+1, p)th

relative Gol’dberg order ρ
[p+1,p]
g (f.P ) of f(z).P (z) is same as ρ

[p+1,p]
g (f).
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Proof : From Theorem 3.2 we have,

ρ[p+1,p]
g (f.P ) ≤ ρ[p+1,p]

g (f) (3.5)

since the (p+ 1, p)th relative Gol’dberg order of P (z) with respect to g is zero.

Since MP,D(exp[p−1]R) ≥ 1 for all sufficiently large R,

sup |f(z)P (z)| ≥ sup |f(z)|,where z ∈ Dexp[p−1]R and for all sufficiently large R

i.e.,Mf.P,D(exp[p−1]R) ≥Mf,D(exp[p−1]R).

So, lim supR→∞
log[p]M−1

g,D(Mf.P,D(exp[p−1]R))

logR ≥ lim supR→∞
log[p]M−1

g,D(Mf,D(exp[p−1]R))

logR

i.e., ρ[p+1,p]
g (f.P ) ≥ ρ[p+1,p]

g (f). (3.6)

Hence from (3.5) and (3.6) we get, ρ
[p+1,p]
g (f.P ) = ρ

[p+1,p]
g (f).

4. Asymptotic Behaviour

Definition 4.1 : Two entire functions g1 and g2 are said to be asymptotically equivalent

if
Mg1,D

(exp[p−1]R)

Mg2,D
(exp[p−1]R)

→ 1 as R→∞ and in this case we write g1 ∼ g2.

Theorem 4.1 : Let g1, g2 and f be three entire functions and ρ
[p+1,p]
g1 (f) and ρ

[p+1,p]
g2 (f)

be the (p + 1, p)th relative Gol’dberg order of f with respect to g1 and g2 respectively.

If g1 ∼ g2 then ρ
[p+1,p]
g1 (f) = ρ

[p+1,p]
g2 (f).

Proof : Since g1 ∼ g2, we have for ε > 0 and for all large R,

Mg1,D(exp[p−1]R) < (1 + ε)Mg2,D(exp[p−1]R) < Mg2,D(exp[p−1]R(1+ε)).

Hence

R < log[p−1]M−1g1,D{Mg2,D(exp[p−1]R(1+ε))} (4.1)

for all large R.

Let Mg2,D(exp[p−1]R(1+ε)) = R1.

Then R = {log[p−1]M−1g2,D(R1)}
1

(1+ε) .

Now from (1.1) we get,

log[p−1]M−1g2,D(R1) < (log[p−1]M−1g1,D(R1))
1+ε for large R1.
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Now,

ρ[p+1,p]
g2 (f) = lim sup

R1→∞

log[p]M−1g2,D(Mf,D(exp[p−1]R1))

logR1

= lim sup
R1→∞

log[log[p−1]M−1g2,D(Mf,D(exp[p−1]R1))]

logR1

≤ lim sup
R1→∞

log[log[p−1]M−1g1,D(Mf,D(exp[p−1]R1))]
1+ε

logR1

= (1 + ε) lim sup
R1→∞

log[p]M−1g1,D(Mf,D(exp[p−1]R1))]

logR1

= (1 + ε)ρ[p+1,p]
g1 (f).

So,

ρ[p+1,p]
g2 (f) ≤ ρ[p+1,p]

g1 (f).

Also if g2 ∼ g1 so

ρ[p+1,p]
g1 (f) ≤ ρ[p+1,p]

g2 (f).

Hence, ρ
[p+1,p]
g2 (f) = ρ

[p+1,p]
g1 (f).

Theorem 4.2 : Let f1, f2 and g be three transcendental entire functions. If ρ
[p+1,p]
g (f1)

and ρ
[p+1,p]
g (f2) be the (p+1, p)th relative Gol’dberg order of f1 and f2 respectively with

respect to g. If f1 ∼ f2 then ρ
[p+1,p]
g (f1) = ρ

[p+1,p]
g (f2).

Proof : Since f2 ∼ f1, we have for ε > 0 and for all large R,

Mf2,D(exp[p−1]R) < (1 + ε)Mf1,D(exp[p−1]R).

Now,

ρ[p+1,p]
g (f2) = lim sup

R→∞

log[p]M−1g,D(Mf2,D(exp[p−1]R))

logR

≤ lim sup
R→∞

log[p]M−1g,D((1 + ε)Mf1,D(exp[p−1]R))

logR

≤ lim sup
R→∞

log[p]M−1g,D(Mf1,D(exp[p−1]R(1+ε)))

logR(1+ε)
.(1 + ε)

= (1 + ε)ρ[p+1,p]
g (f1).

Since ε > 0 is arbitrary so,

ρ[p+1,p]
g (f2) ≤ ρ[p+1,p]

g (f1).
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Also if f1 ∼ f2 so

ρ[p+1,p]
g (f1) ≤ ρ[p+1,p]

g (f2).

Hence, ρ
[p+1,p]
g (f1) = ρ

[p+1,p]
g (f2).
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