International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 11 No. III (December, 2017), pp. 185-201

$(p, q)^{t h}$ RELATIVE GOL'DBERG ORDER OF ENTIRE FUNCTIONS OF SEVERAL VARIABLES

DIBYENDU BANERJEE ${ }^{1}$ AND SIMUL SARKAR ${ }^{2}$
1,2 Department of Mathematics, Visva-Bharati,
Santiniketan-731235, India

Abstract

After the recent works of Prajapati and Rastogi [1] on the idea of $p^{t h}$ Gol'dberg relative order, we introduce in this paper $(p, q)^{t h}$ relative Gol'dberg order of entire functions of several complex variables and extend their results for $(p+1, p)^{t h}$ relative Gol'dberg order.

1. Introduction and Definitions

We denote the point $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ by z, where \mathbb{C}^{n} denote the n-dimensional complex space. Let $D \subseteq \mathbb{C}^{n}$ be bounded complete n-circular domain with centre at the origin. For an entire function $f(z)$ of n complex variables, let $M_{f, D}(R)=\sup _{z \in D_{R}}|f(z)|$. For $R>0$, a point $z \in D_{R}$ if and only if $\frac{z}{R} \in D$.
If $f(z)$ is non-constant, then $M_{f, D}(R)$ is strictly increasing and its inverse

Key Words : Gol'dberg order, Relative order, Entire function.
AMS Subject Classification : 32A15.
(c) http: //www.ascent-journals.com UGC approved journal (Sl No. 48305)

$$
M_{f, D}^{-1}:(|f(0)|, \infty) \rightarrow(0, \infty)
$$

exists such that $\lim _{R \rightarrow \infty} M_{f, D}^{-1}(R)=\infty$.
The Gol'dberg order of an entire function of n complex variables is defined as follows.

Definition 1.1 [2]: The Gol'dberg order (briefly G-order) $\rho_{f, D}$ of f with respect to the domain D is defined as

$$
\rho_{f, D}=\limsup _{R \rightarrow \infty} \frac{\log \log M_{f, D}(R)}{\log R}
$$

The lower Gol'dberg order $\lambda_{f, D}$ of f with respect to the domain D is defined as

$$
\lambda_{f, D}=\liminf _{R \rightarrow \infty} \frac{\log \log M_{f, D}(R)}{\log R} .
$$

It is known [2] that $\rho_{f, D}$ is independent of the choice of the domain D, so we write ρ_{f} instead of $\rho_{f, D}$.
In 2010, Mondal and Roy introduced the concept of relative order of an entire function in \mathbb{C}^{n} with respect to another entire function of several variables.

Definition 1.2 [3]: Let f and g be entire functions of n-variables and D be a bounded complete n-circular domain with centre at the origin in \mathbb{C}^{n}. Then the relative order $\rho_{g, D}(f)$ of f with respect to g and the domain D is defined by

$$
\begin{aligned}
\rho_{g, D}(f) & =\inf \left\{\mu>0: M_{f, D}(R)<M_{g, D}\left(R^{\mu}\right), \text { for all } R>R_{0}(\mu)>0\right\} \\
& =\limsup _{R \rightarrow \infty} \frac{\log M_{g, D}^{-1}\left(M_{f, D}(R)\right)}{\log R}
\end{aligned}
$$

In [3] Mondal and Roy proved that the relative order of f with respect to g is independent of the choice of the domain D. So the relative Gol'dberg order of f with respect to g will be denoted by $\rho_{g}(f)$.
In a recent paper, Prajapati and Rastogi [1] introduced the concept of $p^{\text {th }}$ relative Gol'dberg order $\lambda_{g, D}^{[p]}(f)$ of f with respect to g in the domain D as

$$
\lambda_{g, D}^{[p]}(f)=\liminf _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}(R)\right)}{\log R}
$$

where $p=1,2,3, \ldots$.
In the case of relative order it therefore seems reasonable to define suitably $(p, q)^{t h}$ Gol'dberg order and $(p, q)^{t h}$ relative Gol'dberg order of an entire function with respect to another entire function of n complex variables in a domain D and to investigate its basic properties, which we attempt in this paper. With this in view we introduce the following definitions.

Definition 1.3: Let f and g be two non-constant entire functions of n-complex variables and D be a bounded complete n-circular domain with centre at the origin in \mathbb{C}^{n}. If p, q are positive integers such that $p>q \geq 1$ then the $(p, q)^{t h}$ Gol'dberg order and $(p, q)^{t h}$ Gol'dberg lower order are respectively denoted by $\rho_{f, D}^{[p, q]}$ and $\lambda_{f, D}^{[p, q]}$ and are defined by

$$
\rho_{f, D}^{[p, q]}=\underset{R \rightarrow \infty}{\limsup } \frac{\log ^{[p]} M_{f, D}(R)}{\log ^{[q]} R}
$$

and

$$
\lambda_{f, D}^{[p, q]}=\liminf _{R \rightarrow \infty} \frac{\log ^{[p]} M_{f, D}(R)}{\log ^{[q]} R}, p=2,3,4, \ldots .
$$

When $p=2$ and $q=1$ then these are equivalent to the definition of Gol'dberg order and lower Gol'dberg order.

Definition 1.4: Let f and g be entire functions of n-complex variables and D be a bounded complete n-circular domain with centre at the origin in \mathbb{C}^{n}. Then $(p, q)^{t h}$ relative Gol'dberg order $\rho_{g, D}^{[p, q]}(f)$ of f with respect to g in the domain D is defined by

$$
\rho_{g, D}^{[p, q]}(f)=\limsup _{R \rightarrow \infty} \frac{\log ^{[p-1]} M_{g, D}^{-1}\left(M_{f, D}(R)\right)}{\log ^{[q]} R} .
$$

Similarly $(p, q)^{\text {th }}$ relative Gol'dberg lower order $\lambda_{g, D}^{[p, q]}(f)$ with respect to g in the domain D is defined by

$$
\lambda_{g, D}^{[p, q]}(f)=\liminf _{R \rightarrow \infty} \frac{\log ^{[p-1]} M_{g, D}^{-1}\left(M_{f, D}(R)\right)}{\log ^{[q]} R} .
$$

We say that f is of $(p, q)^{t h}$ regular growth if $\rho_{g, D}^{[p, q]}(f)=\lambda_{g, D}^{[p, q]}(f)$.
Definition 1.5: An entire function g is said to have property (A) if for any $\alpha>1$ and for all large R,

$$
\left\{M_{g, D}\left(\exp ^{[p-1]} R\right)\right\}^{2}<\left\{M_{g, D}\left(\exp ^{[p-1]} R^{\alpha}\right)\right\}
$$

2. Basic Results

The following theorem shows that $(p, q)^{t h}$ relative Gol'dberg order is independent of the choice of the domain.

Theorem 2.1: Let f and g be entire functions of n-complex variables then $(p, q)^{t h}$ relative Gol'dberg order of f with respect to g is independent of the choice of the domain D.

Proof : Let D_{1} and D_{2} be any two bounded complete n-circular domains. Then there exist two real numbers $\alpha, \beta>0$ such that $\alpha D_{1} \subset D_{2} \subset \beta D_{1}$ and so,

$$
M_{f, \alpha D_{1}}(R) \leq M_{f, D_{2}}(R) \leq M_{f, \beta D_{1}}(R) .
$$

Hence for any bounded complete n-circular domain D

$$
\begin{equation*}
M_{g, D}^{-1}\left(M_{f, \alpha D_{1}}(R)\right) \leq M_{g, D}^{-1}\left(M_{f, D_{2}}(R)\right) \leq M_{g, D}^{-1}\left(M_{f, \beta D_{1}}(R)\right) . \tag{2.1}
\end{equation*}
$$

Since for any $\lambda>0$ and D,

$$
M_{f, \lambda D}(R)=M_{f, D}(\lambda R)
$$

so we have

$$
\begin{aligned}
\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, \lambda D}(R)\right)}{\log ^{[q]} R} & =\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}(\lambda R)\right)}{\log ^{[q]} R} \\
& =\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}(R)\right)}{\log ^{[q]} \frac{R}{\lambda}} \\
& =\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}(R)\right)}{\log ^{[q]} R} .
\end{aligned}
$$

Hence from (2.1)

$$
\begin{aligned}
\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D_{1}}(R)\right)}{\log { }^{[q]} R} & =\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, \alpha D_{1}}(R)\right)}{\log ^{[q]} R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D_{2}}(R)\right)}{\log ^{[q]} R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, \beta D_{1}}(R)\right)}{\log ^{[q]} R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D_{1}}(R)\right)}{\log ^{[q]} R} .
\end{aligned}
$$

Thus

$$
\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D_{1}}(R)\right)}{\log g^{[q]} R}=\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D_{2}}(R)\right)}{\log [q]} R .
$$

Hence the theorem.
So after this we shall always write, $\rho_{g}^{[p, q]}(f)$ instead of $\rho_{g, D}^{[p, q]}(f)$.
Theorem 2.2 :Let f and g be entire functions of n complex variables such that $0<\lambda_{f}^{[p+1, p]} \leq \rho_{f}^{[p+1, p]}$ and $0<\lambda_{g}^{[p+1, p]} \leq \rho_{g}^{[p+1, p]}$. Then
$\frac{\lambda_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \leq \lambda_{g}^{[p+1, p]}(f) \leq \min \left\{\frac{\lambda_{f}^{[p+1, p]}}{\lambda_{g}^{p+1, p]}}, \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}}\right\} \leq \max \left\{\frac{\lambda_{f}^{[p+1, p]}}{\lambda_{g}^{p+1, p]}}, \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}}\right\} \leq \rho_{g}^{[p+1, p]}(f) \leq$ $\frac{\rho_{f}^{[p+1, p]}}{\lambda_{g}^{[p+1, p]}}$.

Proof : From the definition of $(p+1, p)^{t h}$ Gol'dberg order and Gol'dberg lower order we get for arbitrary $\epsilon>0$ and for all large values of R

$$
\begin{align*}
& M_{f, D}\left(\exp ^{[p-1]} R\right)<\exp ^{[p]} R^{\rho_{f}^{[p+1, p]}+\epsilon} \tag{2.2}\\
& M_{g, D}\left(\exp ^{[p-1]} R\right)<\exp ^{[p]} R^{\rho_{g}^{[p+1, p]}+\epsilon} \tag{2.3}\\
& M_{f, D}\left(e x p^{[p-1]} R\right)>e \exp ^{[p]} R_{f}^{\lambda_{f}^{[p+1, p]}-\epsilon} \tag{2.4}\\
& M_{g, D}\left(\exp ^{[p-1]} R\right)>\exp ^{[p]} R^{\lambda_{g}^{[p+1, p]}-\epsilon} . \tag{2.5}
\end{align*}
$$

Also for a sequence $\left\{R_{n}\right\}$ tending to infinity we get that

$$
\begin{align*}
& M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)>\exp ^{[p]} R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon} \tag{2.6}\\
& M_{g, D}\left(\exp ^{[p-1]} R_{n}\right)>\exp ^{[p]} R_{n}^{\rho_{g}^{[p+1, p]}-\epsilon} \tag{2.7}
\end{align*}
$$

$$
\begin{align*}
& M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)<\exp ^{[p]} R_{n}^{\lambda_{f}^{[p+1, p]}+\epsilon} \tag{2.8}\\
& M_{g, D}\left(\exp ^{[p-1]} R_{n}\right)<\exp ^{[p]} R_{n}^{\lambda_{g}^{[p+1, p]}+\epsilon} \tag{2.9}
\end{align*}
$$

Now from the definition of $(p+1, p)^{\text {th }}$ relative Gol'dberg order, we get for arbitrary $\epsilon_{1}>0$ and for all large values of R that

$$
\rho_{g}^{[p+1, p]}(f)+\epsilon_{1}>\frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}
$$

Now from (2.6) we get for a sequence $\left\{R_{n}\right\}$ tending to infinity that,

$$
\begin{aligned}
\rho_{g}^{[p+1, p]}(f)+\epsilon_{1} & >\frac{\log { }^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]} R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon}\right)}{\log R_{n}} \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]}\left(R_{n}^{\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon}}\right)^{\rho_{g}^{[p+1, p]]}+\epsilon}\right)}{\log R_{n}} \\
& >\frac{\log ^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp p^{[p-1]}\left(R_{n}^{\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\left.\rho_{g} p+1, p\right]}+\epsilon}\right)\right)}{\log R_{n}}, \quad u \operatorname{sing}(2.3) \\
& =\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon} .
\end{aligned}
$$

As $\epsilon_{1}(>0)$ and $\epsilon(>0)$ are arbitrary, we get

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f) \geq \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \tag{2.10}
\end{equation*}
$$

Also from (2.2) we get for arbitrary $\epsilon>0$ and for all large values of R that

$$
\begin{aligned}
\frac{\log ^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R\right)}{\log R} & <\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]} R^{\rho_{f}^{[p+1, p]}+\epsilon}\right)}{\log R} \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]}\left(R^{\frac{\left.\rho_{f}^{[p p+1, p]}\right]}{\left.\rho_{g} p+1, p\right]}-\epsilon}\right)^{\rho_{g}^{[p+1, p]}}-\epsilon\right)}{\log R} .
\end{aligned}
$$

Now from (2.7) we get for a sequence $\left\{R_{n}\right\}$ tending to infinity that

$$
\frac{\log [p]}{M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)} \underset{\log R_{n}}{\log ^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp ^{[p-1]}\left(R_{n}^{\frac{\rho_{f}^{[p p+1, p]}+\epsilon}{\rho_{g}^{[p+1, p]}-\epsilon}}\right)\right)} \text { logRn}
$$

Therefore

$$
\liminf _{R_{n} \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)}{\log R_{n}} \leq \frac{\rho_{f}^{[p+1, p]}+\epsilon}{\rho_{g}^{[p+1, p]}-\epsilon}
$$

Since $\epsilon>0$ is arbitrary, we have

$$
\begin{equation*}
\lambda_{g}^{[p+1, p]}(f) \leq \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \tag{2.11}
\end{equation*}
$$

Now from the definition of $(p+1, p)^{t h}$ relative Gol'dberg lower order, we get for arbitrary $\epsilon_{2}>0$ and for all large values of R that

$$
\lambda_{g}^{[p+1, p]}(f)-\epsilon_{2}<\frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}
$$

Now from (2.8) we get for a sequence $\left\{R_{n}\right\}$ tending to infinity

$$
\begin{align*}
\lambda_{g}^{[p+1, p]}(f)-\epsilon_{2} & <\frac{\log { }^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]} R_{n}^{\lambda_{f}^{[p+1, p]}+\epsilon}\right)}{\log R_{n}} \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]}\left(R_{n}^{\frac{\lambda_{f}^{[p+1, p]}+\epsilon}{\lambda_{g}^{[p+1, p]}-\epsilon}}\right)^{\lambda_{g}^{[p+1, p]}-\epsilon}\right)}{\log R_{n}} \\
& <\frac{\log ^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp p^{[p-1]} R_{n}^{\frac{\lambda_{f}^{[p+1, p]}+\epsilon}{\lambda_{g}^{[p+1, p]}-\epsilon}}\right)}{\log R_{n}} \tag{sing}\\
& =\frac{\lambda_{f}^{[p+1, p]}+\epsilon}{\lambda_{g}^{[p+1, p]}-\epsilon}
\end{align*}
$$

Since $\epsilon_{2}(>0)$ and $\epsilon(>0)$ are arbitrary, we obtain that

$$
\begin{equation*}
\lambda_{g}^{[p+1, p]}(f) \leq \frac{\lambda_{f}^{[p+1, p]}}{\lambda_{g}^{[p+1, p]}} \tag{2.12}
\end{equation*}
$$

Now from (2.4) we get for arbitrary $\epsilon>0$ and for large values of R that

$$
\begin{aligned}
\frac{\log { }^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R\right)}{\log R} & >\frac{\log { }^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]} R^{\lambda_{f}^{[p+1, p]}-\epsilon}\right)}{\log R} \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]}\left(R^{\frac{\lambda_{f}^{[p+1, p]}-\epsilon}{\lambda_{g}^{[p+1, p]}+\epsilon}}\right)^{\lambda_{g}^{[p+1, p]}+\epsilon}\right)}{\log R}
\end{aligned}
$$

Now from (2.9) we obtain for a sequence $\left\{R_{n}\right\}$ tending to infinity that

$$
\frac{\log { }^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)}{\log R_{n}}>\frac{\log { }^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\frac{\lambda_{f}^{[p+1, p]}-\epsilon}{\lambda_{g}^{[g+1, p]}+\epsilon}}\right)}{\log R_{n}} .
$$

So,

$$
\limsup _{R_{n} \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1} M_{f, D}\left(e x p^{[p-1]} R_{n}\right)}{\log R_{n}} \geq \frac{\lambda_{f}^{[p+1, p]}-\epsilon}{\lambda_{g}^{[p+1, p]}+\epsilon} .
$$

Since $\epsilon>0$ is arbitrary, we have

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f) \geq \frac{\lambda_{f}^{[p+1, p]}}{\lambda_{g}^{[p+1, p]}} . \tag{2.13}
\end{equation*}
$$

Again from definition, we get for arbitrary $\epsilon_{3}>0$ and for a sequence $\left\{R_{n}\right\}$ tending to infinity that

$$
\begin{aligned}
& \rho_{g}^{[p+1, p]}(f)-\epsilon_{3}<\frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)\right)}{\log R_{n}} \\
& <\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]} R_{n}^{\rho_{f}^{[p+1, p]}+\epsilon}\right)}{\log R_{n}}, \quad \operatorname{using}(2.2) \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]}\left(R_{n}^{\frac{\rho_{g}^{[p+1, p]}+\epsilon}{\lambda_{g}^{[p+1, p]]}}-\epsilon}\right)^{\lambda_{g}^{[p+1, p]}-\epsilon}\right)}{\log R_{n}} \\
& <\frac{\log ^{[p]} M_{g, D}^{-1} M_{g, D}\left(e x p^{[p-1]} R_{n}^{\frac{\rho_{f}^{[p+1, p]}+\epsilon}{\lambda_{g}^{p p+1, p]}-\epsilon}}\right)}{\log R_{n}}, \\
& =\frac{\rho_{f}^{[p+1, p]}+\epsilon}{\lambda_{g}^{[p+1, p]}-\epsilon} .
\end{aligned}
$$

Since $\epsilon_{3}(>0)$ and $\epsilon(>0)$ are arbitrary, we have

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f) \leq \frac{\rho_{f}^{[p+1, p]}}{\lambda_{g}^{[p+1, p]}} . \tag{2.14}
\end{equation*}
$$

Also from definition, we get for arbitrary $\epsilon_{4}>0$ and for a sequence $\left\{R_{n}\right\}$ tending to
infinity that

$$
\begin{align*}
\lambda_{g}^{[p+1, p]}(f)+\epsilon_{4} & >\frac{\log { }^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)}{\log R_{n}} \\
& >\frac{\log { }^{[p]} M_{g, D}^{-1}\left(e x p^{[p]} R_{n}^{\lambda_{f}^{[p+1, p]}-\epsilon}\right)}{\log R_{n}}, \quad u \operatorname{sing}(2.4) \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]}\left(R_{n}^{\frac{\lambda_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon}}\right)^{\rho_{g}^{[p+1, p]}+\epsilon}\right)}{\log R_{n}} \\
& >\frac{\log { }^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp p^{[p-1]} R_{n}^{\frac{\lambda_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{p+1, p]}+\epsilon}}\right)}{\log R_{n}} \tag{2.3}\\
& =\frac{\lambda_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon} .
\end{align*}
$$

Since $\epsilon_{4}(>0)$ and $\epsilon(>0)$ are arbitrary, we get

$$
\begin{equation*}
\lambda_{g}^{[p+1, p]}(f) \geq \frac{\lambda_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \tag{2.15}
\end{equation*}
$$

The theorem follows from (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15).
Theorem 2.3 : Let f and g be entire functions of n complex variables such that $\rho_{f}^{[p+1, p]}=0$ and $0<\rho_{g}^{[p+1, p]}<\infty$. Then $\lambda_{g}^{[p+1, p]}(f)=0$.
Proof : From the definition, we have for arbitrary $\epsilon>0$ and for all large values of R that

$$
M_{f, D}\left(e x p^{[p-1]} R\right)<\left(e x p^{[p]} R^{\epsilon}\right)
$$

So,

$$
\begin{aligned}
\frac{\log { }^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R\right)}{\log R} & <\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]} R^{\epsilon}\right)}{\log R} \\
& =\frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]}\left(R^{\frac{\epsilon}{\rho_{g}^{p+1, p]}-\epsilon}}\right)^{\rho_{g}^{[p+1, p]}-\epsilon}\right)}{\log R}
\end{aligned}
$$

Now from (2.7) we get for a sequence $\left\{R_{n}\right\}$ tending to infinity that

$$
\frac{\log ^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)}{\log R_{n}}<\frac{\log ^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp ^{[p-1]}\left(R_{n}^{\frac{\rho_{g}^{[p+1, p]}-\epsilon}{\epsilon}}\right)\right)}{\log R_{n}}
$$

Therefore,

$$
\liminf _{R_{n} \rightarrow \infty} \frac{\log { }^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R_{n}\right)}{\log R_{n}} \leq \frac{\epsilon}{\rho_{g}^{[p+1, p]}-\epsilon}
$$

Since $\epsilon>0$ is arbitrary it follows that

$$
\lambda_{g}^{[p+1, p]}(f)=0 .
$$

Theorem 2.4: Let f and g be entire functions of n complex variables such that $0<\rho_{f}^{[p+1, p]}<\infty$ and $\rho_{g}^{[p+1, p]}=0$. Then $\rho_{g}^{[p+1, p]}(f)=\infty$.
Proof : From the definition of $(p+1, p)^{t h}$ relative Gol'dberg order, we get for arbitrary $\epsilon_{1}>0$ and for all large values of R that

$$
\rho_{g}^{[p+1, p]}(f)+\epsilon_{1}>\frac{\left.\log ^{[p]} M_{g, D}^{-1} M_{f, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}
$$

Now from (2.6) we get for a sequence $\left\{R_{n}\right\}$ tending to infinity that,

$$
\begin{aligned}
\rho_{g}^{[p+1, p]}(f)+\epsilon_{1} & >\frac{\log [p] M_{g, D}^{-1}\left(\exp ^{[p]} R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon}\right)}{\log R_{n}} \\
& =\frac{\log \left[{ }^{[p]} M_{g, D}^{-1}\left(\exp ^{[p]}\left(R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon}\right)^{\epsilon}\right)\right.}{\log R_{n}} \\
& >\frac{\log ^{[p]} M_{g, D}^{-1} M_{g, D}\left(\exp p^{[p-1]} R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon} \epsilon^{\epsilon}\right.}{\log R_{n}}, u \operatorname{sing}(2.3) \text { and } \rho_{g}^{[p+1, p]}=0 \\
& =\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\epsilon} .
\end{aligned}
$$

Since $\epsilon_{1}(>0)$ and $\epsilon(>0)$ are arbitrary it follows that

$$
\rho_{g}^{[p+1, p]}(f)=\infty .
$$

Theorem 2.5: Let f and g be two entire functions and $\rho_{f}^{[p+1, p]}$ and $\rho_{g}^{[p+1, p]}$ be the $(p+1, p)^{t h}$ Gol'dberg order of f and g respectively.Then the $(p+1, p)^{t h}$ relative Gol'dberg order $\rho_{g}^{[p+1, p]}(f)$ of $f(z)$ with respect to $g(z)$ satisfies

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f) \geq \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \tag{i}
\end{equation*}
$$

(ii) If g is of $(p+1, p)^{t h}$ regular growth then

$$
\rho_{g}^{[p+1, p]}(f)=\frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}}
$$

Proof : From the definition of $(p+1, p)^{t h}$ Gol'dberg order we have for arbitrary $\epsilon>0$ and for all large values of R

$$
\begin{equation*}
M_{f, D}\left(\exp ^{[p-1]} R\right)<\exp ^{[p]} R^{\rho_{f}^{[p+1, p]}+\epsilon} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{g, D}\left(e x p^{[p-1]} R\right)<\exp ^{[p]} R^{\rho_{g}^{[p+1, p]}+\epsilon} \tag{2.17}
\end{equation*}
$$

Also for a sequence $\left\{R_{n}\right\}$ tending to infinity, we get that

$$
\begin{equation*}
M_{f, D}\left(e x p{ }^{[p-1]} R_{n}\right)>\exp p^{[p]} R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon} \tag{2.18}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \rho_{g}^{[p+1, p]}(f)=\limsup _{R \rightarrow \infty} \frac{\log { }^{[p]} M_{g, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \\
& \geq \limsup _{R_{n} \rightarrow \infty} \frac{\log { }^{[p]} M_{g, D}^{-1}\left(\exp p^{[p-1]} R_{n}^{\rho_{f}^{[p+1, p]}-\epsilon}\right)}{\log R_{n}} b y \quad(2.18) \tag{2.18}\\
&=\limsup _{R_{n} \rightarrow \infty} \frac{\log { }^{[p]} M_{g, D}^{-1}\left(\exp p^{[p-1]}\left(R_{n}^{\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon}}\right)^{\rho_{g}^{[p+1, p]}+\epsilon}\right)}{\log R_{n}} \\
& \geq \limsup _{R_{n} \rightarrow \infty}^{\log [p]} M_{g, D}^{-1} M_{g, D}\left(\exp p^{[p-1]} R_{n}^{\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon}}\right) \tag{2.17}\\
& \log R_{n} \\
&=\frac{\rho_{f}^{[p+1, p]}-\epsilon}{\rho_{g}^{[p+1, p]}+\epsilon}
\end{align*}
$$

Since $\epsilon>0$ is arbitrary,

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f) \geq \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \tag{2.19}
\end{equation*}
$$

This proves (i).
When g is of $(p+1, p)^{t h}$ regular growth, we have for $\epsilon>0$ and for all $R>R_{0}$

$$
\begin{equation*}
M_{g, D}\left(e x p^{[p-1]} R\right)>e x p^{[p]} R^{\rho_{g}^{[p+1, p]}-\epsilon} \tag{2.20}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \rho_{g}^{[p+1, p]}(f)=\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]} R^{\rho_{f}^{[p+1, p]}+\epsilon}\right)}{\log R} \text { from } \tag{2.16}\\
& =\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(\exp p^{[p]}\left(R^{\frac{\rho_{f}^{[p+1, p]}+\epsilon}{\left.\rho_{g}+1, p\right]}-\epsilon}\right)^{\rho_{g}^{[p+1, p]}}-\epsilon\right)}{\log R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(e x p^{[p-1]} R^{\frac{\rho_{f}^{[p+1, p]}+\epsilon}{\left.\rho_{g}+1, p\right]}-\epsilon}\right)}{\log R} \text { from } \tag{2.20}\\
& =\frac{\rho_{f}^{[p+1, p]}+\epsilon}{\rho_{g}^{[p+1, p]}-\epsilon} \text {. }
\end{align*}
$$

Since $\epsilon>0$ is arbitrary, so

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f) \leq \frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} \tag{2.21}
\end{equation*}
$$

Hence from (2.19) and (2.21) we have

$$
\rho_{g}^{[p+1, p]}(f)=\frac{\rho_{f}^{[p+1, p]}}{\rho_{g}^{[p+1, p]}} .
$$

3. Sum and Product Theorems

Theorem 3.1: Let f_{1}, f_{2} and g be three transcendental entire functions. If $\rho_{g}^{[p+1, p]}\left(f_{1}\right)$ and $\rho_{g}^{[p+1, p]}\left(f_{2}\right)$ be the $(p+1, p)^{t h}$ relative Gol'dberg order of f_{1} and f_{2} respectively with respect to g and $\rho_{g}^{[p+1, p]}\left(f_{1}\right) \neq \rho_{g}^{[p+1, p]}\left(f_{2}\right)$, then the $(p+1, p)^{t h}$ relative Gol'dgerg order of $f_{1}+f_{2}$ is given by
$\rho_{g}^{[p+1, p]}\left(f_{1}+f_{2}\right)=\max \left\{\rho_{g}^{[p+1, p]}\left(f_{1}\right), \rho_{g}^{[p+1, p]}\left(f_{2}\right\}\right.$.
Proof: We have,

$$
\begin{aligned}
& \rho_{g}^{[p+1, p]}\left(f_{1}\right)=\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{1}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}, \\
& \rho_{g}^{[p+1, p]}\left(f_{2}\right)=\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{2}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}
\end{aligned}
$$

and

$$
\rho_{g}^{[p+1, p]}\left(f_{1}+f_{2}\right)=\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{1}+f_{2}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}
$$

Without loss of generality, we assume that $\rho_{g}^{[p+1, p]}\left(f_{1}\right)>\rho_{g}^{[p+1, p]}\left(f_{2}\right)$.
Now,

$$
\begin{aligned}
M_{f_{1}+f_{2}, D}\left(\exp ^{[p-1]} R\right) & \leq M_{f_{1}, D}\left(\exp ^{[p-1]} R\right)+M_{f_{2}, D}\left(\exp ^{[p-1]} R\right) \\
& <M_{g, D}\left(\exp ^{[p-1]} R^{[p p+1, p]}\left(f_{1}\right)+\epsilon\right)+M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon}\right) \text { for large } R \\
& <2 M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)+\epsilon}\right) \\
& <M_{g, D}\left(\exp ^{[p-1]} R^{[p+1, p]}\left(f_{1}\right)+2 \epsilon\right), \text { for sufficiently large } R .
\end{aligned}
$$

Therefore,

$$
\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{1}+f_{2}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \leq \rho_{g}^{[p+1, p]}\left(f_{1}\right)+2 \epsilon
$$

So,

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}\left(f_{1}+f_{2}\right) \leq \rho_{g}^{[p+1, p]}\left(f_{1}\right) . \tag{3.1}
\end{equation*}
$$

On the other hand, there exists a sequence $\left\{R_{n}\right\}$ of value of R, tending to infinity, such that,

$$
\begin{equation*}
M_{f_{1}, D}\left(e x p^{[p-1]} R_{n}\right)>M_{g, D}\left(e x p^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)-\epsilon}\right) . \tag{3.2}
\end{equation*}
$$

We have

$$
M_{f_{1}+f_{2}, D}\left(\exp ^{[p-1]} R_{n}\right) \geq M_{f_{1}, D}\left(\exp ^{[p-1]} R_{n}\right)-M_{f_{2}, D}\left(\exp ^{[p-1]} R_{n}\right)
$$

Let $\epsilon>0$ such that $\rho_{g}^{[p+1, p]}\left(f_{1}\right)-\epsilon>\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon$.
Then

$$
\begin{equation*}
M_{f_{2}, D}\left(e x p^{[p-1]} R_{n}\right)<M_{g, D}\left(e x p^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon}\right), \tag{3.3}
\end{equation*}
$$

for sufficiently lagre n.
So from (3.2) and (3.3) we have,

$$
\begin{aligned}
M_{f_{1}+f_{2}, D}\left(\exp ^{[p-1]} R_{n}\right) & >M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)-\epsilon}\right)-M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon}\right) \\
& =M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)-\epsilon}\right)\left[1-\frac{M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon}\right)}{M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)-\epsilon}\right)}\right] \\
& >\frac{1}{2} M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)-\epsilon}\right) \text { for sufficiently large } n \\
& >M_{g, D}\left(\exp ^{[p-1]} R_{n}^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)-2 \epsilon}\right) \text { for large } n
\end{aligned}
$$

or,

$$
\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{1}+f_{2}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \geq \rho_{g}^{[p+1, p]}\left(f_{1}\right)-2 \epsilon .
$$

So,

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}\left(f_{1}+f_{2}\right) \geq \rho_{g}^{[p+1, p]}\left(f_{1}\right) . \tag{3.4}
\end{equation*}
$$

Hence from (3.1) and (3.4) we get $\rho_{g}^{[p+1, p]}\left(f_{1}+f_{2}\right)=\max \left\{\rho_{g}^{[p+1, p]}\left(f_{1}\right), \rho_{g}^{[p+1, p]}\left(f_{2}\right\}\right.$.
This proves the theorem.
Theorem 3.2: Let f_{1} and f_{2} be two entire functions of $(p+1, p)^{\text {th }}$ relative Gol'dberg order $\rho_{g}^{[p+1, p]}\left(f_{1}\right)$ and $\rho_{g}^{[p+1, p]}\left(f_{2}\right)$ respectively. If g has the property (A), then the $(p+$ $1, p)^{t h}$ relative Gol'dberg order of $f_{1} \cdot f_{2}$ is
$\rho_{g}^{[p+1, p]}\left(f_{1} \cdot f_{2}\right) \leq \max \left\{\rho_{g}^{[p+1, p]}\left(f_{1}\right), \rho_{g}^{[p+1, p]}\left(f_{2}\right)\right\}$.
Proof: Without loss of generality, let us assume that $\rho_{g}^{[p+1, p]}\left(f_{1}\right) \geq \rho_{g}^{[p+1, p]}\left(f_{2}\right)$.
For $\epsilon>0$ and for all large R, we have

$$
M_{f_{1}, D}\left(\exp ^{[p-1]} R\right)<M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)+\epsilon}\right)
$$

and

$$
M_{f_{2}, D}\left(\exp ^{[p-1]} R\right)<M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon}\right)
$$

Now we have

$$
\begin{aligned}
M_{f_{1} \cdot f_{2}, D}\left(\exp ^{[p-1]} R\right) & \leq M_{f_{1}, D}\left(\exp ^{[p-1]} R\right) \cdot M_{f_{2}, D}\left(\exp ^{[p-1]} R\right) \\
& <M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}[p+, p]}\left(f_{1}\right)+\epsilon\right) \cdot M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}^{[p+1, p]}\left(f_{2}\right)+\epsilon}\right) \\
& <\left[M_{g, D}\left(\exp ^{[p-1]} R^{\rho_{g}^{[p+1, p]}\left(f_{1}\right)+\epsilon}\right)\right]^{2} \\
& <M_{g, D}\left(\exp ^{[p-1]} R^{\alpha\left(\rho_{g}^{[p+1, p]}\left(f_{1}\right)+\epsilon\right)}\right), \alpha>1 \text { from property }(A) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left.\log { }^{[p-1]} M_{g, D}^{-1} M_{f_{1}, f_{2}, D}\left(\exp ^{[p-1]} R\right)<R^{\alpha\left(\rho_{g}^{[p+1, p]}\right.}\left(f_{1}\right)+\epsilon\right) \\
& \text { or, } \lim \sup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1} M_{f_{1}, f_{2}, D}\left(\exp ^{[p-1]} R\right)}{\log R} \leq \alpha\left(\rho_{g}^{[p+1, p]}\left(f_{1}\right)+\epsilon\right) .
\end{aligned}
$$

Letting $\alpha \rightarrow 1^{+}$and since $\epsilon>0$ is arbitrary, so we have $\rho_{g}^{[p+1, p]}\left(f_{1} \cdot f_{2}\right) \leq \rho_{g}^{[p+1, p]}\left(f_{1}\right)$.
Hence the theorem.
Theorem 3.3 : Let f be an entire function of $(p+1, p)^{t h}$ relative Gol'dberg order $\rho_{g}^{[p+1, p]}(f) \neq 0$ and $P(z)$ be a polynomial. If g has the property (A), then the $(p+1, p)^{t h}$ relative Gol'dberg order $\rho_{g}^{[p+1, p]}(f . P)$ of $f(z) . P(z)$ is same as $\rho_{g}^{[p+1, p]}(f)$.

Proof : From Theorem 3.2 we have,

$$
\begin{equation*}
\rho_{g}^{[p+1, p]}(f . P) \leq \rho_{g}^{[p+1, p]}(f) \tag{3.5}
\end{equation*}
$$

since the $(p+1, p)^{t h}$ relative Gol'dberg order of $P(z)$ with respect to g is zero.
Since $M_{P, D}\left(\exp ^{[p-1]} R\right) \geq 1$ for all sufficiently large R,
$\sup |f(z) P(z)| \geq \sup |f(z)|$, where $z \in D_{\exp ^{[p-1]} R}$ and for all sufficiently large R i.e., $M_{f . P, D}\left(\exp ^{[p-1]} R\right) \geq M_{f, D}\left(\exp ^{[p-1]} R\right)$.

So, $\limsup _{R \rightarrow \infty} \frac{\log { }^{[p]} M_{g, D}^{-1}\left(M_{f . P, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \geq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R}$

$$
\begin{equation*}
\text { i.e., } \rho_{g}^{[p+1, p]}(f . P) \geq \rho_{g}^{[p+1, p]}(f) . \tag{3.6}
\end{equation*}
$$

Hence from (3.5) and (3.6) we get, $\rho_{g}^{[p+1, p]}(f . P)=\rho_{g}^{[p+1, p]}(f)$.

4. Asymptotic Behaviour

Definition 4.1 : Two entire functions g_{1} and g_{2} are said to be asymptotically equivalent if
$\frac{M_{g_{1}, D}\left(\exp ^{[p-1]} R\right)}{M_{g_{2}, D}\left(\exp ^{[p-1]} R\right)} \rightarrow 1$ as $R \rightarrow \infty$ and in this case we write $g_{1} \sim g_{2}$.
Theorem 4.1: Let g_{1}, g_{2} and f be three entire functions and $\rho_{g_{1}}^{[p+1, p]}(f)$ and $\rho_{g_{2}}^{[p+1, p]}(f)$ be the $(p+1, p)^{t h}$ relative Gol'dberg order of f with respect to g_{1} and g_{2} respectively. If $g_{1} \sim g_{2}$ then $\rho_{g_{1}}^{[p+1, p]}(f)=\rho_{g_{2}}^{[p+1, p]}(f)$.
Proof : Since $g_{1} \sim g_{2}$, we have for $\epsilon>0$ and for all large R,

$$
M_{g_{1}, D}\left(e x p^{[p-1]} R\right)<(1+\epsilon) M_{g_{2}, D}\left(e x x p^{[p-1]} R\right)<M_{g_{2}, D}\left(\exp ^{[p-1]} R^{(1+\epsilon)}\right)
$$

Hence

$$
\begin{equation*}
R<l o g^{[p-1]} M_{g_{1}, D}^{-1}\left\{M_{g_{2}, D}\left(e x p^{[p-1]} R^{(1+\epsilon)}\right)\right\} \tag{4.1}
\end{equation*}
$$

for all large R.
Let $M_{g_{2}, D}\left(\exp ^{[p-1]} R^{(1+\epsilon)}\right)=R_{1}$.
Then $R=\left\{\log ^{[p-1]} M_{g_{2}, D}^{-1}\left(R_{1}\right)\right\}^{\frac{1}{(1+\epsilon)}}$.
Now from (1.1) we get,
$\log ^{[p-1]} M_{g_{2}, D}^{-1}\left(R_{1}\right)<\left(\log ^{[p-1]} M_{g_{1}, D}^{-1}\left(R_{1}\right)\right)^{1+\epsilon}$ for large R_{1}.

Now,

$$
\begin{aligned}
\rho_{g_{2}}^{[p+1, p]}(f) & =\limsup _{R_{1} \rightarrow \infty} \frac{\log { }^{[p]} M_{g_{2}, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R_{1}\right)\right)}{\log R_{1}} \\
& =\limsup _{R_{1} \rightarrow \infty} \frac{\log \left[\log g^{[p-1]} M_{g_{2}, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R_{1}\right)\right)\right]}{\log R_{1}} \\
& \leq \limsup _{R_{1} \rightarrow \infty} \frac{\log \left[\log g^{[p-1]} M_{g_{1}, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R_{1}\right)\right)\right]^{1+\epsilon}}{\log R_{1}} \\
& =(1+\epsilon) \limsup _{R_{1} \rightarrow \infty} \frac{\left.\log { }^{[p]} M_{g_{1}, D}^{-1}\left(M_{f, D}\left(\exp ^{[p-1]} R_{1}\right)\right)\right]}{\log R_{1}} \\
& =(1+\epsilon) \rho_{g_{1}}^{[p+1, p]}(f) .
\end{aligned}
$$

So,

$$
\rho_{g_{2}}^{[p+1, p]}(f) \leq \rho_{g_{1}}^{[p+1, p]}(f) .
$$

Also if $g_{2} \sim g_{1}$ so

$$
\rho_{g_{1}}^{[p+1, p]}(f) \leq \rho_{g_{2}}^{[p+1, p]}(f) .
$$

Hence, $\rho_{g_{2}}^{[p+1, p]}(f)=\rho_{g_{1}}^{[p+1, p]}(f)$.
Theorem 4.2: Let f_{1}, f_{2} and g be three transcendental entire functions. If $\rho_{g}^{[p+1, p]}\left(f_{1}\right)$ and $\rho_{g}^{[p+1, p]}\left(f_{2}\right)$ be the $(p+1, p)^{t h}$ relative Gol'dberg order of f_{1} and f_{2} respectively with respect to g. If $f_{1} \sim f_{2}$ then $\rho_{g}^{[p+1, p]}\left(f_{1}\right)=\rho_{g}^{[p+1, p]}\left(f_{2}\right)$.
Proof: Since $f_{2} \sim f_{1}$, we have for $\epsilon>0$ and for all large R,

$$
M_{f_{2}, D}\left(\exp ^{[p-1]} R\right)<(1+\epsilon) M_{f_{1}, D}\left(\exp ^{[p-1]} R\right) .
$$

Now,

$$
\begin{aligned}
\rho_{g}^{[p+1, p]}\left(f_{2}\right) & =\limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{2}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left((1+\epsilon) M_{f_{1}, D}\left(\exp ^{[p-1]} R\right)\right)}{\log R} \\
& \leq \limsup _{R \rightarrow \infty} \frac{\log ^{[p]} M_{g, D}^{-1}\left(M_{f_{1}, D}\left(\exp ^{[p-1]} R^{(1+\epsilon)}\right)\right)}{\log R^{(1+\epsilon)}} \cdot(1+\epsilon) \\
& =(1+\epsilon) \rho_{g}^{[p+1, p]}\left(f_{1}\right) .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary so,

$$
\rho_{g}^{[p+1, p]}\left(f_{2}\right) \leq \rho_{g}^{[p+1, p]}\left(f_{1}\right) .
$$

Also if $f_{1} \sim f_{2}$ so

$$
\rho_{g}^{[p+1, p]}\left(f_{1}\right) \leq \rho_{g}^{[p+1, p]}\left(f_{2}\right) .
$$

Hence, $\rho_{g}^{[p+1, p]}\left(f_{1}\right)=\rho_{g}^{[p+1, p]}\left(f_{2}\right)$.

References

[1] Prajapati B. and Rastogi A. Some results on pth Gol'dberg relative order, International Journal of Applied Mathematics and Statistical Sciences, 5(2) (2016), 147-154.
[2] Fuks B., A Theory of Analytic Functions of Several Complex Variables, Volume 8. American Mathematical Soc. (1963).
[3] Mondal B. C. and Roy C., Relative Goldberg order of an entire function of several variables. Bull. Cal. Math. Soc., 102(4) (2010), 371-380.

