International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 11 No. III (December, 2017), pp.47-57

ON DIFFERENCE CORDIAL GRAPHS

J. DEVARAJ¹ AND M. TEFFILIA²

 ¹ Associate Professor (Rtd), Research Dept. of Mathematics, NMC College, Marthandam, India
 ² Assistant Professor, Dept. of Mathematics, WCC College, Nagercoil, India

Abstract

Let G be a (p,q) graph. Let f be a map from V(G) to $\{1, 2, \dots, p\}$. For each edge uv, assign the label |f(u) - f(v)|. f is called difference cordial labeling if f is 1-1 and $|e_f(0) - e_f(1)| \leq 1$, where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this paper we prove that vertex switching of cycle C_n , One point union of t copies of path P_n, P_n^2 , shipping graph, $H_n \odot S_3$ are difference cordial graphs.

1. Introduction

For all terminology and notations in Graph theory we follow Harary [4]. Unless mentioned or otherwise a graph in this paper shall mean a simple finite graph without isolated vertices.

Key Words : Vertex Switching graph, Square graph, Shipping graph.

²⁰¹⁰ AMS Subject Classification : 05C78.

[©] http://www.ascent-journals.com University approved journal (Sl No. 48305)

In [7] Ponraj and others defined the notion of difference cordial labeling. Consider the injective function $f: V(G) \to \{1, 2, \dots, |V(G)|\}$. This induces the map f^* on E(G) such that $f^*(uv) = |f(u) - f(v)|$. This is equal to 1 if the difference is 1 and equal to 0 otherwise. If $|e_f(0) - e_f(1)| \leq 1$ we say f is a difference cordial labeling, where $e_f(i)$ equal to number of edges labeled with i, here i = 0, 1. A graph which admits difference cordial labeling is called a difference cordial graph.

Definition 1.2: A vertex switching of a graph G is the graph obtained by taking a vertex v of G, removing all the edges incident to v and adding edges joining v to every other vertex which are not adjacent to v in G.

Theorem 1.3: A vertex switching of cycle $C_n(VSC_n)$ is difference cordial, for all $n \ge 4$.

Proof : Let G be a (p,q) graph.

 VSC_n means vertex switching of cycle C_n . It is obtained by taking a vertex a_1 of C_n removing all the edges incident with a_1 and adding edges joining a_1 to every vertex which are not adjacent to a_1 in C_n .

$$V(VSC_n) = \{a_i/1 \le i \le n\} \text{ and}$$

$$E(VSC_n) = \{(a_i a_{i+1})/2 \le i \le n-1\} \cup \{(a_1 a_j)/3 \le j \le n-1\}.$$

Then the graph VSC_n has 2n - 5 edges and n vertices. Define $f: V(G) \to \{1, 2, \dots, p\}$ as follows

$$f(a_1) = n$$

$$f(a_i) = i - 1, 2 \le i \le n$$

Then the function f induces the function f^* on $E(VSC_n)$ as follows.

$$f^*(a_i a_{i+1}) = 1, 2 \le i \le n-1$$

$$f^*(a_1 a_{i+2}) = 0, 1 \le i \le n-3.$$

Now $e_f(0) = n - 3$ and $e_f(1) = n - 2$

$$\therefore |e_f(0) - e_f(1)| \le 1.$$

Hence VSC_n is Difference cordial, for all $n \ge 4$.

Illustration 1.4 : Vertex switching of cycle C_9 is shown below.

Definition 1.5: The square G^2 of a graph G has $V(G^2) = V(G)$ with uv adjacent in G^2 , whenever $d(u, v) \leq 2$ in G.

Theorem 1.6 : P_n^2 is difference cordial, for all $n \ge 4$.

Proof : Let G be a (p,q) graph.

$$V(P_n^2) = \{ u_i / 1 \le i \le n \}.$$

$$E(P_n^2) = \{u_i u_{i+1}/1 \le i \le n-1\} \cup \{u_i u_{i+2}/1 \le i \le n-2\}.$$

 ${\cal P}_n^2$ has n vertices and 2n-3 edges.

Define $f: V(P_n^2) \to \{1, 2, \cdots, p\}$ as follows

$$f(u_i) = i, 1 \le i \le n.$$

Then the function f induces the function f^* on $E(P_n^2)$ as follows.

$$f^*(u_i u_{i+1}) = 1, 1 \le i \le n - 1$$
$$f^*(u_i u_{i+2}) = 0, 1 \le i \le n - 2.$$

Now $e_f(0) = n - 2$, $e_f(1) = n - 1$

$$\therefore |e_f(0) - e_f(1)| \le 1.$$

Hence P_n^2 is difference cordial, for all $n \ge 4$.

Illustration 1.7 : Difference cordial labeling of P_{12}^2 is shown below.

Theorem 1.8 : $P_n^{(t)}$, one point union of t copics of path P_n , where n is odd and even t is difference cordial.

Proof : Let G be a (p,q) graph.

$$E(P_n^{(t)}) = \{(vv_{i1})/1 \le i \le t\} \cup \{v_{ij}v_{i(j+1)}/1 \le i \le t, 1 \le j \le n-1\}$$
$$V(P_n^{(t)}) = \{v_{ij}/1 \le i \le t, 1 \le j \le n-1\} \cup \{v\}.$$

Then the graph $P_n^{(t)}$ has (n-1)t+1 vertices and (n-1)t edges. Define $f: V(P_n^{(t)}) \to \{1, 2, \cdots, p\}$ as follows.

$$\begin{split} f(v) &= 1\\ f(v_{1(2i)}) &= 2i, 1 \leq i \leq \frac{n-1}{2}\\ f(v_{1(2i-1)}) &= 2i+1, 1 \leq i \leq \frac{n-1}{2}\\ f(v_{(i+1)(2j)}) &= f(v_{(i)(2j)}) + (n-1), 1 \leq i \leq t-1, 1 \leq j \leq \frac{n-1}{2}\\ f(v_{(i+1)(2j-1)}) &= f(v_{(i)(2j-1)}) + (n-1), 1 \leq i \leq t-1, 1 \leq j \leq \frac{n-1}{2}. \end{split}$$

Then the function f induces the function f^* on $E(P_n^{(t)})$ as follows.

$$f^*(vv_{t1}) = 0, \forall t$$

 $f^*(v_{ti}v_{t(i+1)}) = 1, \forall t, \text{ if } i \text{ is odd.}$
 $f^*(v_{ti}v_{t(i+1)}) = 0, \forall t, \text{ if } i \text{ is even.}$

Now $e_f(0) = \left[\frac{n}{2}\right] t, e_f(1) = \left[\frac{n}{2}\right] t.$

:
$$|e_f(0) - e_f(1)| \le 1.$$

Hence $P_n^{(t)}$ is Difference cordial, where *n* is odd and even *t*. **Illustration 1.9**: Difference cordial labeling of $P_n^{(6)}$ is shown below.

Definition 1.10: Let P_n $(n \ge 6)$ and two new vertices u and v on either side of P_n . Join the vertex v to first two vertices from the left and last two vertices of P_n from the right. Join the vertex u to the remaining vertices of P_n in the middle. The resulting graph is called shipping graph and is denoted by SP_n .

Theorem 1.11 : The shipping graph SP_n is Difference cordial.

Proof : Let G be a (p,q) graph.

The vertex set of G is $V(G) = \{u, v, v_1, v_2, \cdots, v_n\}$ and the edge set of G is

$$E(G) = \{vv_1, vv_2, vv_{n-1}, vv_n\} \cup \{v_i v_{i+1}/1 \le i \le n-1\} \cup \{uv_i/3 \le i \le n-2\}.$$

Then G has n + 2 vertices and 2n - 1 edges. Define $f: V(G) \to \{1, 2, \dots, p\}$ as follows.

$$f(v_i) = i, 1 \le i \le n$$

$$f(u) = n+1$$

$$f(v) = n+2.$$

Then the function f induces the function f^* on E(G) as follows.

$$f^{*}(v_{i}v_{i+1}) = 1, 1 \le i \le n-1$$

$$f^{*}(uv_{i}) = 0, 3 \le i \le n-2$$

$$f^{*}(vv_{1}) = 0$$

$$f^{*}(vv_{2}) = 0$$

$$f^{*}(vv_{n-1}) = 0$$

$$f^{*}(vv_{n}) = 0.$$

Now $e_f(0) = n, e_f(1) = n - 1.$

:
$$|e_f(0) - e_f(1)| \le 1.$$

Hence shipping graph is Difference cordial.

Illustration 1.12 : Difference cordial SP_{10} is shown below.

Definition 1.13: Let H_n - graph of a path P_n is the graph obtained from the two copies of P_n with vertices v_1, v_2, \dots, v_n and u_1, u_2, \dots, u_n by joining the vertices $\mathbf{v}_{\frac{n+1}{2}}$ and $\mathbf{u}_{\frac{n+1}{2}}$ by means of an edge if n is odd and the vertices $\mathbf{v}_{\frac{n}{2}+1}$ and $\mathbf{u}_{\frac{n}{2}}$ if n is even.

Definition 1.14: The graph $H_n \odot S_m$ is obtained from H_n by identifying the centre vertex of the star S_m at each vertex of H_n .

Theorem 1.15 : The graph $H_n \odot S_3$ is difference cordial graph.

Proof : Let G be a (p,q) graph.

The vertex set of G is

$$V(G) = \{u_i/1 \le i \le n, v_i/1 \le i \le n\} \cup = \{u_{ij}, v_{ij}/1 \le i \le n, 1 \le j \le 3\}.$$

The edge set of G is

$$E(G) = \{u_i u_{i+1}, v_i v_{i+1} / 1 \le i \le n-1\} \cup \left\{ \mathbf{u}_{\frac{n}{2}+1} \mathbf{v}_{\frac{n}{2}+1} \text{ if } n \text{ is even} \right\}$$

or

$$\left\{\mathbf{u}_{\frac{n+1}{2}}\mathbf{v}_{\frac{n+1}{2}} \text{ if } n \text{ is odd}\right\} \cup \left\{u_i u_{ij}, v_i v_{ij}/1 \le i \le n, 1 \le j \le 3\right\}.$$

Then G has 8n vertices and 8n - 1 edges. Define $f: V(G) \to \{1, 2, \dots, p\}$ as follows.

$$\begin{aligned} f(u_i) &= 4i - 2, \quad 1 \le i \le n \\ f(u_{i1}) &= f(u_i - 1, \quad 1 \le i \le n \\ f(u_{i2}) &= f(u_i) + 2, \quad 1 \le i \le n \\ f(u_{i3}) &= f(u_i) + 1, \quad 1 \le i \le n \\ f(v_1) &= f(u_{n2}) + 2 \\ f(v_i) &= f(v_{i-1}) + 4, \quad 2 \le i \le n \\ f(v_{i1}) &= f(v_i) - 1, \quad 1 \le i \le n \\ f(v_{i2}) &= f(v_i) + 2, \quad 1 \le i \le n \\ f(v_{i3}) &= f(v_i) + 1, \quad 1 \le i \le n. \end{aligned}$$

Then the function f induces the function f^* on E(G) as follows.

$$f^{*}(u_{i}u_{i1}) = 1, \quad 1 \leq i \leq n$$

$$f^{*}(u_{i}u_{i2}) = 0, \quad 1 \leq i \leq n$$

$$f^{*}(u_{i}u_{i3}) = 1, \quad 1 \leq i \leq n$$

$$f^{*}(v_{i}v_{i1}) = 1, \quad 1 \leq i \leq n$$

$$f^{*}(v_{i}v_{i2}) = 0, \quad 1 \leq i \leq n$$

$$f^{*}(v_{i}v_{i3}) = 1, \quad 1 \leq i \leq n$$

$$f^{*}(u_{i}u_{i+1}) = 0, \quad 1 \leq i \leq n - 1$$

$$f^{*}(v_{i}v_{i+1}) = 0, \quad 1 \leq i \leq n - 1$$

$$f^{*}\left(\mathbf{u}_{\frac{n}{2}+1}\mathbf{v}_{\frac{n}{2}}\right) = 0, \quad \text{if } n \text{ is even}$$

$$f^{*}\left(\mathbf{u}_{\frac{n+1}{2}}\mathbf{v}_{\frac{n+1}{2}}\right) = 0, \quad \text{if } n \text{ is odd.}$$

Now $e_f(0) = 4n - 1, e_f(1) = 4n$.

$$\therefore |e_f(0) - e_f(1)| \le 1.$$

Hence $H_n \odot S_3$ is Difference cordial graph.

Illustration 1.16 : Difference cordial labeling of $H_4 \odot S_3$ is shown below.

Difference cordial labeling of $H_5 \odot S_3$ is shown below.

References

- Devraj J. and Delphy P. Prem, On H-Cordial graphs, IJMSEA, 5(V) (September 2011), 287-296.
- [2] Devaraj J. and Linta K. Wilson, On Arithmetic Graphs, IJMSEA, 9(III) (September 2015), 187-196.
- [3] Devaraj J. and Teffilia M., EK-Cordial graphs, IJAIR, 5(Issue 11) (November 2016).
- [4] Harary F., Graph Theory, Narosa Publishing House, (1969).
- [5] Joseph A. Gallian, A dynamic survey of Graph labeling, The Electronic Journal of Combinatorics, (2016).
- [6] Seoud Mohammed and Shakir M. Salman, Some results and examples on difference cordial graphs, Turkish Journal of Mathematics, (2016).

- [7] Ponraj R., Sathish Narayanan S. and Kala R., Difference cordial labeling of graphs, Global Journal of Mathematical Sciences, 5(3) (2013), 185-196.
- [8] Ponraj R. and Sathish Narayanan S., Difference cordial labeling of graphs obtained from triangular snakes, Appl. Appl. Math., 9(Issue 2) (2014), 811-825.
- [9] Seoud M. A. and Shakir M. Salman, On difference cordial graphs, Mathematika Aeterna, 5(1) (2015), 105-124.
- [10] Vaidya S. K. and Kothari N. J., Line gracefulness in the context of switching of a vertex, Malya Journal of Mathematik, 3(3) (2015), 233-240.