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Abstract

A set D of vertices in a graph G, is a dominating set, if every vertices in V \D is
adjacent to atleast one vertex in D. A dominating set is called a minimum dominat-
ing set, if D consist of minimum number of vertices among all the dominating set.
If V \D contains a dominating set D′ of G then D′ is called an inverse dominating
set with respect to D. An inverse dominating set D′ is called a minimum inverse
dominating set, if D′ consist of minimum number of vertices among all the inverse
dominating set. The number of vertices in a minimum inverse dominating set is
defined as inverse domination number of a graph G and it is denoted by γ−1(G).
In this paper we investigate the inverse domination number of a Circulant Graph
G(n,±{1, 2}).

1. Introduction

The study of domination in graph have an immense growth in the recent years. The

concept of domination was introduced by S. T. Hedetniemi and P.J.Slater [6]. In the

last two decades, domination plays vital role in graph theory. More than 75 variations

of domination parameter in [7].
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C. Berge [2] in 1958 and O. Ore [13] in 1962 started the formal study on theory of

dominating sets. Domination has various other applications in real world. It includes

social networks, land surveying, communication networks, radio stations, interconnec-

tion networks, etc. The concept of inverse domination number was introduced by V. R.

Kulli and C. Sigarkanti [12].

A set D of vertices in a graph G, is a dominating set, if every vertices in V \D is adjacent

to atleast one vertex in D. A dominating set is called a minimum dominating set, if D

consists of minimum number of vertices among all the dominating set. The number of

vertices in a minimum dominating set is defined as the domination number of a graph

G and it is denoted by γ(G).

If V \D contains a dominating set D′ of G, then D′ is called an inverse dominating set

with respect to D. An inverse dominating set D′ is called a minimum inverse dominating

set, if D′ of minimum number of vertices among all the inverse dominating sets. The

number of vertices in a minimum inverse dominating set is defined as inverse domination

number of a graph G and is denoted by γ−1(G).

A Circulant Graph denoted by G(n;±{1, 2 . . . j}),1 ≤ j ≤ bn/2c, n ≥ 3, is a graph with

vertex set V = {0, 1, 2 . . . n − 1} and the edge set E = {(i, j) : |j − i| ≡ s(modn), s ∈
{1, 2 . . . j}}.

The Circulant Graph was originally discussed by Elspas and Turner [17]. The Circu-

lant is a natural generalization of the double loop network and was first considered by

Wong and Coppersmith [16]. Every Circulant Graph is a vertex trasitive graph and a

cayley graph [17]. The properties of Circulant Graph have been studied extensively and

surveyed by Bermond et al. [3]. The Circulant Graphs have been studied for the past

two decades. Circulant graph have been used in the design of computer and telecomm-

nucation networks due to their optimal fault-tolerence and routing capabilities [4]. It is

also used in VLSI designs and distributed computation [3].

2. Literature Survey

Selvakumar et al. [18] have investigated the inverse domination semi-total block graph.

Cockayne et al. [5] gave the first domination algorithm for trees in 1975 and about the

same time, David Johnson constructed the first proof that, the domination problem for

arbitrary graphs is NP complete.
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Jasintha Quadras et al. [9] have found efficient algorithm for the inverse domination

Number of t-layer cycles and have determined exact values of the domination number

and inverse domination of this class. Indra Rajasingh et al. [14] have found a minimum

connected dominating set for certain circulant graph.

S-(a,d) antimagic labeling of a class of circulant graph has been investigated by Cynthia

et al. [11]. Shobana et al. [15] have found an efficient 2- domination number for cir-

culant graph. Indra Rajasingh et al. [8] have investigated the embeddings of Circulant

Networks. Cynthia et al. [10] have investigated the local metric dimension of Circulant

Graphs.

3. Domination Number of Circulant Graph

Theorem 1 : The domination number of Circulant Graph G(n,±{1, 2}) is dn/5e.

Proof Let G be the undirected circulant graph G(n,±1, 2). Let {v1, v2, . . . vn} be the

vertices ofG. Any vertex vi ofG is adjacent to a set of four vertices {vi−2, vi−1, vi+1, vi+2}
and hence it is clear that a vertex of G can dominate atmost four vertices. We find
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the dominating set of G(n,±{1, 2}) by considering the following cases of n namely

n ≡ 0, 1, 2, 3, 4(mod 5).

Case 1: n ≡ 0(mod 5),

Consider the vertex v3+j . It is adjacent to the set of vertices {v1+j , v2+j , v4+j , v5+j} for

j = 0, 5, 10, . . . , n−5. Hence we obtain a dominating set D = {v3+j/j = 0, 5, 10, . . . , n−
5}. Therefore |D|=dn/5e.

Case 2: n ≡ 1(mod 5), n ≥6

The vertex v3+j is adjacent to the set of vertices {v1+j , v2+j , v4+j , v5+j} for j = 0, 5, 10, . . . , n−
6. Since the vertex vn is dominated by v3+j for any j. Hence we choose v3+j (j ∈
{0, 5, ...n− 6}) to be member of D. Since vn is not adjacent to v3+j for all j, we choose

the vertex vn for the dominating set. Hence we obtain a dominating set D = {v3+j/j =

0, 5, 10, . . . , n− 6}
⋃
{vn}. Thus |D|=dn/5e.

Case 3: n ≡ 2(mod 5), n ≥7

Consider the vertex v3+j . It is adjacent to the set of vertices {v1+j , v2+j , v4+j , v5+j}
for j = 0, 5, 10, . . . , n− 7. Then for the set of remaining vertices {vn−1, vn}, we choose

the vertex vn−1 to be a member of dominating set. Hence we obtain a dominating set

D = {v3+j/j = 0, 5, 10, . . . , n− 7}
⋃
{vn−1}. Thus |D|=dn/5e.

Case 4: n ≡ 3(mod 5), n ≥8

Consider the vertex v3+j . It is adjacent to the set of vertices {v1+j , v2+j , v4+j , v5+j}
for j = 0, 5, 10, . . . , n − 8 and the remaining set of three vertices {vn−2, vn−1, vn} is

dominated by the vertex vn−1. Hence we obtain a dominating set D = {v3+j/j =

0, 5, 10, . . . , n− 8}
⋃
{vn−1}. Thus |D|=dn/5e.

Case 5: n ≡ 4(mod 5), n ≥9

The vertex v3+j is adjacent to the set of vertices {v1+j , v2+j , v4+j , v5+j} for j = 0, 5, 10,

. . . , n− 9 and the remaining set of four vertices {vn−3, vn−2, vn−1, vn} is dominated by

the vertex vn−1. Hence we obtain a dominating set D = {v3+j/j = 0, 5, 10, . . . , n −
9}

⋃
{vn−1}. Thus |D|=dn/5e. 2

4. Inverse Domination Number of Circulant Graph

Theorem 2 : The Inverse domination number of Circulant Graph G(n,±{1, 2}) is

dn/5e.

Proof : Let G be the undirected circulant graph. Let {v1, v2, . . . , vn} be the vertices of

G. By the above theorem γ(G) = dn/5e, and let the dominating set of G be D as in
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theorem 1. We consider the following cases of n to determine the inverse dominating

set of D′.

Case 1: n ≡ 0(mod 5), n ≥ 5

Consider the vertex v4+j . It is adjacent to the set of vertices {v2+j , v3+j , v5+j , v6+j}
for j = 0, 5, 10, . . . , n − 5. Hence we obtain an inverse dominating set D′ = {v4+j/j =

0, 5, 10, . . . , n− 5}. Therfore |D′|=dn/5e.

Case 2: n ≡ 1(mod 5), n ≥6

The vertex v4+j is adjacent to the set of vertices {v2+j , v3+j , v5+j , v6+j} for j = 0, 5, 10,

. . . , n − 6. Hence we choose v4+j (j ∈ {0, 5, ...n − 6}) to be member of D′. Since v1 is

not adjacent to any v4+j for all j, we choose the vertex v1 for the inverse dominating set.

Hence we obtain an inverse dominating set D′ = {v4+j/j = 0, 5, 10, . . . , n − 6}
⋃
{v1}.

Thus |D′|=dn/5e.

Case 3: n ≡ 2(mod 5), n ≥7

Consider the vertex v4+j is adjacent to the set of vertices {v2+j , v3+j , v5+j , v6+j} for

j = 0, 5, 10, . . . , n − 7. Then for the set of remaining vertices {vn, v1}, we choose the
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vertex vn to be a member of an inverse dominating set D′. Hence we obtain an inverse

dominating set D′ = {v4+j/j = 0, 5, 10, . . . , n− 7}
⋃
{vn}. Thus |D′|=dn/5e.

Case 4: n ≡ 3(mod 5), n ≥8

Consider the vertex v4+j . It is adjacent to the set of vertices {v2+j , v3+j , v5+j , v6+j}
for j = 0, 5, 10, . . . , n − 8 and the remaining set of three vertices {vn−1, vn, v1} is dom-

inated by the vertex vn. Hence we obtain an inverse dominating set D′ = {v4+j/j =

0, 5, 10, . . . , n− 8}
⋃
{vn}. Thus |D′|=dn/5e.

Case 5: n ≡ 4(mod 5), n ≥9

Consider the vertex v4+j . It is adjacent to the set of vertices {v2+j , v3+j , v5+j , v6+j}
for j = 0, 5, 10, . . . , n − 9 and the remaining set of four vertices {vn−2, vn−1, vn, v1} is

dominated by the vertex vn. Hence we obtain an inverse dominating set D′ = {v4+j/j =

0, 5, 10, . . . , n− 9}
⋃
{vn}. Thus |D′|=dn/5e. 2

5. Remark

The domination number and inverse domination number of a Circulant GraphG(n,±{1, 2})
are equal of cardinality dn/5e.

6. Conclusion

In this paper we have investigated the inverse domination number of Circulant graph

G(n,±{1, 2}). Futher we intend to study the inverse domination of Hypercube Net-

works.
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