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Abstract
In this paper, the author have considered an Water Purification system to anal-
ysis its stochastic behaviour. Supplementary variables have been used to convert
the Non-Markovian process into Markovian. Laplace transform has been utilized
to solve the mathematical model of considered system. Laplace transform of all
transition state probabilities, steady-state behaviour of the system, availability and
cost function of considered system have been obtained. A particular case has also
been computed to enhance practical utility of the model. Graphical illustration fol-
lowed by a numerical example has been appended in the end to highlight important
results of the study.

1. Introduction

In the considered system, there are four main subsystems namely, Municipality Supply

line, Tank, water purifier and Tap. The author has been taken one parallel redundant

tap to enhance systems overall performance. The first subsystem is Municipality Supply

line and it supplies water to rest three subsystems. On failure of supply of water from

Municipality Supply line, the system does not have any water so whole system fails.
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The second subsystem is Tank and it interacts with human user. It stores the water

supplied by the municipality. On failure of Tank the whole system gets failed (for

example Leakage). The third subsystem is water purifier and it purifies the water and

make it bacteria free and pure. On failure of water purifier, the whole system goes to

failed state. The fourth subsystem is tap and it receives pure water from water purifier.

In this model, there are two taps working in parallel redundancy. Therefore, on failure

of any one tap, the whole system works in reduced efficiency state. Head-of-line policy

has been adopted for repair purpose.

Since the considered system is of Non-Markovian nature [3], [4], supplementary vari-

ables have been used to make it Markovian. State-transition diagram has been shown

in fig-1. Probability considerations and limiting procedure have been used for mathe-

matical formulation of the system. This mathematical model has been solved with the

aid of Laplace transform.

2. Assumptions

The following assumptions have been associated with this model:

1. Initially, the whole system is good and operable.

2. All failures follow exponential time distribution and are S-independent.

3. All repairs follow general time distribution and are perfect.

4. Head-of-line policy has been adopted for repair purpose.

5. There are two taps working in parallel redundancy.

6. On failure of any one tap, the whole system works in degraded state.

7. Repair facilities are always available and there is no time lap between a failure and

start of repair.
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3. Nomenclature

a, b, c, g Failure rates of Tank, tap, Water purifier and
Municipality Supply line, respectively.

µi(j)(t) The first order probability that i-th failure can be
repaired in the time interval (j, j + ∆) conditioned that
it was not repaired up to the time j.

P0,0,0(f) Pr {at time t, system is all operable}.
PF,0,0(x, t)∆ Pr {at time t, system is failed due to failure of first

subsystem A.T.M.}. Elapsed repair time lies in the
interval (x, x,∆).

P−,F,0(y, t)∆/PG(m, t)∆ Pr {at time t, system is failed due to failure of water
purifier/ Municipality Supply line }. Elapsed repair time lies in
the interval y, y + ∆)/(m,m+ ∆).

P0,0,D(z, t)∆ Pr (at time t, system is degraded due to failure of
any one tap}. Elapsed repair time lies in the interval (z, z + ∆).

PG0,0,D(z, t)∆ Pr (at time t, system is failed due to failure of Municipality
Supply line while one tap has been failed already}. Elapsed
repair time for tap lies in the interval (z, z + ∆).

PF,0,D(z, t)∆/Po,F,D(z, t)∆ Pr (at time t, system is failed due to failure of tank./ Water
purifier while one tap has already been failed}. Elapsed repair
time for tap lies in the interval (z, z,∆).

P0,0,F (n, t)∆ Pr (at time t, system is failed due to failure of any two taps}.
Elapsed repair time lies in the interval (n,+∆).

Si(t) µi(t) exp{−
∫
µi(t)dt}

Di(s) 1− Si(s)/s.

4. Formulation of Mathematical Model

Probability considerations and limiting procedure [1], [5] yield the following set of

difference-differential equations, which is continuous in time and discrete in space, gov-

erning the behavior of considered system:(
d
dt + a+ 3b+ c+ g

)
P0,0,0(t) =

∫∞
0 PF,0,0()x, t)µA(x)dx+

∫∞
0 P0,F,0(y, t)µC(y)dy

+
∫∞
0 PG(m, t)µG(m)dm+

∫∞
0 P0,0,D(z, t)µB(z)dz

(1)(
∂

∂x
+
∂

∂t
+ µA(x)

)
PF,0,0(x, , t) = 0 (2)

(
∂

∂y
+
∂

∂t
+ µC(y)

)
P0,F,0(y, t) = 0 (3)
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(
∂

∂n
+
∂

∂t
+ µG(m)

)
PG(m, t) = 0 (4)(

∂

∂z
+
∂

∂t
+ +a+ 2b+ c+ g + µB(z)

)
P0,0,D(z, t) = 0 (5)(

∂

∂z
+
∂

∂t
+ µB(z)

)
PF,0,D(z, t) = a P0,0,D(z, t) (6)(

∂

∂z
+
∂

∂t
+ µB(z)

)
P0,F,D(z, t) = c P0,0,D(z, t) (7)(

∂

∂z
+
∂

∂t
+ µB(z)

)
PG0,0,D(z, t) = g P0,0,D(z, t) (8)(

∂

∂n
+
∂

∂t
+ µ2(n)

)
P0,0,F (n, t) = 0 (9)

Boundary conditions are

PF,0,0(0, t) = a P0,0,0(t) +
∫ ∞

0
PF,0,D(z, t)µB(z)dz (10)

P0,F,0(0, t) = c P0,0,0(t) +
∫ ∞

0
P0,F,D(z, t)µB(z)dz (11)

PG(0, t) = g P0,0,0(t) +
∫ ∞

0
PG0,0,D(z, t)µB(z)dz (12)

P0,0,0(0, t) = 3b P0,0,0(t) +
∫ ∞

0
P0,0,F (n, t)µB2(n)dn (13)

PF,0,D(0, t) = 0 (14)

P0,F,D(0, t) = 0 (15)

PG0,0,D(0, t) = 0 (16)

P0,0,F (0, t) = 2b P0,0,D(t). (17)

Initial conditions are:

P0,0,0(0) = 1, otherwise all state probabilities at t = 0 are zero. (18)

5. Solution of the Model

Taking Laplace transforms of equations (1) through (17) subjected to initial conditions

(18), and then on solving them one by one [3], we obtain the following Laplace transforms

of various transition-state probabilities, depicted in fig-1:
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P 0,0,0(s) =
1

E(s)
(19)

PF,0,D(s) =
aC(s)DA(s)

E(s)
(20)

P0,F,0(s) =
cC(s)DC(s)

E(s)
(21)

PG(s) =
gC(s)DG(s)

E(s)
(22)
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P0,0,D(s) =
A(s)
E(s)

(23)

PF,0,D(s) =
aB(s)
E(s)

(24)

P0,F,D(s) =
cB(s)
E(s)

(25)

PG0,0,D(s) =
gB(s)
E(s)

(26)

P0,0,F (s) =
2b A(s)DN2(s)

E(s)
(27)

where

A(s) =
3b+DB(s+ a+ 2b+ c+ g)

1− 2bSB2(s)DB(s+ a+ 2b+ c+ g)
(28)

B(s) =
3b+ 2bA(s)SB2(s)
a+ 2b+ c+ g

[DB(s)−DB(s+ a+ 2b+ c+ g)] (29)

and

E(s) = s+ a+ 43b+ c+ g − aC(s)SA(s)− cC(s)SC(s)− gC(s)SG(s)

−b3b+ 2bA(s)SB2(s)cSB(s+ a+ 2b+ c+ g)
(31)

It is interesting to note here that

Sum of equations (19) through (27) = 1
s . (32)

6. Steady-state Behaviour of the System

By employing final value theorem on L.T., viz., lim
t→∞

P (t) = lim
s→0

P (s) = P (say), pro-

vided limit on left exits; to equations (19) through (27), we compute [2] the following

steady-state behaviour of considered system:

P0,0,0 =
1

E(0)
(33)

PF,0,0 =
aC(0)MA

E(0)
(34)

P0,F,0 =
cC(0)MC

E(0)
(35)

PG =
gC(0)MG

E(0)
(36)
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P0,0,D =
A(0)
E(0)

(37)

PF,0,D =
aB(0)
E(0)

(38)

P0,F,D =
cB(0)
E(0)

(39)

PG0,0,D =
gB(0)
E(0)

(40)

P0,0,F =
2bA(0)MB2

E(0)
(41)

where Mi = −S′i(0) = Mean time to repair subsystem i E(0) =
⌊
d
dsE(s)

⌋
s=0

A(0) =
3bDB(a+ 2b+ c+ g)

1− 2bDB(a+ 2b+ c+ g)
(42)

B(0) =
3b+ 2bA(0)
a+ 2b+ c+ g

[DB(0)−DB(a+ 2b+ c+ g)] (43)

C(0) = 1 +
3b+ 2bA(0)
a+ 2b+ c+ g

[1− SB(a+ 2b+ c+ g)] (44)

7. Particular Case

When all repairs follow exponential time distribution

In this case, setting Si(j) = µi

(j+µi)
, ∀ i and j, in equations (19) through (27), we

obtained the following L. T. of various transition-states depicted in fig-1:

P0,0,0(s) =
1

E1(s)
(45)

PF,0,0(s) =
aC1(s)

E1(s)(s+ µA)
(46)

P0,F,0(s) =
cC1(s)

E1(s)(s+ µC)
(47)

PG(s) =
gC1(s)

E1(s)(s+ µG)
(48)

P0,0,D(s) =
A1(s)
E1(s)

(49)

PF,0,D(s) =
aB1(s)
E1(s)

(50)
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P0,F,D(s) =
cB1(s)
E1(s)

(51)

PG0,0,D(s) =
gB1(s)
E1(s)

(52)

P0,0,F (s) =
2bA1(s)

E1(s)(s+ µB2)
(53)

where

A(s) =
3b(s+ µB2)

s2 + s(a+ 2b+ c+ g + µB + µB2) + µB2(a+ c+ g + µB)
(54)

B(s) =
3b(s+ µB2) + 2bA1(s)µB2

(s+ µB)(s+ µB2)(s+ a+ 2b+ c+ g + µB)
(55)

C1(s) = 1 +B1(s)µB (56)

and
E1(s) = s+ a+ 3b+ c+ g − aC1(s)µA

s+µA
− cC1(s)µC

s+µC
− gC1(s)µG

s+µG

−
⌊
3b+ 2bA1(s) µB2

s+µB2

⌋
µB

s+a+2c+c+g+µB

(57)

8. Availability of the System

Availability [3] of considered system is given by

Pup(s) =
1

s+A

⌊
1 +

3b
s+ (A− b)

⌋
where A = a+ 3b+ c+ g.

Taking inverse Laplace transform, we get

Pup(t) = 3 exp{−(A− b)t} − 2 exp{−At} (58)

Also

Pdown(t) = 1− Pup(t). (59)

9. Cost Function for the Considered System

Cost function G(t) is given by

G(t) = C1

∫ t

0
Pup(t)dt− C2t− C3 (60)
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where C1 and C2 are revenue and repair costs per unit up time, respectively and C3 is

system establishment cost per cycle. Also,

∫ t

0
Pup(t)dt =

2(e−At − 1)
A

− 3(e−(A−b)t − 1)
(A− b)

(61)

where A = a+ 3b+ c+ g.

10. Numerical Illustration

For a numerical illustration, let us consider the values:

a = 0.08, b = 0.002, c = 0.004, g = 0.06, C1 = Rs5.00, C2 = Rs2.00, C3 = Rs.10.00 and

t = 0, 1, 2, · · · , 10.

Using these values in equations (58) and (60), we have computed the tables (1) and (2),

respectively. The corresponding graphs have been shown in fig-2 and 3, respectively.

11. Results and Discussion

We have given the availability of considered system, for various values of time t, in

Table-1. Its graph has been shown in fig-2. Critical examination of fig-2 reveals that

availability of the system decreases in a constant manner approximately. It should be

noted that there are no sudden jumps in the values of availability of considered sys-

tem. Table-2 gives the values of cost function at various t and for three sets of costs

C1, C2, C3. Its graph has been sketched in fig-3. In this graph, we observe that the cost

function is negative in the beginning. This is because we have to invest a big amount

C3 to establish the system as a new. After that we recover this C3 be C1 slowly and

value of cost function increases constantly. Also, we observe that value of G(t)remains

better for the third set of C1, C2, C3 (i.e. G3(t).
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Table-1

t Pup(t)
0 1
1 0.865877
2 0.749726
3 0.64914
4 0.562036
5 0.486609
6 0.421294
7 0.364738
8 0.315768
9 0.273366
10 0.236653

Table 2

t G(t)
G1(t) G2(t) G3(t)

C1 = 5, C2 = 2, C3 − 6 C1 = 5, C2 = 1, C3 = 5 C1 = 6, C2 = 1, C3 = 5
0 -6 -5 -5
1 -3.34334 -1.34334 -0.41201
2 -1.31129 1.688705 3.426446
3 0.179841 4.179841 6.615809
4 1.202559 6.202559 9.246071
5 1.819648 7.819648 11.38358
6 2.085489 9.085489 13.10259
7 2.047179 10.04718 14.45661
8 1.745507 10.74551 15.49461
9 1.215798 11.2158 16.25896
10 0.488641 11.48864 16.78637
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