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Abstract

In this paper we prove a coincidence theorem for systems of single-valued and multi-
valued maps on finite product of metric spaces. Our result generalizes the results
of Matkowski [14], Czerwik [3], Singh-Kulshreshtha [26] and others. We also gave
some remarks on the paper of Gairola et al. [4] and Chauhan et al. [2].

1. Introduction

In 1973 Matkowski [14] generalized the Banach contraction principal for a system of n

maps on a finite product of metric spaces. Czerwik [3] extend this result for a system

of multi-valued maps. After that the result of Matkowski [op. cit.] has been extended

and generalized by several authors (see, for instance Reddy- Subrahmanyam [21]-[22],

Singh-Kulshrestha [26], Singh-Gairola [23]-[24], Baillon-Singh [1], Matkowski-Singh [16],

Gairola et al. [9]-[10], Gairola-Jangwan [5]-[6] and others).
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The study of contractive maps, which does not force the map to be continuous at

the fixed point was initiated by Pant (see [18]-[19]). In [18], Pant proved a common

fixed point theorem without any continuity requirment by introducing the notation of

reciprocal continuity for a pair of single-valued maps. Later on Pant et al. [20] improved

the notation of reciprocal continuity by introducing weak reciprocal continuity for a pair

of single-valued maps which states that if S and T are maps on a metric space (Y, d)

then the pair (S, T ) is weakly reciprocally continuous if and only if lim
n→∞

STxn = St or

lim
n→∞

TSxn = Tt, whenever{xn} is a sequence in Y such that lim
n→∞

Sxn = lim
n→∞

Txn = t

for some t in Y . Recently Gairola et al. [4], extend the idea of weak reciprocal continuity

for a hybrid pair of single-valued and multi-valued maps (cf. Definition 2.6 below).

In this paper we proved a coincidence theorem for systems of single-valued and multi-

valued maps on finite product of metric spaces and showed that the requirement of con-

tinuity is not necessary for existence of coincidence point on product of metric spaces.

We do this by introducing a new class of maps - coordinatewise weakly reciprocally

continuous systems of single-valued and multi-valued maps.

2. Notations and Definitions

Let (Y, d) be a metric space. We follow the following notations of Nadler [17] and Khan

[13].

CL(Y ) = {A : A is a non-empty closed subset of Y },
C(Y ) = {A : A is a non-empty compact subset of Y }.
For any non-empty subsets A,B of Y and x ∈ Y ,

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
d(x,A) = inf {d(x, a) : a ∈ A},
H(A,B) = max [sup{D(a,B) : a ∈ A}, sup{D(A, b) : b ∈ B}],
where H is called the generalized Hausdorff metric for CL(Y ) induced by metric d and

(CL(Y ), H) is called generalized Hausdorff metric space.

Let (aik) be an n × n square matrix with non-negative entries defined in Matkowski

[14]-[15] (see also [1], [3]).

c
(0)
ik =

{
aik, i 6= k

1− aik, i = k
i, k = 1, . . . , n (2.1)
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c
(t+1)
ik =


c
(t)
11 c

(t)
i+1,k+1 + c

(t)
i+1,1c

(t)
1,k+1, i 6= k

c
(t)
11 c

(t)
i+1,k+1 − c

(t)
i+1,1c

(t)
1,k+1, i = k

(2.2)

t = 1, . . . , n− 1, i, k = 1, . . . , n− t.

c
(t)
ii > 0, t = 1, . . . , n, i = 1, . . . , n+ 1− t. (2.3)

Throughout the paper we shall assume that (Xi, di), i = 1, ..., n, are metric spaces,

(CL(Xi), Hi)the generalized Hausdorff metric spaces induced by di. Further, let X =

X1 × · · · ×Xn, x = (x1, . . . , xn) and {xm} = {(xm1 , . . . , xmn )},m ∈ N (natural numbers)

be a sequence in X. For M = (M1, . . . ,Mn) ⊂ X, we use the notation f(M) =

(f1M1, . . . , fnMn) as in [1].

Now we begin by briefly recalling some basic definitions which will be needed in the

sequel. In the following definitions we assume that Ti : X → CL(Xi), i = 1, . . . , n, are

multi-valued maps and fi : X → Xi, i = 1, . . . , n, are single-valued maps.

Definition 2.1 [1] : Two systems of maps (f1, . . . , fn) and (T1, . . . , Tn) are coordinate-

wise commuting at a point x ∈ X if and only if

fi(T1x, . . . , Tnx) ⊆ Ti(f1x, . . . , fnx), i = 1, . . . , n.

For n = 1, this definition is that of Itoh-Takahashi [11].

Definition 2.2 [1] : Two systems of maps (f1, . . . , fn) and (T1, . . . , Tn) are coordinate-

wise weakly commuting at a point x ∈ X if and only if

Hi(fi(T1x, . . . , Tnx), Ti(f1x, . . . , fnx)) ≤ Di(Tix, fix), i = 1, . . . , n.

For n = 1 this definition is due to Kaneko [12] (see, Singh et al. [25]). Two systems are

coordinatewise weakly commuting on X if and only if they are coordinatewise weakly

commuting at every point of X.

Definition 2.3 [9] : Two systems of maps (f1, . . . , fn) and (T1, . . . , Tn) are coordi-

natewise asymptotically commuting (or simply asymptotically commuting) if and only

if

Hi(fi(T1x
m, . . . , Tnx

m), Ti(f1x
m, . . . , fnx

m))→ 0 as m→∞,

whenever {xm} is a sequence in X such that Tix
m → Mi ∈ CL(Xi) and fix

m → ti ∈
Mi, i = 1, . . . , n.
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An equivalent formulation of the above definition for two systems of single-valued maps

appears in [10].

Remark 2.1 : Notice that coordinatewise weak commutativity of two systems of maps

(f1, . . . , fn) and (T1, . . . , Tn) on X implies their coordinatewise asymptotic commuta-

tivity, however converse need not be true (see [9]).

Remark 2.2 : Coordinatewise weak commutativity and asymptotic commutativity of

two systems of maps (f1, . . . , fn) and (T1, . . . , Tn) at a coincidence point z ( that is, when

fiz ∈ Tiz, i = 1, . . . , n) is equivalent to their coordinatewise commutativity, however

coordinatewise commutativity of systems (f1, . . . , fn) and (T1, . . . , Tn) is more general

than their weak commutativity and asymptotic commutativity at their coincidence point

z (see Example 2.2 [8]).

Definition 2.4 [8] : Two systems of maps (f1, . . . , fn) and (T1, . . . , Tn) are coordinate-

wise reciprocally continuous on X (resp. at t ∈ X) if and only if fi(T1x, . . . , Tnx) ∈
CL(Xi) for each x ∈ X (resp., fi(T1t, . . . , Tnt) ∈ CL(Xi), i = 1, . . . , n) and

lim
m→∞

fi(T1x
m, . . . , Tnx

m) = fiM , lim
m→∞

Ti(f1x
m, . . . , fnx

m) = Tit,

whenever {xm} is a sequence in Xi such that lim
m→∞

Tix
m = Mi ∈ CL(Xi), lim

m→∞
fix

m =

ti ∈Mi, i = 1, . . . , n.

For n = 1, this definition is due to Singh-Mishra [27]. An equivalent formulation of the

above definition for two systems of single-valued maps appears in [7].

If two systems (f1, . . . , fn) and (T1, . . . , Tn) both are continuous then they are obviously

coordinatewise reciprocally continuous but converse need not be true (see [8], [27]).

Definition 2.5 : Two systems of maps (f1, . . . , fn) and (T1, . . . , Tn) are coordinatewise

weakly reciprocally continuous on X (resp. at t ∈ X) if and only if fi(T1x, . . . , Tnx) ∈
CL(Xi) for each x ∈ X (resp., fi(T1t, . . . , Tnt) ∈ CL(Xi), i = 1, . . . , n) and

lim
m→∞

fi(T1x
m, . . . , Tnx

m) = fiM , or lim
m→∞

Ti(f1x
m, . . . , fnx

m) = Tit,

whenever {xm} is a sequence inXi such that lim
m→∞

Tix
m = Mi ∈ CL(Xi) and lim

m→∞
fix

m =

ti ∈Mi, i = 1, . . . , n.

As a special case of the above definition for n = 1, we have the following definition

introduced in [4].

Definition 2.6 : The mapping f1 : X1 → X1 and T1 : X1 → CL(X1) are weakly

reciprocally continuous on X1 (resp. at t ∈ X1) if and only if f1T1x ∈ CL(X1) for each
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x ∈ X1 (resp., f1T1 ∈ CL(X1)) and

lim
n→∞

f1T1xn = f1M1 or lim
n→∞

T1f1xn = T1t,

whenever {xn} is a sequence inX1 such that lim
n→∞

T1xn = M1 ∈ CL(X1) and lim
n→∞

f1xn =

t ∈M1.

If the map T1 in Definition 2.6 is single-valued then M1 has just a single element t, and

we get the definition of weak reciprocal continuity for single-valued self maps introduced

by Pant et al. [20].

If systems of maps (f1, . . . , fn) and (T1, . . . , Tn) are coordinatewise reciprocally continu-

ous then they are obviously coordinatewise weakly reciprocally continuous but converse

need not be true. The following example shows the coordinatewise weak reciprocal con-

tinuity of two systems of maps and illustrates that the coordinatewise weak reciprocal

continuity of two systems of maps does not imply their reciprocal continuity.

Example 2.1 : Let X1 = X2 = [0,∞) be usual metric spaces and Ti : X1 × X2 →
CL(Xi), fi : X1 ×X2 → Xi, i = 1, 2, be such that

T1(x1, x2) =

{
[0, x1] if x1 ≤ 3

[4, 2 + x1] if x1 > 3
, f1(x1, x2) =

{
x1 if x1 < 3
5 if x1 ≥ 3

,

T2(x1, x2) =

{
[0, x2] if x2 ≤ 3

[4, 2 + x2] if x2 > 3
, f2(x1, x2) =

{
x2 if x2 < 3
5 if x2 ≥ 3

.

Suppose {xm} be a sequence in X1×X2 such that Tix
m →Mi ∈ CL(Xi) and fix

m → ti,

for some ti ∈Mi, i = 1, 2, as m→∞. Then for t = (3, 3) and {xm} = {(3−εm, 3−εm′ )}
where m,m

′ ∈ N and εm, εm′ → 0 as m,m
′ → ∞ resp.. We have Tix

m → [0, 3] =

Mi, fix
m → 3 = ti ∈ Mi and Ti(f1x

m, f2x
m) → [0, 3] = Tit, fi(T1x

m, T2x
m) → [0, 3] 6=

fi(M1,M2), i = 1, 2, as m → ∞. Hence the systems of maps {f1, f2} and {T1, T2}
are coordinatewise weakly reciprocally continuous but not coordinatewise reciprocally

continuous at t = (3, 3). However it is easy to see that each system of maps {f1, f2}
and {T1, T2} is discontinuous at t = (3, 3).

Since at t = (4, 4), systems of maps {f1, f2} and {T1, T2} both are continuous, hence

they are obviously weakly reciprocally continuous at this point. However there does not

exist any sequence {xm} ∈ X1 × X2 such that Tix
m → Mi ∈ CL(Xi) and fix

m → ti,

for some ti ∈Mi, i = 1, 2.

Remark 2.3 : The coordinatewise weak reciprocal continuity of two systems of maps

(T1, . . . , Tn) and (f1, . . . , fn) at a point t ∈ X may be verified by considering all se-
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quences {xm} ∈ X such that Tix
m = Mi ∈ CL(Xi) and fix

m = ti ∈ Mi, i = 1, . . . , n.

If there does not exist such a sequence then the definition of coordinatewise weak re-

ciprocal continuity holds vacuously. The same observation applies for coordinatewise

reciprocally continuous maps and asymptotically commuting maps.

3. Coincidence Theorem

Now we state our main result.

Theorem 3.1 : Let (Xi, di), i = 1, . . . , n, be complete metric spaces and Ti : X →
CL(Xi), fi : X → Xi, be such that

Ti(X) ⊂ fi(X), i = 1, . . . , n. (3.1)

The systems of maps (T1, . . . , Tn) and (f1, . . . , fn) are coordinatewise weakly reciprocally

continuous and coordinatewise asymptotically commuting on X. (3.2)

If there exist non-negative numbers b < 1 and aik, i, k = 1, . . . , n, defined in (2.1) and

(2.2) such that (2.3) and the following hold:

Hi(Tix, Tiy) ≤ max
i

{
n∑

k=1

aikdk(fkx, fky), bmax

{
Di(fix, Tix), Di(fiy, Tiy),

Di(fix,Tiy)+Di(fiy,Tix)
2

}}
(3.3)

for all x, y ∈ X. Then there exists a point v ∈ X such that

fiv ∈ Tiv, i = 1, . . . , n. (3.4)

Proof : First we note that the system (2.3) and

n∑
k=1

aikrk < ri, i = 1, . . . , n,

are equivalent for some positive numbers r1, . . . , rn. Further if we put

h = max

{
r−1i

n∑
k=1

aikrk

}

then h ∈ (0, 1) and we may choose positive numbers r1, . . . , rn such that

n∑
k=1

aikrk ≤ hri, i = 1, . . . , n.
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Pick x0i in Xi, i = 1, . . . , n. Since (3.1) holds, we can find a point x1 ∈ X such that

fix
1 ∈ Tix0, i = 1, . . . , n. For a suitable x2 ∈ X we can have a point fix

2 ∈ Tix1, i =

1, . . . , n, such that

di(fix
1, fix

2) ≤ c−1/2Hi(Tix
0, Tix

1), i = 1, . . . , n,

where c = max{h, b} and c−1/2 > 1. In general, we choose a sequence {xm} in X such

that fix
m+1 ∈ Tixm and

di(fix
m+1, fix

m+2) ≤ c−1/2Hi(Tix
m, Tix

m+1), i = 1, . . . , n;m = 0, 1, . . .

If at any stage fix
m+1 = fix

m+2 then fix
m+1 ∈ Tixm+1 that is, xm+1 is a coincidence

point of fi and Ti and the proof is complete. So we assume that fix
m+1 6= fix

m+2,m =

0, 1, 2, . . .. Without loss of generality, we may assume that

di(fix
1, fix

2) ≤ ri, i = 1, . . . , n.

Then by (3.3), we have

di(fix
2, fix

3) ≤ c−1/2Hi(Tix
1, Tix

2)

≤ c−1/2 max

{
n∑

k=1

aikdk(fkx
1, fkx

2), bmax

{
Di(fix

1, Tix
1), Di(fix

2, Tix
2),

Di(fix
1,Tix

2)+Di(fix
2,Tix

1)
2

}}

≤ c−1/2 max

{
n∑

k=1

aikdk(fkx
1, fkx

2), bmax

{
di(fix

1, fix
2), di(fix

2, fix
3),

di(fix
1,fix

3)
2

}}

≤ c−1/2 max

{
n∑

k=1

aikdk(fkx
1, fkx

2), bmax
{
di(fix

1, fix
2), di(fix

2, fix
3)
}}

.

If di(fix
2, fix

3) > di(fix
1, fix

2) then

di(fix
2, fix

3) ≤ c−1/2 max

{
n∑

k=1

aikdk(fkx
1, fkx

2), bdi(fix
2, fix

3)

}
≤ c−1/2hri ≤ c1/2ri,

since otherewise we get a contradiction. On the other hand if di(fix
2, fix

3) ≤ di(fix1, fix2)
then

di(fix
2, fix

3) ≤ c−1/2 max

{
n∑

k=1

aikdk(fkx
1, fkx

2), bdi(fix
1, fix

2)

}
≤ c−1/2 max{hri, bri} = c1/2ri, wherein c = max{h, b}.
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Again from (3.3), we have

di(fix
3, fix

4) ≤ c−1/2 max

{
n∑

k=1

aikdk(fkx
2, fkx

3), bmax
{
di(fix

2, fix
3), di(fix

3, fix
4)
}}

≤ c−1/2 max

{
n∑

k=1

aikc
1/2rk, bmax

{
c1/2ri, di(fix

3, fix
4)
}}

,

and arguing same as before this implies

di(fix
3, fix

4) ≤ c2/2ri.

Inductively

di(fix
m+1, fix

m+2) ≤ cm/2ri.

So each {fixm} is a Cauchy sequence in Xi, i = 1, . . . , n and Xi is a complete metric

space. Therefore there exist a point ti (say) in Xi such that the sequence {fixm}
converges to ti.

Since fix
m+1 ∈ Tixm, it follows that the sequence {Tixm} is also Cauchy in CL(Xi), i =

1, . . . , n. So there exists Mi in CL(Xi) such that {Tixm} converges to Mi for each

i = 1, . . . , n. Thus

Di(ti,Mi) ≤ di(ti, fixm+1) +Di(fix
m+1,Mi)

< di(ti, fix
m+1) +Hi(Tix

m,Mi)→ 0,

as m→∞. This gives ti ∈Mi, i = 1, . . . , n.

If systems (T1, . . . , Tn) and (f1, . . . , fn) are coordinatewise weakly reciprocally contin-

uous then fi(T1x, . . . , Tnx) ∈ CL(Xi) for each x ∈ X and lim
m→∞

fi(T1x
m, . . . , Tnx

m) =

fiM or lim
m→∞

Ti(f1x
m, . . . , fnx

m) = Tit, i = 1, . . . , n, .

Case (I): Let us suppose that lim
m→∞

fi(T1x
m, . . . , Tnx

m) = fiM, i = 1, . . . , n then coor-

dinatewise asymptotic commutativity of systems of maps (T1, . . . , Tn) and (f1, . . . , fn)

gives

Hi(Ti(f1x
m, . . . , fnx

m), fi(T1x
m, . . . , Tnx

m))→ 0, as m→∞,

that is

lim
m→∞

Ti(f1x
m, . . . , fnx

m) = lim
m→∞

fi(T1x
m, . . . , Tnx

m) = fiM. (3.5)

Since
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fix
m+1 ∈ Tixm

therefore

fi(f1x
m+1, . . . , fnx

m+1) ∈ fi(T1xm, . . . , Tnxm)

and

lim
m→∞

fi(f1x
m+1, . . . , fnx

m+1) = zi (say) ∈ fiM. (3.6)

Now as zi ∈ fiM , there exists a point v ∈ X such that

fiv = zi, i = 1, . . . , n. (3.7)

From (3.3), with fxm+1 := (f1x
m+1, ..., fnx

m+1),

Hi(Tifx
m+1, Tiv) ≤ max


n∑

k=1

aikdk(fkfx
m+1, fkv),

bmax

{
Di(fifx

m+1, Tifx
m+1), Di(fiv, Tiv),

Di(fifx
m+1,Tiv)+Di(fiv,Tifx

m+1)
2

}
 . (3.8)

Making m→∞ and using (3.5), (3.6) and (3.7), we have

Hi(fiM,Tiv) ≤ max

{
n∑

k=1

aikdk(fkv, fkv), bmax

{
Di(fiv, fiM), Di(fiv, Tiv),

Di(fiv,Tiv)+Di(fiv,fiM)
2

} }
= bDi(fiv, Tiv) ≤ bHi(fiM,Tiv),

implies that

Hi(fiM,Tiv) = 0.

This gives fiM = Tiv, i = 1, . . . , n. As fiv ∈ fiM then

fiv ∈ Tiv, i = 1, . . . , n.

Thus the system (3.4) has a solution v = (v1, . . . , vn) in X.

Case (II) : Let us assume that lim
m→∞

Ti(f1x
m, . . . , fnx

m) = Tit, i = 1, . . . , n, then coor-

dinatewise asymptotic commutativity of systems of maps (T1, . . . , Tn) and (f1, . . . , fn)

yields

lim
m→∞

Ti(f1x
m, . . . , fnx

m) = lim
m→∞

fi(T1x
m, . . . , Tnx

m) = Tit. (3.9)

Since
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fix
m+1 ∈ Tixm

then

fi(f1x
m+1, . . . , fnx

m+1) ∈ fi(T1xm, . . . , Tnxm)

and

lim
m→∞

fi(f1x
m+1, . . . , fnx

m+1) = zi (say) ∈ Tit. (3.10)

From (3.1) and (3.10), there exists a point v ∈ X such that

fiv = zi, i = 1, . . . , n. (3.11)

By (3.3), with fxm+1 := (f1x
m+1, . . . , fnx

m+1),

Hi(Tifx
m+1, Tiv) ≤ max


n∑

k=1

aikdk(fkfx
m+1, fkv),

bmax

{
Di(fifx

m+1, Tifx
m+1), Di(fiv, Tiv),

Di(fifx
m+1,Tiv)+Di(fiv,Tifx

m+1)
2

}
 .

(3.12)

Making m→∞ and using (3.9), (3.10) and (3.11), we have

Hi(Tit, Tiv) ≤ max

{
n∑

k=1

aikdk(fkv, fkv), bmax

{
Di(fiv, Tit), Di(fiv, Tiv),

Di(fiv,Tiv)+Di(fiv,Tit)
2

} }
= bDi(fiv, Tiv) ≤ bHi(Tit, Tiv).

This gives

Hi(Tit, Tiv) = 0,

which implies

Tit = Tiv.

As fiv ∈ Tit, i = 1, . . . , n. Then by the above we have

fiv ∈ Tiv, i = 1, . . . , n.

This proves that the system (3.4) has a solution v = (v1, . . . , vn) in X. 2

If we take fix = xi, i = 1, . . . , n, in Theorem 3.1 then the following Corollary is an

immediate consequence from Theorem 3.1.



A COINCIDENCE THEOREM FOR WEAKLY RECIPROCALLY... 221

Corollary 3.1 : Let (Xi, di), i = 1, . . . , n, be complete metric spaces. If Ti : X →
CL(Xi), i = 1, . . . , n satisfy (2.1), (2.2) (2.3) and

Hi(Tix, Tiy) ≤ max
i

{
n∑

k=1

aikdk(xk, yk), bmax

{
Di(xi, Tix), Di(yi, Tiy),

Di(xi,Tiy)+Di(yi,Tix)
2

}}

for all x, y ∈ X. Then there exists a point v ∈ X such that vi ∈ Tiv, i = 1, . . . , n.

Here it is remarkable that if Ti, i = 1, . . . , n are single-valued maps in Corollary 3.1 then

v is necessarily unique. Result of Matkowski [14] may be obtained as a special case from

Corollary 3.1.

Corollary 3.2 : Let T : Y → CL(Y ) and f : Y → Y are weakly reciprocally continuous

and asymptotically commuting (or compatible) maps in a complete metric space (Y, d)

such that T (Y ) ⊂ f(Y ) and satisfying

H(Tx, Ty) ≤ kmax

{
d(fx, fy), D(fx, Tx), D(fy, Ty),

D(fx, Ty) +D(fy, Tx)

2

}
for all x, y ∈ Y . Then there exists a point v ∈ Y such that fv ∈ Tv.
Proof : Proof may be completed by putting (Y, d) = (Xi, di), T = Ti, f = fi, i = 1, . . . , n

and n = 1, k = max{a11, b} in the proof of Theorem 3.1. 2

The following is the statement of Theorem 1 of Gairola et al. [4].

Theorem 3.2 : Let T : Y → C(Y ) and f : Y → Y are weakly reciprocally continuous

and non-vacuously compatible maps of a metric space (Y, d) satisfying condition T (Y ) ⊂
f(Y ) and

H(Tx, Ty) ≤a(x, y)d(fx, fy) + b(x, y) max{d(fx, Tx), d(fy, Ty)}

+ c(x, y) [d(fx, Ty) + d(fy, Tx)]

where a, b, c are non-negative function from Y×Y → [0, 1) such that β = infx,y∈Y b(x, y) >

0, γ = infx,y∈Y c(x, y) > 0, and

supx,y∈Y [a(x, y) + b(x, y) + c(x, y)] = 1.

Then T and f have a coincidence point. Further, if fft = ft for some t ∈ C(T, f) then

f and T have a common fixed point.

Remark 3.1 :
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(i) In the proof of the above theorem authors assume that if fxn → t then ffxn → ft

as n → ∞ (see [4], page 708, line 12 from below). However it is not always true

in case, when maps f and T are weakly reciprocally continuous.

(ii) In paper [2], authors used the same technique to prove a fixed point theorem for a

hybrid pair of weak reciprocal continuous maps by employing an implicit relation

and compatibility (see [2], page 78, line 12 from below ). The following example

illustrates this concept.

Example 3.1 : Let Y = [0,∞) be usual metric space and T : Y → C(Y ), f : Y → Y

be such that

T (x) =

{
[0, x] if x ≤ 1

[2, 2 + x] if x > 1
, f(x) =

{
x if x < 1
3 if x ≥ 1

.

For x = 1, there exist a sequence xn = {1− εn} ∈ Y such that fxn → 1, Txn → [0, 1] as

n→∞ and 1 ∈ [0, 1]. We observe that fTxn → [0, 1] 6= f [0, 1] and Tfxn → [0, 1] = T1

as n → ∞. Hence pair of maps (T, f) is weakly reciprocally continuous at x = 1 but

ffxn → 1 6= f1.
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