International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 11 No. III (December, 2017), pp.47-57

ON DIFFERENCE CORDIAL GRAPHS

J. DEVARAJ ${ }^{1}$ AND M. TEFFILIA ${ }^{2}$
${ }^{1}$ Associate Professor (Rtd), Research Dept. of Mathematics, NMC College, Marthandam, India
2 Assistant Professor, Dept. of Mathematics, WCC College, Nagercoil, India

Abstract

Let G be a (p, q) graph. Let f be a map from $V(G)$ to $\{1,2, \cdots, p\}$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called difference cordial labeling if f is $1-1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this paper we prove that vertex switching of cycle C_{n}, One point union of t copies of path P_{n}, P_{n}^{2}, shipping graph, $H_{n} \odot S_{3}$ are difference cordial graphs.

1. Introduction

For all terminology and notations in Graph theory we follow Harary [4]. Unless mentioned or otherwise a graph in this paper shall mean a simple finite graph without isolated vertices.

Key Words : Vertex Switching graph, Square graph, Shipping graph.
2010 AMS Subject Classification : 05C78.
(c) http: //www.ascent-journals.com University approved journal (Sl No. 48305)

In [7] Ponraj and others defined the notion of difference cordial labeling. Consider the injective function $f: V(G) \rightarrow\{1,2, \cdots,|V(G)|\}$. This induces the map f^{*} on $E(G)$ such that $f^{*}(u v)=|f(u)-f(v)|$. This is equal to 1 if the difference is 1 and equal to 0 otherwise. If $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ we say f is a difference cordial labeling, where $e_{f}(i)$ equal to number of edges labeled with i, here $i=0,1$. A graph which admits difference cordial labeling is called a difference cordial graph.
Definition 1.2: A vertex switching of a graph G is the graph obtained by taking a vertex v of G, removing all the edges incident to v and adding edges joining v to every other vertex which are not adjacent to v in G.
Theorem 1.3: A vertex switching of cycle $C_{n}\left(V S C_{n}\right)$ is difference cordial, for all $n \geq 4$.
Proof : Let G be a (p, q) graph.
$V S C_{n}$ means vertex switching of cycle C_{n}. It is obtained by taking a vertex a_{1} of C_{n} removing all the edges incident with a_{1} and adding edges joining a_{1} to every vertex which are not adjacent to a_{1} in C_{n}.

$$
\begin{aligned}
& V\left(V S C_{n}\right)=\left\{a_{i} / 1 \leq i \leq n\right\} \quad \text { and } \\
& E\left(V S C_{n}\right)=\left\{\left(a_{i} a_{i+1}\right) / 2 \leq i \leq n-1\right\} \cup\left\{\left(a_{1} a_{j}\right) / 3 \leq j \leq n-1\right\} .
\end{aligned}
$$

Then the graph $V S C_{n}$ has $2 n-5$ edges and n vertices.
Define $f: V(G) \rightarrow\{1,2, \cdots, p\}$ as follows

$$
\begin{aligned}
f\left(a_{1}\right) & =n \\
f\left(a_{i}\right) & =i-1,2 \leq i \leq n .
\end{aligned}
$$

Then the function f induces the function f^{*} on $E\left(V S C_{n}\right)$ as follows.

$$
\begin{aligned}
f^{*}\left(a_{i} a_{i+1}\right) & =1,2 \leq i \leq n-1 \\
f^{*}\left(a_{1} a_{i+2}\right) & =0,1 \leq i \leq n-3 .
\end{aligned}
$$

Now $e_{f}(0)=n-3$ and $e_{f}(1)=n-2$

$$
\therefore\left|e_{f}(0)-e_{f}(1)\right| \leq 1 .
$$

Hence $V S C_{n}$ is Difference cordial, for all $n \geq 4$.
Illustration 1.4 : Vertex switching of cycle C_{9} is shown below.

Definition 1.5: The square G^{2} of a graph G has $V\left(G^{2}\right)=V(G)$ with $u v$ adjacent in G^{2}, whenever $d(u, v) \leq 2$ in G.
Theorem 1.6: P_{n}^{2} is difference cordial, for all $n \geq 4$.
Proof : Let G be a (p, q) graph.

$$
\begin{gathered}
V\left(P_{n}^{2}\right)=\left\{u_{i} / 1 \leq i \leq n\right\} . \\
E\left(P_{n}^{2}\right)=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i+2} / 1 \leq i \leq n-2\right\} .
\end{gathered}
$$

P_{n}^{2} has n vertices and $2 n-3$ edges.
Define $f: V\left(P_{n}^{2}\right) \rightarrow\{1,2, \cdots, p\}$ as follows

$$
f\left(u_{i}\right)=i, 1 \leq i \leq n .
$$

Then the function f induces the function f^{*} on $E\left(P_{n}^{2}\right)$ as follows.

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=1,1 \leq i \leq n-1 \\
& f^{*}\left(u_{i} u_{i+2}\right)=0,1 \leq i \leq n-2 .
\end{aligned}
$$

Now $e_{f}(0)=n-2, e_{f}(1)=n-1$

$$
\therefore\left|e_{f}(0)-e_{f}(1)\right| \leq 1
$$

Hence P_{n}^{2} is difference cordial, for all $n \geq 4$.
Illustration 1.7 : Difference cordial labeling of P_{12}^{2} is shown below.

Theorem $1.8: P_{n}^{(t)}$, one point union of t copics of path P_{n}, where n is odd and even t is difference cordial.
Proof: Let G be a (p, q) graph.

$$
\begin{aligned}
& E\left(P_{n}^{(t)}\right)=\left\{\left(v v_{i 1}\right) / 1 \leq i \leq t\right\} \cup\left\{v_{i j} v_{i(j+1)} / 1 \leq i \leq t, 1 \leq j \leq n-1\right\} \\
& V\left(P_{n}^{(t)}\right)=\left\{v_{i j} / 1 \leq i \leq t, 1 \leq j \leq n-1\right\} \cup\{v\} .
\end{aligned}
$$

Then the graph $P_{n}^{(t)}$ has $(n-1) t+1$ vertices and $(n-1) t$ edges.
Define $f: V\left(P_{n}^{(t)}\right) \rightarrow\{1,2, \cdots, p\}$ as follows.

$$
\begin{aligned}
f(v) & =1 \\
f\left(v_{1(2 i)}\right) & =2 i, 1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{1(2 i-1)}\right) & =2 i+1,1 \leq i \leq \frac{n-1}{2} \\
f\left(v_{(i+1)(2 j)}\right) & =f\left(v_{(i)(2 j)}\right)+(n-1), 1 \leq i \leq t-1,1 \leq j \leq \frac{n-1}{2} \\
f\left(v_{(i+1)(2 j-1)}\right) & =f\left(v_{(i)(2 j-1)}\right)+(n-1), 1 \leq i \leq t-1,1 \leq j \leq \frac{n-1}{2} .
\end{aligned}
$$

Then the function f induces the function f^{*} on $E\left(P_{n}^{(t)}\right)$ as follows.

$$
\begin{aligned}
f^{*}\left(v v_{t 1}\right) & =0, \forall t \\
f^{*}\left(v_{t i} v_{t(i+1)}\right) & =1, \forall t, \text { if } i \text { is odd. } \\
f^{*}\left(v_{t i} v_{t(i+1)}\right) & =0, \forall t, \text { if } i \text { is even. }
\end{aligned}
$$

Now $e_{f}(0)=\left[\frac{n}{2}\right] t, e_{f}(1)=\left[\frac{n}{2}\right] t$.

$$
\therefore\left|e_{f}(0)-e_{f}(1)\right| \leq 1 .
$$

Hence $P_{n}^{(t)}$ is Difference cordial, where n is odd and even t.
Illustration 1.9 : Difference cordial labeling of $P_{n}^{(6)}$ is shown below.

Definition 1.10: Let $P_{n}(n \geq 6)$ and two new vertices u and v on either side of P_{n}. Join the vertex v to first two vertices from the left and last two vertices of P_{n} from the right. Join the vertex u to the remaining vertices of P_{n} in the middle. The resulting graph is called shipping graph and is denoted by $S P_{n}$.

Theorem 1.11: The shipping graph $S P_{n}$ is Difference cordial.
Proof : Let G be a (p, q) graph.
The vertex set of G is $V(G)=\left\{u, v, v_{1}, v_{2}, \cdots, v_{n}\right\}$ and the edge set of G is

$$
E(G)=\left\{v v_{1}, v v_{2}, v v_{n-1}, v v_{n}\right\} \cup\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u v_{i} / 3 \leq i \leq n-2\right\} .
$$

Then G has $n+2$ vertices and $2 n-1$ edges.
Define $f: V(G) \rightarrow\{1,2, \cdots, p\}$ as follows.

$$
\begin{aligned}
f\left(v_{i}\right) & =i, 1 \leq i \leq n \\
f(u) & =n+1 \\
f(v) & =n+2
\end{aligned}
$$

Then the function f induces the function f^{*} on $E(G)$ as follows.

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =1,1 \leq i \leq n-1 \\
f^{*}\left(u v_{i}\right)=0,3 \leq i \leq n-2 & \\
f^{*}\left(v v_{1}\right) & =0 \\
f^{*}\left(v v_{2}\right) & =0 \\
f^{*}\left(v v_{n-1}\right) & =0 \\
f^{*}\left(v v_{n}\right) & =0 .
\end{aligned}
$$

Now $e_{f}(0)=n, e_{f}(1)=n-1$.

$$
\therefore\left|e_{f}(0)-e_{f}(1)\right| \leq 1
$$

Hence shipping graph is Difference cordial.
Illustration 1.12 : Difference cordial $S P_{10}$ is shown below.

Definition 1.13: Let H_{n} - graph of a path P_{n} is the graph obtained from the two copies of P_{n} with vertices $v_{1}, v_{2}, \cdots, v_{n}$ and $u_{1}, u_{2}, \cdots, u_{n}$ by joining the vertices $\mathbf{v}_{\frac{n+1}{2}}$ and $\mathbf{u}_{\frac{n+1}{2}}$ by means of an edge if n is odd and the vertices $\mathbf{v}_{\frac{n}{2}+1}$ and $\mathbf{u}_{\frac{n}{2}}$ if n is even.

Definition 1.14: The graph $H_{n} \odot S_{m}$ is obtained from H_{n} by identifying the centre vertex of the star S_{m} at each vertex of H_{n}.

Theorem 1.15: The graph $H_{n} \odot S_{3}$ is difference cordial graph.
Proof: Let G be a (p, q) graph.
The vertex set of G is

$$
V(G)=\left\{u_{i} / 1 \leq i \leq n, v_{i} / 1 \leq i \leq n\right\} \cup=\left\{u_{i j}, v_{i j} / 1 \leq i \leq n, 1 \leq j \leq 3\right\} .
$$

The edge set of G is

$$
E(G)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{\mathbf{u}_{\frac{n}{2}+1} \mathbf{v}_{\frac{n}{2}+1} \text { if } n \text { is even }\right\}
$$

or

$$
\left\{\mathbf{u}_{\frac{n+1}{2}} \mathbf{V}_{\frac{n+1}{2}} \text { if } n \text { is odd }\right\} \cup\left\{u_{i} u_{i j}, v_{i} v_{i j} / 1 \leq i \leq n, 1 \leq j \leq 3\right\} .
$$

Then G has $8 n$ vertices and $8 n-1$ edges.
Define $f: V(G) \rightarrow\{1,2, \cdots, p\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =4 i-2, \quad 1 \leq i \leq n \\
f\left(u_{i 1}\right) & =f\left(u_{i}-1, \quad 1 \leq i \leq n\right. \\
f\left(u_{i 2}\right) & =f\left(u_{i}\right)+2, \quad 1 \leq i \leq n \\
f\left(u_{i 3}\right) & =f\left(u_{i}\right)+1, \quad 1 \leq i \leq n \\
f\left(v_{1}\right) & =f\left(u_{n 2}\right)+2 \\
f\left(v_{i}\right) & =f\left(v_{i-1}\right)+4, \quad 2 \leq i \leq n \\
f\left(v_{i 1}\right) & =f\left(v_{i}\right)-1, \quad 1 \leq i \leq n \\
f\left(v_{i 2}\right) & =f\left(v_{i}\right)+2, \quad 1 \leq i \leq n \\
f\left(v_{i 3}\right) & =f\left(v_{i}\right)+1, \quad 1 \leq i \leq n .
\end{aligned}
$$

Then the function f induces the function f^{*} on $E(G)$ as follows.

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i 1}\right) & =1, \quad 1 \leq i \leq n \\
f^{*}\left(u_{i} u_{i 2}\right) & =0, \quad 1 \leq i \leq n \\
f^{*}\left(u_{i} u_{i 3}\right) & =1, \quad 1 \leq i \leq n \\
f^{*}\left(v_{i} v_{i 1}\right) & =1, \quad 1 \leq i \leq n \\
f^{*}\left(v_{i} v_{i 2}\right) & =0, \quad 1 \leq i \leq n \\
f^{*}\left(v_{i} v_{i 3}\right) & =1, \quad 1 \leq i \leq n \\
f^{*}\left(u_{i} u_{i+1}\right) & =0,1 \leq i \leq n-1 \\
f^{*}\left(v_{i} v_{i+1}\right) & =0, \quad 1 \leq i \leq n-1 \\
f^{*}\left(\mathbf{u}_{\frac{n}{2}+1} \mathbf{v}_{\frac{n}{2}}\right) & =0, \quad \text { if } n \text { is even } \\
f^{*}\left(\mathbf{u}_{\frac{n+1}{2}} \mathbf{v}_{\frac{n+1}{2}}\right) & =0, \quad \text { if } n \text { is odd. }
\end{aligned}
$$

Now $e_{f}(0)=4 n-1, e_{f}(1)=4 n$.

$$
\therefore\left|e_{f}(0)-e_{f}(1)\right| \leq 1
$$

Hence $H_{n} \odot S_{3}$ is Difference cordial graph.
Illustration 1.16 : Difference cordial labeling of $H_{4} \odot S_{3}$ is shown below.

Difference cordial labeling of $H_{5} \odot S_{3}$ is shown below.

References

[1] Devraj J. and Delphy P. Prem, On H-Cordial graphs, IJMSEA, 5(V) (September 2011), 287-296.
[2] Devaraj J. and Linta K. Wilson, On Arithmetic Graphs, IJMSEA, 9(III) (September 2015), 187-196
[3] Devaraj J. and Teffilia M., EK-Cordial graphs, IJAIR, 5(Issue 11) (November 2016).
[4] Harary F., Graph Theory, Narosa Publishing House, (1969).
[5] Joseph A. Gallian, A dynamic survey of Graph labeling, The Electronic Journal of Combinatorics, (2016).
[6] Seoud Mohammed and Shakir M. Salman, Some results and examples on difference cordial graphs, Turkish Journal of Mathematics, (2016).
[7] Ponraj R., Sathish Narayanan S. and Kala R., Difference cordial labeling of graphs, Global Journal of Mathematical Sciences, 5(3) (2013), 185-196.
[8] Ponraj R. and Sathish Narayanan S., Difference cordial labeling of graphs obtained from triangular snakes, Appl. Appl. Math., 9(Issue 2) (2014), 811-825.
[9] Seoud M. A. and Shakir M. Salman, On difference cordial graphs, Mathematika Aeterna, 5(1) (2015), 105-124.
[10] Vaidya S. K. and Kothari N. J., Line gracefulness in the context of switching of a vertex, Malya Journal of Mathematik, 3(3) (2015), 233-240.

