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Abstract

In this work, the orthogonal Laurent polynomials on the real line for the three finite
classes of classical orthogonal polynomials are discussed by finding series solution,
three term recurrence relations and orthogonality relations explicitly. The two and
three point weighted quadrature rules are calculated with respect to some strong
weight function for the defined classes.

1. Introduction

The study of “Strong Stieltjes moment problem” was initiated by Jones, Thron and

Waadeland [?] in 1980 in which orthogonal Laurent polynomial sequence (OLPS) were

used. For interesting results on OLPS, we refer to [2, 8] and references therein. The

strong moment problem related to the theory of OLPS is similar to the classical moment
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problem related to the theory of orthogonal polynomials sequences (OPS). Note that

many results of OPS can be extended to the results of OLPS, whereas results that are

true for OLPS need not be true for OPS [2].

Classical orthogonal polynomials sequences arise as a polynomial solution of the second

order differential equation

A(x)y′′n +B(x)y′n − λnyn(x) = 0,

where A(x) is at most quadratic polynomials and B(x) is a linear polynomials and λn

is the eigenvalue parameter depending on n = 0, 1, 2, · · · .
Hagler [6, 7] had shown the precise connection between orthogonal polynomials and

orthogonal Laurent polynomials by calculating OLPS on the real line R from the well

known classical OPS namely Jacobi, Laguerre and Hermite.

These three classical OPS may be called as infinite class of classical OPS, since the recent

investigation of Masjed-jamei [11] on three other classes of orthogonal polynomials that

are due to Romanovski [16] which are finite in nature, in the sense that their parameters

yielding finite number of polynomials satisfying orthogonality. These finite polynomials

were initially identified by Routh [17] and by Romanovski [16] before studied extensively

by Masjedjamei [11] in the recent past. For details on these polynomials see [11, 12,

14] and references therein. Basic information of these six classes of classical OPS are

tabulated in Table 1 for immediate reference.

Note that these polynomials are less known in the literature but in recent years several

problems ranging from super symmetric quantum mechanics over soliton physics to field

theory have been solved in terms of these finite orthogonal polynomials [1, 3]. In this

work, we find the orthogonal Laurent polynomials for the three finite classical OPS.
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Table 1 : Outline of all the six classical orthogonal polynomials

COPS Properties: Classification, weight function and orthogonality interval

Polynomial A(x) B(x) Weight function Interval

Jacobi 1− x2 −(α + β + 2)x +
(β − α)

(1 − x)α(1 + x)β α, β >
−1;

[−1, 1]

Infinite Laguerre x α+ 1− x xαe−x; α > −1 [0,∞)

Hermite 1 −2x e−x
2

(−∞,∞)

R-Jacobi x2 + x (2− p)x+ (1 + q) xq(1 + x)−(p+q) [0,∞)

Finite R-Bessel x2 (2− p)x+ 1 x−pe−1/x [0,∞)

R-Pseudo
Jacobi

(ax+b)2 +
(cx+ d)2

2(1 − p)(a2 +
c2)x+q(ad−bc)+
2(1− p)(ab+ cd)

(
(ax+ b)2 + (cx+ d)2

)−p
(−∞,∞)

Definition 1.1 [2] : A Laurent polynomial (L-polynomial) is a function of the form

R(x) = Σn
j=mrjx

j where x is non zero real variable and m,n ∈ Z with m ≤ n, rj ∈ C.

The set of all L-polynomials are denoted by Rm,n that are contained in the span of

{xj}nj=m. Two important classes of L-polynomials are

R2n = {R ∈ R−n,n : the coefficient of xn is non zero}

R2n+1 = {R ∈ R−n−1,n : the coefficient of x−n−1 is non zero}

for all n ∈ Z+
0 .

Definition 1.2 [2] : A sequence of polynomials {Rn}∞n=0 is said to be OLPS with respect

to a strong moment distribution function in the following determinantal representation

for ∀ m = 0, 1, 2, 3. · · ·

R2m(x) =
1

H−2m2m

∣∣∣∣∣∣∣∣∣∣∣

µ−2m µ−2m+1 · · · µ−1 x−m

µ−2m+1 µ−2m+2 · · · µ0 x−m+1

...
...

...
µ−1 µ0 · · · µ2m−2 xm−1

µ0 µ1 · · · µ2m−1 xm

∣∣∣∣∣∣∣∣∣∣∣
,

R2m+1(x) =
−1

H−2m2m+1

∣∣∣∣∣∣∣∣∣∣∣

µ−2m−1 µ−2m · · · µ−1 x−m−1

µ−2m µ−2m+1 · · · µ0 x−m

...
...

...
µ−1 µ0 · · · µ2m−1 xm−1

µ0 µ1 · · · µ2m xm

∣∣∣∣∣∣∣∣∣∣∣
,
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where Hankel determinants Hm
k satisfying Hm

k > 0 ∀ m = 0,±1,±2, · · · , k = 1, 2, 3, · · ·
associated the moment sequences {µk} are defined as

Hm
0 = 1, and Hm

k = det(µm+i+j)
k−1
i,j=0.

Using the above representation, orthogonality of OLPS can be characterized as

〈R2m(x), xk〉 = 0 for k = −m,−m+ 1, · · · ,m− 1,

〈R2m+1(x), xk〉 = 0 for k = −m,−m+ 1, · · · ,m,

‖R2m‖2 = 〈R2m(x), xm〉 =
H

(−2m)
2m+1

H
(−2m)
2m

> 0,

‖R2m+1‖2 = 〈R2m+1(x), x−m−1〉 =
H

(−2m−2)
2m+2

H
(−2m)
2m+1

> 0.

In the sequel, we use the notation ψ as the moment distribution function (MDF) for

the monic OPS with spectrum σ(ψ) and ψ̃ as the strong moment distribution function

(SMDF) for the monic OLPS with spectrum σ(ψ̃).

The contents of this work are as follows. In Section 2, corresponding OLPS for the three

finite class of classical OPS are obtained. Gaussian quadrature rules with respect to the

strong weight function are given in Section 3.

2. Finite Laurent Orthogonal Polynomials

In this section, we consider the three finite classes of classical OPS given in Table 1 [11,

12] and use the transformation formulae given in [6] and obtain properties of three finite

orthogonal Laurent polynomials (FOLP). Further, for the class of polynomials M
(p,q)
n (x)

or N
(p)
n (x) or J

(p,q)
n (x; a, b, c, d), we denote the monic form, respectively, as M̂

(p,q)
n (x)

or N̂
(p)
n (x) or Ĵ

(p,q)
n (x; a, b, c, d) and the corresponding monic Laurent polynomials as

M̃
(p,q)
n (x) or Ñ

(p)
n (x) or J̃

(p,q)
n (x; a, b, c, d), respectively.

2.1 Romanovski Jacobi Polynomials

Romanovski Jacobi MDF [11] ψ(p,q) is given by

dψ(p,q)

dx
=

{
xq

(1+x)p+q
if x ∈ [0,∞);

0 otherwise.
(2.1)

Applying the transformation υ(x) = 1
λ

(
x− γ

x

)
[[6], p. 24, Theroem 2.3.1] to a MDF

(??) results in an SMDF for each choice of λ > 0 and γ > 0. The spectrum σ(ψ̃) can
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be calculated as

σ(ψ̃) = v−1+ (σ(ψ)) ∪ v−1− (σ(ψ))

= v−1− ([0,∞)) ∪ v−1+ ([0,∞))

= (−√γ, 0) ∪ (
√
γ,∞),

where

υ−1± (y) =
λ

2

(
y ±

√
y2 +

4γ

λ2

)
.

To find Romanovski Jacobi SMDF ψ̃(p,q), we use the fact that dψ̃
dx = w(υ(x)) with

w(x) = dψ
dx , such that

dψ̃(p,q)

dx
=

{
[ 1
λ
(x− γ

x
)]q

[1+ 1
λ
(x− γ

x
)]p+q

if x ∈ (−√γ, 0) ∪ (
√
γ,∞),

0 if x ∈ (−∞,−√γ] ∪ (0,
√
γ],

is an SMDF for each choice of the parameters λ and γ.

From the explicit representation of M
(p,q)
n (x) given in [[11], p. 171, (2.2)], the

corresponding result for M̂
(p,q)
n (x) with parameters p > 2N + 1 and q > −1, where

N = max{m,n} can be rewritten as

M̂ (p,q)
n (x) = (−1)n

(
p− (n+ 1)

n

)−1 n∑
k=0

(
p− (n+ 1)

k

)(
q + n

n− k

)
(−x)k. (2.2)

The explicit representation for M̃
(p,q)
n (x) can be obtained by using the fact that P̃2n(x) =

λnPn(υ(x)) and P̃2n+1(x) = (λγ )n 1
xPn(υ(x)) together with (??) as

M̃
(p,q)
2n (x) = (−λ)n

(
p− (n+ 1)

n

)−1
n∑
k=0

(−1)k

(λ)kxk

(
p− (n+ 1)

k

)(
q + n

n− k

)
(x2 − γ)k,

and

M̃
(p,q)
2n+1(x) =

(
λ

γ

)n(p− (n+ 1)

n

)−1
n∑
k=0

(−1)k

λkxk+1

(
p− (n+ 1)

k

)(
q + n

n− k

)
(x2 − γ)k,
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for n = 0, 1, 2, 3, · · · .
From the orthogonality for M

(p,q)
n (x) given in [[11], p. 173, (2.14)], the corresponding

orthogonality relation for M̂
(p,q)
n (x) can be written as

〈M̂ (p,q)
m (x), M̂ (p,q)

n (x)〉(p,q)ψ =

(
p− (n+ 1)

n

)−1
B(q + n+ 1, p− 2n− 1)δmn (2.3)

where B(α, β) denote the Beta function.

Using [[6], Theroem 2.2.8], the orthogonality relation for M̃
(p,q)
n (x) can be obtained as

〈M̃ (p,q)
m (x), M̃ (p,q)

n (x)〉
ψ̃(p,q) = Knδmn,

where

Kn =

{
λ2n+1

(
p−(n+1)

n

)−1
B(q + n+ 1, p− 2n− 1), if n is even,

(λγ )2n+1
(
p−(n+1)

n

)−1
B(q + n+ 1, p− 2n− 1), if n is odd.

To obtain the above result, we use [[6], Theroem 2.2.8] in (2.3) such that

〈M̃ (p,q)
2m (x), M̃

(p,q)
2n (x)〉

ψ̃(p,q) = λm+n+1〈M̂ (p,q)
m (x), M̂ (p,q)

n (x)〉(p,q)ψ

= λ2n+1

(
p− (n+ 1)

n

)−1
B(q + n+ 1, p− 2n− 1)δmn.

Similar result hold for odd index

〈M̃ (p,q)
2m+1(x), M̃

(p,q)
2n+1(x)〉

ψ̃(p,q) =

(
λ

µ

)m+n+1

〈M̂ (p,q)
m (x), M̂ (p,q)

n (x)〉(p,q)ψ

=

(
λ

µ

)2n+1(p− (n+ 1)

n

)−1
B(q + n+ 1, p− 2n− 1)δmn.

The fundamental recurrence formula related to M̂
(p,q)
n (x) is obtained by applying the

interrelation between M̂
(p,q)
n (x) and M

(p,q)
n (x) in [[11], p. 174, (2.19)]

M̂
(p,q)
n (x) =

(
x− p(2n− 1 + q)− 2n(n− 1)

(2n− 2− p)(2n− p)

)
M̂

(p,q)
n−1 (x)

−(n− 1)(q + n− 1)(n− 1− p− q)(n− 1− p)
(2n− 3− p)(2n− 2− p)2(2n− 1− p)

M̂
(p,q)
n−2 (x).

(2.4)

Using [[6], Theroem 3.5.2] with (2.4), we obtain that regular OLPS M̃
(p,q)
n (x) satisfy the

three term recurrence relation

M̃
(p,q)
2n (x) =

(
x− λp(2n− 1 + q)− 2n(n− 1)

(2n− 2− p)(2n− p)
− γ

x

)
M̃

(p,q)
2n−2(x)

− λ2 (n− 1)(q + n− 1)(n− 1− p− q)(n− 1− p)
(2n− 3− p)(2n− 2− p)2(2n− 1− p)

M̃
(p,q)
2n−4(x),
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M̃
(p,q)
2n+1(x) =

(
1

x
+
λ

γ

p(2n− 1 + q)− 2n(n− 1)

(2n− 2− p)(2n− p)
− 1

γ
x

)
M̃

(p,q)
2n−1(x)

− (
λ

γ
)2

(n− 1)(q + n− 1)(n− 1− p− q)(n− 1− p)
(2n− 3− p)(2n− 2− p)2(2n− 1− p)

M̃
(p,q)
2n−3(x).

2.2 Romanovski Bessel Polynomials

Romanovski Bessel MDF [11] ψ
(p)
N is given by

dψ
(p)
N

dx
=

{
x−p exp (− 1

x) if x ∈ (0,∞);
0 otherwise.

(2.5)

Applying the transformation υ(x) = 1
λ

(
x− γ

x

)
[[6], p. 24, Theroem 2.3.1], to a MDF

(2.5) results in an SMDF for each choice of λ > 0 and γ > 0. The spectrum σ(ψ̃) can

be calculated as

σ(ψ̃) = v−1+ (σ(ψ)) ∪ v−1− (σ(ψ))

= v−1− ([0,∞)) ∪ v−1+ ([0,∞))

= (−√γ, 0) ∪ (
√
γ,∞).

To find Romanovski Bessel SMDF ψ̃
(p)
N , we use the fact that dψ̃

dx = w(υ(x)) with w(x) =
dψ
dx , so that

dψ̃
(p)
N

dx
=

{
exp (− λx

x2−γ )
[
1
λ(x− γ

x)
]−p

if x ∈ (−√γ, 0) ∪ (
√
γ,∞),

0 if x ∈ (−∞,−√γ] ∪ (0,
√
γ],

is an SMDF for each choice of the parameters λ and γ.

From the explicit representation of N
(p)
n (x) given in [[11], p. 180, (4.3)], the correspond-

ing result for N̂
(p)
n (x) with parameters p > 2N + 1, where N = max{m,n} can be

rewritten as

N̂ (p)
n (x) =

(−1)n

n!

(
p− (n+ 1)

n

)−1 n∑
k=0

k!

(
p− (n+ 1)

k

)(
n

n− k

)
(−x)k. (2.6)

The explicit representation for Ñ
(p)
n (x) can be obtained by using the fact that P̃2n(x) =

λnPn(υ(x)) and P̃2n+1(x) = (λγ )n 1
xPn(υ(x)) together with (??) as

Ñ
(p)
2n (x) =

(−λ)n

n!

(
p− (n+ 1)

n

)−1
n∑
k=0

(−1)kk!

(λ)kxk

(
p− (n+ 1)

k

)(
n

n− k

)
(x2 − γ)k
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and

Ñ
(p)
2n+1(x) =

(
λ

γ

)n 1

n!

(
p− (n+ 1)

n

)−1
n∑
k=0

(−1)kk!

λkxk+1

(
p− (n+ 1)

k

)(
n

n− k

)
(x2 − γ)k

for n = 0, 1, 2, 3, · · · .
From the orthogonality for N

(p)
n (x) given in [?, p. 182, (4.17)], the corresponding

orthogonality relation for N̂
(p)
n (x) can be written as

〈N̂ (p)
m (x), N̂ (p)

n (x)〉
ψ
(p)
N

=

(
p− (n+ 1)

n

)−1
(p− (2n+ 2))!δmn. (2.7)

Using [[6], Theroem 2.2.8], the orthogonality relation for Ñ
(p)
n (x) is given by

〈Ñ (p)
m (x), Ñ (p)

n (x)〉
ψ̃
(p)
N

= Knδmn,

where

Kn =

 λ2n+1
(
p−(n+1)

n

)−1
(p− (2n+ 2))!, if n is even,(

λ
µ

)2n+1 (
p−(n+1)

n

)−1
(p− (2n+ 2))!, if n is odd.

To obtain the above result, we apply [[6], Theroem 2.2.8] to (2.7) so that

〈Ñ (p)
2m(x), Ñ

(p)
2n (x)〉

ψ̃
(p)
N

= λm+n+1〈N̂ (p)
m (x), N̂ (p)

n (x)〉
ψ
(p)
N

= λ2n+1

(
p− (n+ 1)

n

)−1
(p− (2n+ 2))!δmn.

Similar result hold for odd index

〈Ñ (p)
2m+1(x), Ñ

(p)
2n+1(x)〉

ψ̃
(p)
N

= 〈N̂ (p)
m (x), N̂ (p)

n (x)〉
ψ
(p)
N

=

(
λ

µ

)2n+1(p− (n+ 1)

n

)−1
(p− (2n+ 2))!δmn.

The fundamental recurrence formula for N̂
(p)
n (x) is obtained by applying the interrela-

tionship between N̂
(p)
n (x) and N

(p)
n (x)in [[11], p. 182, (4.19)]

N̂
(p)
n (x) =

(
x− p

(2n− 2− p)(2n− p)

)
N̂

(p)
n−1(x)

− (n− 1)(p+ 1− n)

(2n− 3− p)(2n− 2− p)2(2n− 1− p)
N̂

(p)
n−2(x).

(2.8)
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Using [[6], Theroem 3.5.2] with (2.8), we obtain that regular OLPS Ñ
(p)
n (x) satisfy the

following three term recurrence relation

Ñ
(p)
2n (x) =

(
x− λ p

(2n− 2− p)(2n− p)
− γ

x

)
Ñ

(p)
2n−2(x)

− λ2 (n− 1)(p+ 1− n)

(2n− 3− p)(2n− 2− p)2(2n− 1− p)
Ñ

(p)
2n−4(x),

Ñ
(p)
2n+1(x) =

(
1

x
+

p

(2n− 2− p)(2n− p)
− 1

γ
x

)
Ñ

(p)
2n−1(x)

− (
λ

γ
)2

(n− 1)(p+ 1− n)

(2n− 3− p)(2n− 2− p)2(2n− 1− p)
Ñ

(p)
2n−3(x).

2.3 Generalized Romanovski Hermite type Polynomials

Note that these polynomials are closely related to Jacobi polynomials and hence they

are particular case of Romanovski pseudo Jacobi polynomials. This class is introduced

in [12] and studied extensively in [14]. We call this class as generalized Romanovski

Hermite class because this class reduces to Romanovski class given in [11] as a particular

case of parameters Ĵ
(p− 1

2
,0)

n (x; 1, 0, 0, 1), which is related to the Hermite polynomials.

Generalized Romanovski Hermite MDF [12] ψ
(p)
I is given by

dψ
(p,q)
J

dx
= ((ax+ b)2 + (cx+ d)2)−p exp

(
q arctan

ax+ b

cx+ d

)
, x ∈ (−∞,∞). (2.9)

Applying the transformation υ(x) = 1
λ

(
x− γ

x

)
[[6], p. 24, Theroem 2.3.1] to a MDF

(2.9) results in an SMDF for each choice of λ > 0 and γ > 0. The spectrum σ(ψ̃) can

be calculated as

σ(ψ̃) = v−1+ (σ(ψ)) ∪ v−1− (σ(ψ))

= v−1− ([−∞,∞)) ∪ v−1+ ([−∞,∞))

= (−∞, 0) ∪ (0,∞).

To find generalized Romanovski Hermite SMDF ψ̃
(p,q)
J , we use the fact that dψ̃

dx =

w(υ(x)) with w(x) = dψ
dx , so that

dψ̃
(p,q)
J

dx
=

[(
a(x2 − γ)

λx
+ b

)2

+

(
c(x2 − γ)

λx
+ d

)2
]−p

× exp

(
q arctan

a(x2 − γ) + bλx

c(x2 − γ) + dλx

)
, x ∈ (−∞, 0) ∪ (0,∞),
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is an SMDF for each choice of the parameters λ and γ.

From the explicit representation of J
(p,q)
n (x; a, b, c, d) given in [?, p. 139, (6)], the

corresponding result for Ĵ
(p,q)
n (x; a, b, c, d) with parameters p > N + 1

2 and ad− bc 6= 0,

where N = max{m,n} can be rewritten as

Ĵ
(p,q)
n (x; a, b, c, d) = (−1)n(a2 + c2)n(n+ 1− 2p)n

n∑
k=0

(
n

k

)(
a2 + c2

(ab+ cd) + i(ad− bc)

)k
×2F1

(
k − n, p− n− iq/2; 2p− 2n; 2(ad−bc)

(ab+cd)+i(ad−bc)

)
xk,

(2.10)

in which i =
√
−1 and 2F1(.) is the well known Gaussian hypergeometric function.

The explicit representation for J̃
(p,q)
n (x; a, b, c, d) can be obtained by using the fact that

P̃2n(x) = λnPn(υ(x)) and P̃2n+1(x) = (λγ )n 1
xPn(υ(x)) together with (??) as

˜̂
J
(p,q)

2n (x; a, b, c, d) = (−1)n(a2 + c2)n(n+ 1− 2p)n

n∑
k=0

(
n

k

)(
a2 + c2

(ab+ cd) + i(ad− bc)

)k
× 2F1

(
k − n, p− n− iq/2; 2p− 2n;

2(ad− bc)
(ab+ cd) + i(ad− bc)

)
λn−k × (x− γ

x
)k,

and

˜̂
J
(p,q)

2n+1(x; a, b, c, d) =
(−1)n

γnx
(a2 + c2)n(n+ 1− 2p)n

n∑
k=0

(
n

k

)(
a2 + c2

(ab+ cd) + i(ad− bc)

)k
× 2F1

(
k − n, p− n− iq/2; 2p− 2n;

2(ad− bc)
(ab+ cd) + i(ad− bc)

)
λn−k(x− γ

x
)k,

for n = 0, 1, 2, 3, · · · .
From the orthogonality of J

(p,q)
n (x; a, b, c, d) given in [[12], p. 142, (23)], the correspond-

ing orthogonality relation for Ĵ
(p,q)
n (x; a, b, c, d) can be written as

〈Ĵ (p,q)
n (x; a, b, c, d), Ĵ

(p,q)
m (x; a, b, c, d)〉

ψ
(p,q)
J

=∫ ∞
−∞
Ĵ (p,q)
n (x; a, b, c, d)Ĵ (p,q)

m (x; a, b, c, d)((ax+ b)2 + (cx+ d)2)−pexp

(
q arctan

ax+ b

cx+ d

)
dx

=

(
22n+1−2p(ad− bc)2n−2p+1 exp(−q arctan(c/a))

(2p− 2n− 1)(a2 + c2)−p+1

n!Γ(2p− n)

Γ(p− n+ iq/2)Γ(p− n− iq/2)

)
×
(
(ab+cd)+i(ad−bc)

(a2+c2)

)2n
δmn.

(2.11)

Apply [[6], Theroem 2.2.8] to (??), the orthogonality relation for J̃
(p,q)
n (x; a, b, c, d) is

given by

〈˜̂J (p,q)

n (x; a, b, c, d),
˜̂
J
(p,q)

m (x; a, b, c, d)〉
ψ̃
(p,q)
J

= Knδmn,
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where

Kn =

{
λ2n+1 Kn if n is even,

(λγ )2n+1Kn if n is odd,

with Kn = 〈Ĵ (p,q)
n (x; a, b, c, d), Ĵ

(p,q)
m (x; a, b, c, d)〉

ψ
(p,q)
J

explicitly given as

Kn =
22n+1−2p(ad− bc)2n−2p+1 exp(−q arctan(c/a))

(2p− 2n− 1)(a2 + c2)−p+1

× n!Γ(2p− n)

Γ(p− n+ iq/2)Γ(p− n− iq/2)

(
(ab+cd)+i(ad−bc)

(a2+c2)

)2n
δnm.

(2.12)

3. Strong Gaussian Quadrature rules

Let ψ be a moment distribution function with spectrum σ(ψ). Let {Qn(x)}∞n=0 de-

note an orthogonal polynomial sequence with respect to ψ, let n be any positive index

and let xn,1, xn,2, xn,3 · · · , xn,n denote the zeros of Qn(x). There exist positive numbers

An,1, An,2, An,3, · · · , An,n such that for every polynomials f(x) of degree at most 2n− 1

, ∫
σ(ψ)

f(x)w(x)dx =
n∑
k=1

f(xn,k)A(n,k).

We will refer to the positive number An,1, An,2, An,3, · · · , An,n as the quadrature weights

and the zeros xn,1, xn,2, xn,3, · · · , xn,n as the quadrature nodes.

In general, the above quadrature rule has the highest degree of precision 2n− 1 if and

only if {xj}nj=1 are the roots of the orthogonal polynomials of degree n with respect to

the weight function w(x), see [10].

The following theorem summarizes, how the quadrature rules based on the OPS can be

extended to OLPS via the relationship between the quadrature nodes and quadrature

weights for the OPS and OLPS.

Theorem 3.1 [5] (Zeros) : Let n be a positive integer and suppose {xn,k}nk=1 are the

zeros of Pn(x) such that xn,1, xn,2, xn,3 · · · , xn,n. then the zeros of P̃2n(x) and P̃2n+1(x)

are x∗n,j = v−1∗ (xn,j), for ∗ ∈ {+,−} with 0 be a root for odd degree polynomials. and

have the ordering x−n,1 < x−n,2 < · · · < x−n,n < 0 < x+n,1 < x+n,2 < · · · < x+n,n.

Theorem 3.2 [5] (Weights) : Let {xn,j}, {x∗n,j} be the quadrature nodes given in

Theorem 3.1 and let {An,k} and {A∗n,k}, k = 1, 2, 3, · · · , n denote the corresponding

gauss quadrature weights respectively. Then An,k = v′(x∗n,k)A
∗
n,k, k = 1, 2, 3, · · · , n for

∗ ∈ {+,−}.
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Moreover, to obtain the coefficients {Aj}nj=1,one can use the following formulae

1

Aj
=

n−1∑
i=0

Q∗2i , j = 1, 2, 3, · · · , n,

where Q∗i are orthonormal polynomials of Qi(x) defined by

Q∗i =
Qi

〈Qi(x)|Qi(x)〉
1
2

.

Now, we focus on Gaussian quadrature rules [4, 5] associated with the strong moment

distribution functions for the three finite class of classical orthogonal polynomials. We

call these quadrature formulae as L-Quadrature formulae. Further, for the class of

polynomials M
(p,q)
n (x) or N

(p)
n (x) or J

(p,q)
n (x; a, b, c, d), we denote the orthonormal form,

respectively, as M̂
∗(p,q)
n (x) or N̂

∗(p)
n (x) or Ĵ

∗(p,q)
n (x; a, b, c, d).

3.1 L-Quadrature formulae for Romanovski Jacobi polynomials M̂
(p,q)
n (x)

The two term quadrature formula for M̂
(p,q)
n (x) with parameter p = 11

2 and q = 1
2 is

given in [11] as,∫ ∞
0

√
x

(1 + x)6
f(x)dx ∼= 0.0828349625f(0.3333333333) + 0.0030679615f(3),

where [15] nodes are taken as the zeros of M
( 11

2
, 1
2
)

2 (x) and weights are calculated by

1
Aj

=
1∑

k=0

(
M
∗( 15

2
, 1
2
)

k (xj)

)2

.

The respective L-quadrature formula is calculated for λ = γ = 1 as∫
σ(ψ̃)

(x− 1
x)

1
2

(1 + x− 1
x)6

f(x)dx

∼= 0.000257631f(−0.302775637) + 0.034608489f(−0.847127088)

+ 0.048226473f(1.180460421) + 0.0028103299f(3.302775637),

where nodes and weights are calculated by using Theorem 3.1 and Theorem 3.2 respec-

tively.

Table 2 : Two point Gaussian quadrature approximation with respect to

strong Romanovski Jacobi distribution for p = 11
2 , q = 1

2 .

f(x)
∫
σ(ψ̃)

f(x)dψ̃(x) L-quadrature Rel.error

e−x 0.0972432644 0.0960036004 1.2×10−2
1√

1+2x2
0.0473686842 0.0477847678 0.9×10−2

cosx 0.0368308620 0.0387377612 5.1×10−2
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The three term quadrature formula for M̂
(p,q)
n (x) with parameter p = 15

2 and q = 1
2

is given by∫ ∞
0

√
x

(1 + x)8
f(x)dx

∼= 0.04447882987f(0.1715728753) + 0.00613592315f(1.000000000)

+ 0.0000066129f(5.828427125),

where nodes are taken as the zeros of M
( 15

2
, 1
2
)

3 (x) and weights are calculated by 1
Aj

=
2∑

k=0

(
M
∗( 15

2
, 1
2
)

k (xj)

)2

.

The respective L-quadrature formula is calculated for λ = γ = 1 as∫
σ(ψ̃)

(x− 1
x)

1
2

(1 + x− 1
x)8

f(x)dx

∼= 0.0203385564f(−0.9178864736) + 0.00169592744f(−0.6180339887)

+ 0.0000001790f(−0.1667993696) + 0.0241402734f(1.0894593489)

+ 0.0044399957f(1.6180339887) + 0.0000064339f(5.9952264943),

where nodes and weights are calculated by using Theorem 3.1 and Theorem 3.2 respec-

tively.

Table 3 : Three point Gaussian quadrature approximation with respect to

strong Romanovski Jacobi distribution for p = 15
2 , q = 1

2 .

f(x)
∫
σ(ψ̃)

f(x)dψ̃(x) L-quadrature Rel.error

e−x 0.0630917762 0.06307538213 2.6×10−4
1√

1+2x2
0.0286171341 0.0286104949 2.3×10−4

cosx 0.0247564237 0.0247106749 1.8×10−3

3.2 L-Quadrature formulae for Romanovski Bessel polynomials N̂
(p)
n (x)

The two term quadrature formula for N̂
(p)
n (x) with parameter p = 6 is given in [11] as,∫ ∞

0
x−6e−

1
x f(x)dx

∼= 1.6076951545f(0.78867513459) + 22.3923048454f(0.2113248654),

where nodes are taken as the zeros of N
(6)
2 (x) and weights are calculated using [15].
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The respective L-quadrature formula is calculated for λ = γ = 1 as∫
σ(ψ̃)

(x− 1

x
)−6 exp (− x

x2 − 1
)f(x)dx

∼= 10.0196888351f(−0.8999043476) + 0.5089699932f(−0.6806052762)

+ 1.0987351613f(1.4692804108) + 12.3726160102f(1.1112292130),

where nodes and weights are calculated by using Theorem 3.1 and Theorem 3.2 respec-

tively.

Table 4 :Two point Gaussian quadrature approximation with respect to

strong Romanovski Bessel distribution for p = 6.

f(x)
∫
σ(ψ̃)

f(x)dψ̃(x) L-quadrature Rel.error

e−x 29.97824013 29.97264020 1.9×10−4
1√

1+2x2
13.6759544785 13.6760512536 7.1×10−6

cosx 12.2277659222 12.2239983818 3.1×10−4

The three term quadrature formula for N̂
(p)
n (x) with parameter p = 8 is given in [4] as,∫ ∞

0
x−8e−

1
x f(x)dx

∼= 565.2150607824f(0.1288864005) + 154.3624193336f(0.3025345782)

+ 0.4225198843f(1.0685790213),

where nodes are taken as the zeros of N
(8)
3 (x) and weights are calculated by 1

Aj
=

2∑
k=0

(
N
∗(8)
k (xj)

)2
.

The respective L-quadrature formula is calculated for λ = γ = 1 as∫
σ(ψ̃)

(x− 1

x
)−8 exp (− x

x2 − 1
)f(x)dx

∼= 264.4330961301f(−0.9376311113) + 65.63754025f(−0.8601088984)

+ 0.1117048155f(−0.5994941023) + 300.7819645987f(1.0665175118)

+ 88.7248790707f(1.1626434766) + 0.3108150687f(1.6680731236),

where nodes and weights are calculated by using Theorem 3.1 and Theorem 3.2 respec-

tively.
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Table 5 : Three point Gaussian quadrature approximation with respect to

strong Romanovski Bessel distribution for p = 8.

f(x)
∫
σ(ψ̃)

f(x)dψ̃(x) L-quadrature Rel.error

e−x 962.0045358940 962.0044006861 1.4×10−7
1√

1+2x2
413.421100013 413.4209368305 3.9×10−7

cosx 379.8926804937 379.8927829756 2.7×10−7

3.3 L-Quadrature formulae for Generalized Romanovski Hermite polynomi-

als Ĵ
(p,q)
n (x; a, b, c, d)

Consider the two term quadrature formula for Ĵ
(p,q)
n (x; a, b, c, d) with parameters p =

4, q = 1, a = d = 1, b = c = 0 is given in [?] as,∫ ∞
−∞

exp (arctanx)

(1 + x2)4
f(x)dx

∼= 0.6220884910f(−0.2109772229) + 0.4316063958f(0.7109772229),

where nodes are taken as the zeros of J
(4,1)
2 (x; 1, 0, 0, 1) and weights are calculated by

1
Aj

=
1∑

k=0

(
J
∗(4,1)
k (x; 1, 0, 0, 1)

)2
.

The respective L-quadrature formula is calculated for λ = γ = 1 as∫
σ(ψ̃)

exp (arctan(x− 1
x))

(1 + (x− 1
x)2)4

f(x)dx

∼= 0.3436748193f(−1.1110371419) + 0.1435191249f(−0.7058182022)

+ 0.2784136716f(0.9000599190) + 0.2880872708f(1.4167954251),

where nodes and weights are calculated by using Theorem 3.1 and Theorem 3.2 respec-

tively.

Table 6 : Two point Gaussian quadrature approximation with respect to

generalized strong Romanovski Hermite distribution for

p = 4, q = 1, a = d = 1, b = c = 0

f(x)
∫
σ(ψ̃)

f(x)dψ̃(x) L-quadrature Rel.error
1

1+ex 0.4910992188 0.4913335249 4.8 ×10−4

1√
1+2x2

0.5884790363 0.58674796350 2.9×10−3

cosx 0.48410953800 0.47897149960 1.1×10−2
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The three term quadrature formula for Ĵ
(p,q)
n (x; a, b, c, d) with parameter p = 4, q =

1, a = d = 1, b = c = 0 is given by∫ ∞
−∞

exp (arctanx)

(1 + x2)4
f(x)dx

∼= 0.25322550273f(−0.5229034027) + 0.7679319861f(0.3293582536)

+ 0.0325373985f(1.693545149),

where nodes are taken as the zeros of J
(4,1)
3 (x; 1, 0, 0, 1) and weights are calculated by

1
Aj

=

2∑
k=0

(
J
∗(4,1)
k (x; 1, 0, 0, 1)

)2
.

The respective L-quadrature formula is calculated for λ = γ = 1 as∫
σ(ψ̃)

exp (arctan(x− 1
x))

(1 + (x− 1
x)2)4

f(x)dx

∼= 0.158639342846f(−1.2950652616) + 0.3215751447f(−0.8487897749)

+ 0.0057555832f(−0.4635799707) + 0.0945861597f(0.7721618589)

+ 0.4463568385f(1.1781480285) + 0.0267818152f(2.1571251197),

where nodes and weights are calculated by using Theorem 3.1 and Theorem 3.2 respec-

tively.

Table 7 : Three point Gaussian quadrature approximation with respect to

generalized strong Romanovski Hermite distribution for

p = 4, q = 1, a = d = 1, b = c = 0

f(x)
∫
σ(ψ̃)

f(x)dψ̃(x) L-quadrature Rel.error
1

1+ex 0.4910992188 0.4910014528 1.9×10−4

1√
1+2x2

0.5884790363 0.5915109163 5.2×10−3

cosx 0.48410953800 0.4845999436 1.1×10−3
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