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Abstract

After the recent works of Prajapati and Rastogi [1] on the idea of p* Gol’dberg
relative order, we introduce in this paper (p,q)™" relative Gol’dberg order of entire
functions of several complex variables and extend their results for (p + 1,p)*" rela-
tive Gol’dberg order.

1. Introduction and Definitions
We denote the point (z1, 22, ...,2,) € C" by z, where C" denote the n-dimensional
complex space. Let D C C" be bounded complete n-circular domain with centre at the

origin. For an entire function f(z) of n complex variables, let My p(R) = sup |f(2)|.
ZGDR
For R > 0, a point 2z € Dg if and only if % € D.

If f(z) is non-constant, then M p(R) is strictly increasing and its inverse
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M1, = (1£(0)],00) = (0, 00)

ists such that lim M; ,(R) = cc.
exists such that lim rp(R) =00

The Gol’dberg order of an entire function of n complex variables is defined as follows.

Definition 1.1 [2] : The Gol'dberg order (briefly G-order) ps p of f with respect to
the domain D is defined as

lim s loglogM¢ p(R)
= limsup ————2"~ 7~
PrD Raoop lOgR

The lower Gol’dberg order Ay p of f with respect to the domain D is defined as

.. .loglogM; p(R)
Arp =1 f ————
5D =R logR
It is known [2] that ps p is independent of the choice of the domain D, so we write ps
instead of ps p.
In 2010, Mondal and Roy introduced the concept of relative order of an entire function

in C" with respect to another entire function of several variables.

Definition 1.2 [3]: Let f and g be entire functions of n-variables and D be a bounded
complete n-circular domain with centre at the origin in C". Then the relative order

pg.0(f) of f with respect to g and the domain D is defined by
Pg,D(f) = mf{u >0: Mf,D(R) < Mg7D(Ru), for all R > RO(M) > 0}

_ logM, 1,(My.p(R))
= lim sup :
R—o00 lOgR

In [3] Mondal and Roy proved that the relative order of f with respect to g is independent
of the choice of the domain D. So the relative Gol’dberg order of f with respect to g
will be denoted by py(f).

In a recent paper, Prajapati and Rastogi [1] introduced the concept of p* relative

Gol’dberg order )\[;}D( f) of f with respect to g in the domain D as

logP!M L (M; p(R))
[p] . : g,D f»D
Yop(f) =it logR
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where p =1,2,3, ...

In the case of relative order it therefore seems reasonable to define suitably (p, q)th
Gol’dberg order and (p, q)"" relative Gol’dberg order of an entire function with respect
to another entire function of n complex variables in a domain D and to investigate its
basic properties, which we attempt in this paper. With this in view we introduce the

following definitions.

Definition 1.3 : Let f and g be two non-constant entire functions of n-complex vari-
ables and D be a bounded complete n-circular domain with centre at the origin in C".
If p, q are positive integers such that p > ¢ > 1 then the (p, ¢)"" Gol’dberg order and
(p, @) Gol’dberg lower order are respectively denoted by p[p 4 and )\[p 9 and are defined
by

P A (R
lpal _ log®\ M, p(R)
Prp = BRSwe = iR
and .
l M p(R
APO  liing PO MEDUR) g gy
’ R—o0 log[‘J]R

When p = 2 and ¢ = 1 then these are equivalent to the definition of Gol’dberg order
and lower Gol’dberg order.

Definition 1.4 : Let f and g be entire functions of n-complex variables and D be
a bounded complete n-circular domain with centre at the origin in C". Then (p,q)""

relative Gol’dberg order p[p Q]( f) of f with respect to g in the domain D is defined by

loaP~U 0L (M (R
AP (f) = Tim sup — b (My.p(R))

R—o0 log lal R

Similarly (p, q)*" relative Gol'dberg lower order )\[gij ’g (f) with respect to g in the domain
D is defined by

=11 s
AP () = i int = log[qg%(m)
We say that f is of (p, q)" regular growth if p[p a(f) = A[g’f}f-’}(f).
Definition 1.5 : An entire function g is said to have property (A) if for any o > 1 and
for all large R,

(M, p(expP U R)}? < {M, p(expP U R™)}.
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2. Basic Results
The following theorem shows that (p, ¢)*” relative Gol’dberg order is independent of the

choice of the domain.

Theorem 2.1 : Let f and g be entire functions of n-complex variables then (p, q)™"
relative Gol’dberg order of f with respect to g is independent of the choice of the domain
D.

Proof : Let Dy and Ds be any two bounded complete n-circular domains. Then there

exist two real numbers «, 8 > 0 such that oDy C Dy C 8D; and so,
My .ap, (R) < Myp,(R) < My pp, (R).
Hence for any bounded complete n-circular domain D
M, 1(Mpap, (R)) < My 1 (Mj,p,(R)) < M, (Mg sp, (R)). (2.1)
Since for any A > 0 and D,
Myap(R) = My p(AR),

so we have

logPMp(Mpap(R)  logPIM (Mg p(AR))
lim sup = lim sup
R—o0 lOg la] R R—oo log la] R
= lim sup log? M, p (M50 ()
R—oo loglal &
= lim sup log My, p(My.0 (R)

R—o0 log la] R
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Hence from (2.1)

o logP My (Mo (B) | Logh My p (M ap, (R))
Rﬁoop log[q]R B R~>oop lOg[q]R
log\ M, 1, (My,p,(R))
< limsup g
R— ZOQ[q]R
. log?' M 1,(Mj sp, (R))
< lim sup
R—o0 log[q]R
logP!M L (M; p, (R
Slimsup 9 gD( fDl( ))
R—o0 log[q]R
Thus
po o LM (Mo (R) - log M, (M, (R))
Roso logll R Roso logl R

Hence the theorem.

So after this we shall always write, p[p Q]( f) instead of p[p q]( f)-

Theorem 2.2 :Let f and g be entire functions of n complex variables such that
0< )\B?H’p} < p?H’p} and 0 < )\gﬂrl’p] < p[gp+1’p].Then

[p+1,p] [p+1,p]  [p+1,p] [p+1,p]  [p+1,p]

A )\ )\

f [p+1,p] Ps Py [p+1,p]
[p+1 p] < /\9 (f) < mln{ p+1 p] pp+1 “Tp+1p] } < mam{ p+1 p] p[p+1 ,p] pg (f) S
[p+1 ]
f .

)\éerl ,p]

Proof : From the definition of (p + 1, p)!* Gol’dberg order and Gol’dberg lower order

we get for arbitrary € > 0 and for all large values of R

[p+1,p]
My p(expP UR) < exp[p}Rp;] e (2.2)
Mg,D(exp[p_” R) < expP RPs AT (2.3)

[p+1,p]
My p(exp?~UR) > expP! R prie (2.4)

]
M97D(e:vp[p_1]R) > explPl R e (2.5)

Also for a sequence {R,} tending to infinity we get that
-1 R

My p(expP " Ry) > exp” Ry, (2.6)

[p+1,p]

MgvD(e:Up[p_l]R ) > explP! RDY € (2.7)
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AlPFHLPL
My plexp? VR, < expP R’ 2.8
e
[p+1,p]
Mgvp(exp[p_l]Rn) < exp[p}Rﬁgp e (2.9)

Now from the definition of (p + 1,p) relative Gol’dberg order, we get for arbitrary
€1 > 0 and for all large values of R that

log[”]ngll)(MﬁD(ewp[p_l}R))
logR '
Now from (2.6) we get for a sequence {R,} tending to infinity that,

prI(f) + e >

lp+1.p] _,

log!P! Mgfll)(exp[p] R )
logR,

prTIA(f) + e >

pEfH'l’p] e

pgﬂer]Jre

logl?) M;}) (exp? (R,
N logR,

)p![erl‘p]-i-e)

p[fp+1,p] e
[p+1,p]

log[p]Mg_ll)Mg,D(exp[p*” (R ™
> )

logR. ,  using(2.3)

+1,
p[;p P c

p[gp+1,p] +e

As €1(> 0) and €(> 0) are arbitrary, we get

p[p+1,p]
prLal(f) > L (2.10)

— +1’ .
pgp ]

Also from (2.2) we get for arbitrary e > 0 and for all large values of R that

1>+1,p]_~_6

[
logP!M 1, My, p(expP~ I R) g log®I M, 1 (explP RFs )
logR logR
p[fp+17pl+e
L A .
_ lOg[P] M;E(exp[P] (Rpé”“”’]—e )ﬂ[ngr p]_E)
logR ’
Now from (2.7) we get for a sequence {R,} tending to infinity that
PPl
(p+1,p] _

€

logP! M}, My p(expP~1IR,,) § log? M, |, M, p(exp?=1 (R
logR, logR,
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Therefore piip]
logP! M "}, M P=1R, g
lim inf o9 9.D f,D(exp ) < Py te

Rp—00 logR, - p[énﬂ,p] . e'

Since € > 0 is arbitrary, we have

[p+1,p]

[p+1.7] i
)\9 (f) < [p+1,p] "
Py

(2.11)

Now from the definition of (p+1, p)t" relative Gol’dberg lower order, we get for arbitrary
€2 > 0 and for all large values of R that

log!! Mg_}) (M p(explP~UR))

APHLPpy
Now from (2.8) we get for a sequence {R,,} tending to infinity

[p+1,p]_~_E

log!?! Mg_Jl) (expl?) Ri\f )
logR,

APFLEI(f) — &5 <

AlP+Lp]

)\LPJrl»P] e

_ logP M1 (explP) (Ry P
N logR,,

AlpF1.pl

p+1,p]

[ €
_ log[p]Mg_’ll)Mg,D(exp[p*”Rﬁg

o R, ,  using(2.5)

)\[jipH’M +e€
)\[gp-&-LP] e
Since €3(> 0) and €(> 0) are arbitrary, we obtain that

[p+1,p]

[p+1,p] f
Ad (f) < /\3’“’1’]' (2.12)

Now from (2.4) we get for arbitrary € > 0 and for large values of R that

p+1,p]

[
logl?! M;})MLD (explP~1R) - log!?! M;ll)(exp[p] R )
logR logR

AP+HLPI

loglP! M!;ll)(exp[p] (Rm)kgp+l,p]+e)
B logR
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Now from (2.9) we obtain for a sequence {R,} tending to infinity that

APtLpl
[p+1.p] .
log”! M, 1, My p(eap~ " Ry) N log?! M, M, p(exp?P~ R, )
logR, logR,, ’
So,
i log[p]Mg_’ll)Mf,D(ea:p[p*”Rn) )\B?H’p} —€
R logR, Tl

Since € > 0 is arbitrary, we have

)\[P-"-LP]

PP (£) > A{;HM. (2.13)
g

Again from definition, we get for arbitrary ez > 0 and for a sequence {R,,} tending to

infinity that

logL”]Mg—é(Mf,D(exp[p_”Rn))

P[ng’p](f) —€ <

lOan
1 e
log" M, p(exp? Ry ) using(2.2)
loan 7 a
p+1,p e )
) log[P]Mgf}j(eiﬂp[p](ng ))\[gpﬂ p]_e)
logR,,
p?ﬂrl,p]_,_e
NS
log[p] Mg—,%)M%D(el‘p[p*l] Ré\g wsin (2 5)
lOQRn ’ o
- pE[p"er] +€
AP

Since €3(> 0) and €(> 0) are arbitrary, we have

[p+1,p]

pPHI(f) < (2.14)

- )\[gp+1:p] ’

Also from definition, we get for arbitrary €4 > 0 and for a sequence {R,} tending to
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infinity that

log?) M;})Mﬁp (expP~UR,)
logR,

APFLEL(f) 4+ ¢4 >

[p+1,p]

log!?! M;}) (exp[p] R:\Lf
logR,

—€

> ., using(2.4)

APHLPI

[gp+1,p]JrE

B logl?) Mg_ﬁ (expl?! (R
N logR,,

)pép+1,p]+6)

AP+l

[p+1,p]

log[p]ngll)ngD(el‘p[p_l]Rf{g e
logR,

, using(2.3)

)\[chwl,p] e

pgp-i-Lp] +e ’

Since €4(> 0) and €(> 0) are arbitrary, we get

[p+1,p]

[p+1,p] f
) 2 ey (215)

The theorem follows from (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15).
Theorem 2.3 : Let f and g be entire functions of n complex variables such that
p?ﬂ’p] =0and 0 < p[gpﬂ’p] < 00. Then )\[gpﬂ’p](f) = 0.

Proof : From the definition, we have for arbitrary ¢ > 0 and for all large values of R

that
Myp(eap? IR) < (cxp? R").
So,
loglM, p My p(eap? IR) _ log” M, p(cop? R)
logR logR
. lOg[p]M;})(emp@](RW)#“”’]—E)
a logR :

Now from (2.7) we get for a sequence {R,} tending to infinity that

e
[p+1,p]

log" M, b My,plexp? URy) _ log M, pMy.pleap? (B
logR, logR,
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Therefore,
log! M, 1, My p(expP~VR,,) ¢
lim inf <A < .

p+ P

Theorem 2.4 : Let f and g be entire functions of n complex variables such that
0< p?“’p] < o0 and pépﬂ’p] = 0. Then pg)Jrl’p](f) = o0.

Proof : From the definition of (p+1,p)*" relative Gol’dberg order, we get for arbitrary
€1 > 0 and for all large values of R that

log!?! ng)Mf,D(exp[p*”R))
logR '

PPHI(f) 4o >

Now from (2.6) we get for a sequence {R,} tending to infinity that,

loal?) A1 ( [p]RPE?-FLp]_e)
0 er n
APFII(f) e > D
g logR,,
p?ﬂ-l,pL
B log[p]M;lg(exp[p](Rn < )9
N logR,,
logP! ML M, p( [’P—I]Rpg?ﬂ’p]_(
0 er n ©
> 9 9D g’l;og; , using(2.3) and pg[]pﬂ’p] =0
pggﬂ,pl e

€

Since €1(> 0) and ¢(> 0) are arbitrary it follows that
pPHP(f) = oo,

Theorem 2.5 : Let f and g be two entire functions and pgf’ﬂ’p} and pgpﬂ’p] be the
(p+1,p)*" Gol’dberg order of f and g respectively. Then the (p-+1, p)** relative Gol’dberg
order p[gpﬂ’p](f) of f(z) with respect to g(z) satisfies

[p+1,p]

; [p+1,p] Py
(Z) pg (f) Z p‘[gp+1’p]
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(ii) If g is of (p + 1,p)t" regular growth then

p[}?-&—Lp}
1, _
P =
Pg

Proof : From the definition of (p + 1, p)!* Gol’dberg order we have for arbitrary ¢ > 0
and for all large values of R
[p+1,p]

My p(expP~UR) < explPl RPF ¢ (2.16)

and
Lerl,p]_,'_E

M, p(expP U R) < explP RP (2.17)

Also for a sequence {R,,} tending to infinity, we get that

(p+1.p] _

MﬂD(eaﬁp[p*l]Rn) > expl? RS . (2.18)

Now,

L) — T sup 22 Map (s p(ea? )
sl ) —

R—o0 lOgR
lp+1.p] _,

logP! ML (ex [p*”RZf
> lim sup g g’D( b )

R,—00 logR,

by (2.18)

p[zzﬂrl,pL6

_ _ N
. log[p]ngé(exp[p YRy Typg e
= lim sup

Ry —00 logRy,

plPTLel_
f;’+1 ]
log[p]M_ll)ngD(exp[p_l]Rﬁg e
> lim sup g
Rp—o0 lOan
+1,
p[f D

p[gpﬂ,p} + e'

, using (2.17)

€

Since € > 0 is arbitrary,
[p+1,p]

1, Py
pr+ p}(f) 2 [p+1,p]
Pg

(2.19)

This proves (i).
When g is of (p + 1,p)"" regular growth, we have for ¢ > 0 and for all R > Ry

[p+1,p]

Mgp(e:pp[p_l]R) > explP! R ‘. (2.20)
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Now,
log[p] (Mf p(expP~UR))
[p+1.p] =1
pg M) in sup logR
logPI M} (eapl? Rey e
< limsu rom (2.16
- R—>oop lOgR f ( )
HPTLP]
logP! M1, (expl! (RW )ngﬂ’p] —)
= lim sup =
R—o0 lOgR
PP Ll
log[p]M (exp[p I]Rﬂ[p+1p —e€
< lim sup from (2.20)
R—o0 logR
- p[;ﬂrl,p] +e
p[gp+1,p] e
Since € > 0 is arbitrary, so
p[erl,p]
p[gp+1,p](f) < f;+1,p]- (2.21)
Pg
Hence from (2.19) and (2.21) we have
p&cp+1,p]
+17
p[gp p] (f) [p—i—l,p] *
Pg

3. Sum and Product Theorems

Theorem 3.1 : Let fi, fo and g be three transcendental entire functions. If p[pH’p](fl)
and pgp+1’p](f2) be the (p+1, p)*" relative Gol’dberg order of f; and f, respectively with

respect to g and

p[gpﬂ’p](f ) # p[p+1 7 (f2), then the (p+1,p)™" relative Gol’dgerg order of f; + fo is given

by
PP+ fo) =
Proof : We have,

maz{p TP (f), PP (£}

logP! M 1, (My, p(exp~ 1 R))

[p+1p (f1) = hgl sup lggR ,
—00

log M, 1 (Mj, p(eapl?-1IR))

p[pH’p](fg) = limsup

R—o0

logR
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and
log[p]M p(M plexpP~1R))
p[gp—H»P](fl + fo) = limsup fi+f2,D ‘
R—o0 logR

Without loss of generality, we assume that p[pH’p ]( f1) > p[pﬂ’p ]( f2).

Now,
My, ¢, p(expP UR) < My, p(exp?P VR) + My, p(exp?~1R)
< My p(exp?~ 1 Red ™ +ey 4 M, p(eapP~ 1Ry (82) )€ for large R
< 2M, p(expP U RPo an p](f1)+6)
< Mg,D(exp[p 1]1“3pgp+ (1) +26), for suf ficiently large R.
Therefore,
log[p} (Mf1+f2 (emp[pil]R))
i +1,
lim sup log < pPHLPI(f1) + 2.
So,

On the other hand, there exists a sequence {Rn} of value of R, tending to infinity, such
that,
p—1] p—1] e T (F1)—e
My, p(exp®™ " Ryn) > My p(exp® " Ry’ ). (3.2)

We have
Merfz,D(e-Tp[p_l]Rn) > Mfl,D(exp[p_HRn) N Mfz,D(exp[p_l]Rn)'

Let € > 0 such that p[pH’p}(fl) —€> p_E,”“”’](fQ) +e.
Then
+
MfQVD(exp[p_l]Rn) < Mgl)(exp[p I]Rpgp 7 (f2)+€), (33)

for sufficiently lagre n.

So from (3.2) and (3.3) we have,

[P+1 P —e [p+1 P] .
Mf1+f27D(€fL'p[p_1]Rn) > Mg,D(efL‘p[p }Rl)g (f1) )_ Mgi)(é’l‘p[p I]Rpg (f2)+ )

p+1,p]
M,, D(exp[p—l]Rpg v (f2)+e)

[p+1,p]
MgD(e:L,p[p 1]Rpg (fl)_€)

p+1.0) £y
g,D(e$p[]) }qup p (fl) )[1 _

]

1 (p+
> 5M97D(e:pp[p_1]R7pﬂ H- ) for suf ficiently large n

[p+1,p] (fl)_2

> Mg,D(exp[p URPs ) for large n
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or,
logPI M 1,(My, 4 gy, p(explP~ I R))
lim sup &

; oo > () 2
—00

So,
pPHLPI(f1 + fo) > pPHLPI(fy). (3-4)

Hence from (3.1) and (3.4) we get pgpﬂ’p](fl + fo) = max{pgpﬂ’p}(fl),pgpﬂ’p](fg}.
This proves the theorem.

Theorem 3.2 : Let f; and f» be two entire functions of (p + 1, p)*" relative Gol’dberg
order p[gpﬂ’p}(fl) and pgpﬂ’p}(fg) respectively. If g has the property (A), then the (p +
1,p)™" relative Gol’dberg order of fi.fs is

oy (1. f2) < maz{pg (), o TP (),

Proof : Without loss of generality, let us assume that pgp +L.p }( fi) = pg[,p +Lp ]( f2).

For € > 0 and for all large R, we have

M, p(exp? VR) < M, p(eapl~RH " (0 +e)

and
[p+1,p]
Mfz,D(e:Ep[p_l}R) < Mg,D(e:L‘p[p_l]Rpg i (f2)+e)‘

Now we have

My, g, p(eapP ™V R) < My, p(exp? "IR). My, p(eap? V' R)

[p+1,p

< M, D(exp[p_l}Rpg ](f1)+6).Mg D(eib‘p[p_l]Rp[ng’p](f2)+6)

p+1,p

[
[p+1,p]

< Mg,D(e:Up[pfuRo‘(pg )+, o > 1 from property(A).

](f1)+e>]2

Hence,

log?~ M |, My, 5, p(expP M R) < Repd P (1) +e)

: logP\ My 1 My, g, p(exp?~ 1 R) p+1,p
or, limsupp_, e P < O‘(PE{ (1) +e).

Letting o — 17 and since € > 0 is arbitrary, so we have

PPV fo) < TPl p).

Hence the theorem.

Theorem 3.3 : Let f be an entire function of (p + 1,p)*" relative Gol’dberg order

pgpﬂ’p] (f) # 0 and P(z) be a polynomial. If g has the property (A), then the (p-+1,p)™"
relative Gol’dberg order p[ngrl’p](f.P) of f(z).P(z) is same as p[gpﬂ’p}(f).
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Proof : From Theorem 3.2 we have,

p[gp+1,p} (fP) < pLPJrLP} (f) (35)

since the (p + 1,p)!" relative Gol’dberg order of P(z) with respect to g is zero.
Since Mp, p(explP~1] R) > 1 for all sufficiently large R,

sup | f(2)P(z)| = sup|f(z)|,where z € D, p—1
i.e.,Mf.p’D(ea:p[p_l]R) > MfﬁD(eazp[p_l]R).

. log[p]M71 My, expP~1R . log[i"]M71 M expP~1R
807 lim SUPR 00 g’D( ZJ;;I"%D( 2 > lim SUPR— 00 g’D( l(fé;( 2

1z and for all sufficiently large R

i.e., pTVPI(f.P) > plP TP f). (3.6)

Hence from (3.5) and (3.6) we get, p[gpﬂ’p}(f.P) = p[fﬂ’p](f).

4. Asymptotic Behaviour

Definition 4.1 : Two entire functions g; and g are said to be asymptotically equivalent
if
Mgl,D(eJ:p[p’l]R)

Myy p(cep™ TR) — 1 as R — oo and in this case we write g1 ~ go.

Theorem 4.1 : Let g1, g2 and f be three entire functions and p[gzi—’_l’p](f) and p[gz;+1’p](f)

be the (p + 1,p)™" relative Gol’dberg order of f with respect to g; and g» respectively.
1, 1,
If g1 ~ g2 then pf " PI(f) = pBTHP(f).

Proof : Since g; ~ g2, we have for ¢ > 0 and for all large R,

Mgl,D(exp[pfl}R) < (1 + E)Mg%D(e‘rp[p*l]R) < M927D<€xp[p*1}R(1+e)>

Hence

R < log[pfuMg_l,lD{Mg%p(emp[p*l]R(He))} (4.1)

for all large R.

Let M, p(exp? UR1+9)) = R;.
1

Then R = {log[p_”Mg;}D(Rl)}(He).

Now from (1.1) we get,

log" ™My, p (R1) < (log" ="My (Ry)) ¥* for large Ry.
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Now,
lOg[p]Mle(Mf D(exp[p_l]Rl))
= limsu 92, ,
<f) R1—>oop logRy
logllog®~ 1M\, (My,p(exp? ' Ry))]
= lim sup 92,
R1—00 logRl
lOg[log[pfl]M_lD (MﬂD(exp[pfl] R1)>]1+6
< limsup g1,
R1—00 lOgRl
lo [p]M—l M ex [p—l}R
= (1 +¢)limsup 9 My, .p(My.p(exp 1))]
Ri—o0 logRy
= (149 7(S).

p[gp;-ﬁ- 1,p]

So,
PP < ol ).

Also if g9 ~ g1 so
LRI F) < plptPl(f).

Hence, pgfl’p](f) = Pﬁ“’p}(f)-
[p+1,p]

Theorem 4.2 : Let f1, fo and g be three transcendental entire functions. If pg (f1)
and pgpﬂ’p](fg) be the (p+ 1, p)*" relative Gol’dberg order of f; and f, respectively with
respect to g. If f1 ~ fy then pgpﬂ’p](fl) = prle’p}(fQ).

Proof : Since fo ~ f1, we have for € > 0 and for all large R,
My, p(ep?IR) < (1+ €)My, p(expIR).

Now,

log®P! ML (M;, p(expP~YR))
[p+1,0] — g,D\HM f2,
pd TP (f2) in sup logR
. logP! M 1,((1 + €)My, p(exp?~'IR))
< lim sup
R—o0 lOgR
. logW! M 1,(My, p(explP~ I RUF9))
< lim sup :
R—o0 log R(1+€)
= (1+e)pP (1),

Since € > 0 is arbitrary so,

(1+¢€)

Py TP(f2) < pHI(f).
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Also if f1 ~ f5 so
P < Al g)

Hence, p[f+1’p](f1) = P[ng’p](fﬂ-
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