International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 11 No. III (December, 2017), pp. 237-243

SUPER STOLARSKY-3 MEAN LABELING OF TRIANGULAR SNAKE GRAPHS

S. S. SANDHYA ${ }^{1}$, E. EBIN RAJA MERLY ${ }^{2}$ AND S. KAVITHA ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai-629003, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamilnadu, India
${ }^{3}$ Department of Mathematics, Holy Cross College, Nagercoil- 629 004, Tamilnadu, India

$$
\begin{aligned}
& \text { Abstract } \\
& \text { Let } G=(V, E) \text { be a graph with } p \text { vertices and } q \text { edges. Let } \mathbf{f}: V(G) \rightarrow \\
& \{1,2, \cdots, p+q\} \text { be an injective function. For a vertex labeling } \mathbf{f} \text {, the induced edge } \\
& \text { labeling } \mathbf{f}^{*}(e=u v) \text { is defined by } \\
& \mathbf{f}^{*}(e)=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil \text { (or) }\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor
\end{aligned}
$$

Then \mathbf{f} is called a Super Stolarsky-3 Mean labeling if $f(V(G)) \cup\{f(e) / e \in E(G)\}=$ $\{1,2, \cdots, p+q\}$. A graph which admits Super Stolarsky-3 Mean labeling is called Super Stolarsky-3 Mean graphs.
In this paper, we investigate Super Stolarsky-3 Mean labeling of Triangular Snake Graphs.

Key Words : Graphs, Super Stolarsky-3 mean labeling, Path, Triangular snake graph, Double triangular snake graph, Triple triangular snake graph and Four triangular snake graph.

UGC approved journal (Sl No. 48305)

1. Introduction

All graphs $G=(V, E)$ with p vertices and q edges are finite, simple and undirected. For a detailed survey of graph labeling we refer Gallian(2017) [1]. For all other standard terminologies and notations we follow Harary [2]. S. Somasundaram and R. Ponraj introduced the concept of " Mean Labeling of Graphs" in 2004 [3] and S. Somasundaram and S. S. Sandhya introduced the concept of "Harmonic Mean Labeling of graphs" in [4]. S. S. Sandhya, E. Ebin Raja Merly and S. Kavitha introduced a new type of Labeling called "Stolarsky-3 Mean Labeling of Graphs" in [5]. In this paper we prove that Double Triangular Snake, Triple Triangular Snake, Four Triangular Snake graphs are Super Stolarsky-3 Mean labeling of graphs.

The following definitions and Theorems are useful for our present investigation.
A walk in which all the vertices $u_{1}, u_{2}, \cdots, u_{n}$ are distinct is called a path. It is denoted by P_{n}. A Triangular Snake T_{n} is obtained from a path $u_{1}, u_{2}, \cdots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq n-1$. That is, every edge of a path is replaced by a triangle C_{3}. Double Triangular Snake $D\left(T_{n}\right)$ consists of two Triangular snakes that have a common path. Triple Triangular Snake $T\left(T_{n}\right)$ consists of three Triangular snakes that have a common path. Four Triangular Snake $F\left(T_{n}\right)$ consists of four Triangular snakes that have a common path.
Definition 1.1 : Let $G=(V, E)$ be a graph with p vertices and q edges. Let \mathbf{f} : $V(G) \rightarrow\{1,2, \cdots, p+q\}$ be an injective function. For a vertex labeling f, the induced edge labeling $f^{*}(e=u v)$ is defined by

$$
f^{*}(e)=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil \text { (or) }\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor
$$

Then f is called a Super Stolarsky-3 Mean labeling if $f(V(G)) \cup\{f(e) / e \in E(G)\}=$ $\{1,2, \cdots, p+q\}$. A graph which admits Super Stolarsky-3 Mean labeling is called Super Stolarsky-3 Mean graphs.
Theorem 1.2 [6]: Triangular Snake graph $\left(T_{n}\right)$ is Super Stolarsky-3 Mean graph.

2. Main Results

Theorem 2.1: Double Triangular Snake $D\left(T_{n}\right)$ is Super Stolarsky-3 Mean graph.
Proof: Consider a path $u_{1}, u_{2}, \cdots, u_{n}$.
Join $u_{i} u_{i+1}$ to two new vertices v_{i} and $w_{i} 1 \leq i \leq n-1$.

Define a function $f: V\left(D\left(T_{n}\right)\right) \rightarrow\{1,2, \cdots, p+q\}$ by

$$
\begin{aligned}
\mathbf{f}\left(u_{i}\right) & =8 i-7, \quad 1 \leq i \leq n \\
\mathbf{f}\left(v_{i}\right) & =8 i-4, \quad 1 \leq i \leq n-1 \\
\mathbf{f}\left(w_{i}\right) & =8 i-2, \quad 1 \leq i \leq n-1
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
\mathbf{f}\left(u_{i} u_{i+1}\right) & =8 i-3,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} v_{i}\right) & =8 i-6,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} w_{i}\right) & =8 i-5,1 \leq i \leq n-1 \\
\mathbf{f}\left(v_{i} u_{i+1}\right) & =8 i-1,1 \leq i \leq n-1 \\
\mathbf{f}\left(w_{i} u_{i+1}\right) & =8 i, 1 \leq i \leq n-1
\end{aligned}
$$

Then the edge labels are distinct.
Hence $D\left(T_{n}\right)$ is Super Stolarsky-3 Mean graph.
Example 2.2: The Super Stolarsky-3 Mean labeling of $D\left(T_{4}\right)$ is given below.

Figure:1

Theorem 2.3: Triple Triangular Snake $T\left(T_{n}\right)$ is Super Stolarsky-3 Mean graph.
Proof: Let P_{n} be a path $u_{1}, u_{2}, \cdots, u_{n}$.
Join $u_{i} u_{i+1}$ to three new vertices v_{i}, w_{i} and $x_{i} 1 \leq i \leq n-1$.

Define a function $\mathbf{f}: V\left(T\left(T_{n}\right)\right) \rightarrow\{1,2, \cdots, p+q\}$ by

$$
\begin{aligned}
\mathbf{f}\left(u_{i}\right) & =11 i-10, \quad 1 \leq i \leq n \\
\mathbf{f}\left(v_{i}\right) & =11 i-7, \quad 1 \leq i \leq n-1 \\
\mathbf{f}\left(w_{i}\right) & =11 i-5, \quad 1 \leq i \leq n-1 \\
\mathbf{f}\left(x_{i}\right) & =11 i-3, \quad 1 \leq i \leq n-1
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
\mathbf{f}\left(u_{i} u_{i+1}\right) & =11 i-4,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} v_{i}\right) & =11 i-9,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} w_{i}\right) & =11 i-8,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} x_{i}\right) & =11 i-6,1 \leq i \leq n-1 \\
\mathbf{f}\left(v_{i} u_{i+1}\right) & =11 i-2,1 \leq i \leq n-1 \\
\mathbf{f}\left(w_{i} u_{i+1}\right) & =11 i-1,1 \leq i \leq n-1 \\
\mathbf{f}\left(x_{i} u_{i+1}\right) & =11 i, 1 \leq i \leq n-1 .
\end{aligned}
$$

Then the edge labels are distinct.
Hence $T\left(T_{n}\right)$ is Stolarsky-3 Mean graph.
Example 2.4: The Super Stolarsky-3 Mean labeling of $T\left(T_{4}\right)$ is given below.

Figure: 2

Theorem 2.5 : Four Triangular Snake $F\left(T_{n}\right)$ is Super Stolarsky-3 Mean graph.
Proof : Let P_{n} be a path $u_{1}, u_{2}, \cdots, u_{n}$.
Join $u_{i} u_{i+1}$ to four new vertices v_{i}, w_{i}, x_{i} and $y_{i} 1 \leq i \leq n-1$.
Define a function $\mathbf{f}: V\left(F\left(T_{n}\right)\right) \rightarrow\{1,2, \cdots, p+q\}$ by

$$
\begin{aligned}
\mathbf{f}\left(u_{i}\right) & =14 i-13, \quad 1 \leq i \leq n \\
\mathbf{f}\left(v_{i}\right) & =14 i-10, \quad 1 \leq i \leq n-1 \\
\mathbf{f}\left(w_{i}\right) & =14 i-9, \quad 1 \leq i \leq n-1 \\
\mathbf{f}\left(x_{i}\right) & =14 i-5, \quad 1 \leq i \leq n-1 \\
\mathbf{f}\left(y_{i}\right) & =14 i-1, \quad 1 \leq i \leq n-1
\end{aligned}
$$

Then the edges are labeled with

$$
\begin{aligned}
\mathbf{f}\left(u_{i} u_{i+1}\right) & =14 i-6,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} v_{i}\right) & =14 i-12,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} w_{i}\right) & =14 i-11,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} x_{i}\right) & =14 i-8,1 \leq i \leq n-1 \\
\mathbf{f}\left(u_{i} y_{i}\right) & =14 i-7,1 \leq i \leq n-1 \\
\mathbf{f}\left(v_{i} u_{i+1}\right) & =14 i-4,1 \leq i \leq n-1 \\
\mathbf{f}\left(w_{i} u_{i+1}\right) & =14 i-3,1 \leq i \leq n-1 \\
\mathbf{f}\left(x_{i} u_{i+1}\right) & =14 i-2,1 \leq i \leq n-1 \\
\mathbf{f}\left(y_{i} u_{i+1}\right) & =14 i, 1 \leq i \leq n-1
\end{aligned}
$$

Then the edge labels are distinct.
Hence $F\left(T_{n}\right)$ is Stolarsky-3 Mean graph.
Example 2.6 : The Super Stolarsky-3 Mean labeling of $F\left(T_{4}\right)$ is given below.

Figure: 3

3. Conclusion

In this paper, we discussed Super Stolarsky-3 Mean Labeling behavior of Double, Triple and Four Triangular Snake graphs. The authors are of the opinion that the study of Super Stolarsky-3 Mean labeling of Triangular Snake graphs shall be quite interesting and also will lead to newer results.

Acknowledgement

The authors are thankful to the referee for their valuable comments and suggestions.

References

[1] Gallian J. A., A dynamic survey of graph labeling, The electronic Journal of Combinatories, 17 (2017), \#DS6.
[2] Harary F., Graph Theory, Narosa Puplishing House Reading, New Delhi, (1988).
[3] Somasundram S. and Ponraj R.,Mean Labeling of Graph, National Academy of Science Letters, 26 (2003), 210-213.
[4] Somasundram S., Ponraj R. and Sandhya S. S., Harmonic mean labeling of graphs, communicated to Journal of Combinatorial Mathematics and combinational computing.
[5] Sandhya S. S., Ebin Raja Merly E. and Kavitha S., Stolarsky-3 mean labeling of graphs, Communicated to Journal of discrete Mathematical Sciences and Cryptography.
[6] Sandhya S. S., Ebin Raja Merly E. and Kavitha S., Super Stolarsky-3 mean labeling of some path related graphs, Communicated to International Journal of Mathematical combinatorics.
[7] Sandhya S. S., Ebin Raja Merly E. and Kavitha S., Stolarsky-3 mean labeling of some special graphs, Communicated to Global Journal of Pure and Applied Mathematics.
[8] Sandhya S. S., Ebin Raja Merly E. and Kavitha S., Some new results on super Stolarsky-3 meanlLabeling, Communicated to International Journal of Mathematics Research.

