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Abstract

Two variable hybrid Fibonacci and Lucas polynomials display many interesting
combinatorial properties which are generalizations of those of Fibonacci and Lucas
numbers [6, 7, 8]. In the present paper, both the polynomials are shown to satisfy bi-
nomial convolution identities which will be a good addition to the current literature.

1. Introduction

Binomial coefficients, Fibonacci and Lucas numbers are basic combinatorial entities [2,

3, 9, 10, 11]. Several researchers are looking for their binomial convolution identities [4,

5]. Two variable generalization of Fibonacci and Lucas variables given by two Pascal
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like tables displaying the terms (x + y)n and (x + 2y)(x + y)n are quite remarkable.

They naturally contain Fn and Ln, two kinds of Fibonacci and Lucas polynomials as

special cases . Recently these two variable generalization of Fn and Ln are studied as

two variable hybrid Fibonacci and Lucas polynomials [6, 7].

The hybrid Fibonacci and Lucas polynomials in two variables x and y of degree n, are

given by the following binet forms [2, 6, 7]:

f (H)
n (x, y) =

1√
x2 + 4y

[(x+
√
x2 + 4y

2

)n
−
(x−√x2 + 4y

2

)n]
(1.1)

l(H)
n (x, y) =

[(x+
√
x2 + 4y

2

)n
+
(x−√x2 + 4y

2

)n]
(1.2)

They satisfy the following 3 term recurrence relations :

f
(H)
n+1(x, y) = xf (H)

n (x, y) + yf
(H)
n−1(x, y), (1.3)

l
(H)
n+1(x, y) = x l(H)

n (x, y) + y l
(H)
n−1(x, y) (1.4)

and l(H)
n (x, y) = x f (H)

n (x, y) + 2y f
(H)
n−1(x, y). (1.5)

Put α =
(
x+
√
x2+4y
2

)
and β =

(
x−
√
x2+4y
2

)
. Then

f (H)
n (x, y) =

αn − βn

α− β
, l(H)

n (x, y) = αn + βn. (1.6)

Also,

α+ β = x, α− β =
√
x2 + 4y and αβ = − y. (1.7)

Hybrid Fibonacci and Lucas polynomials in two variables display many interesting com-

binatorial properties useful for research workers in combinatorics [2, 3, 9, 10, 11]. In

the next section, a Bernoulli type identity for

Bn(m,x) =
n∑
k=0

(
n

k

)
km xk

is derived which will be used in the section 3 and 4. In the ensuing section, Binomial

Convolution Identities of hybrid Fibonacci and Lucas polynomials in two variables with

a fixed power of expanding variable, km,m = 0 , 1 are stated and proved . In the last

section, Binomial Convolution Identities of hybrid Fibonacci and Lucas polynomials in
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two variables with a fixed power of expanding variable, km,m = 2 , 3 are stated and

proved.

2. A Bernoulli Type Identity

By Bernoulli identity [1] we mean

(n+ 1)m − 1 =

(
m

1

)
Sn(m− 1) +

(
m

2

)
Sn(m− 2) + · · ·+

(
m

m

)
Sn(0).

where Sn(m) = 1m + 2m + · · ·+ nm, Sn(0) = n,m = 2, 3, 4, . . . .

The derivation is quite simple. Consider

(n+ 1)m − 1 + Sn(m) =
n∑
k=1

(k + 1)m

=
n∑
k=1

[(m
0

)
km +

(
m

1

)
km−1 + · · ·+

(
m

m

)
k0
]

= Sn(m) +

(
m

1

)
Sn(m− 1) + · · ·+

(
m

m

)
Sn(0).

Hence by cancelling Sn(m) on both sides one can get Bernoulli identity [1].

Following the same idea of derivation one can also derive a Bernoulli type identity :

If Bn(0) =
n∑
k=0

(
n

k

)
= 2n , Bn(m) =

n∑
k=0

(
n

k

)
km,m = 1, 2, 3, . . . , then

1

n+ 1
Bn+1(m+ 1) =

1

n+ 1

n∑
k=1

(
n+ 1

k

)
km+1

=
1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
(k + 1)m+1

=

n∑
k=0

(
n

k

)
(k + 1)m

=

n∑
k=0

[(m
0

)
km +

(
m

1

)
km−1 + · · ·+

(
m

m

)
1
]

Hence

1

n+ 1
Bn+1(m+ 1) =

(
m

0

)
Bn(m) +

(
m

1

)
Bn(m− 1) + · · ·+

(
m

m

)
Bn(0).

where Bn(0) = 2n,m = 0, 1, 2, 3, 4, . . . .
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Table 1 : First four sums

Bn(0) 2n

Bn(1) n2n−1

Bn(2) n(3n− 1)2n−2

Bn(3) n2(n+ 3)2n−3

Let us define

Bn(0, x) =

n∑
k=0

(
n

k

)
xk = (x+ 1)n

Bn(m,x) =

n∑
k=0

(
n

k

)
kmxk

1

n+ 1
Bn+1(m+ 1, x) =

1

n+ 1

n+1∑
k=1

(
n+ 1

k

)
km+1xk

=
1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
(k + 1)m+1xk+1

= x
n∑
k=0

(
n

k

)
(k + 1)mxk

= x
[(m

0

)
Bn(m,x) +

(
m

1

)
Bn(m− 1, x) + · · ·+

(
m

m

)
Bn(0, x)

]
So, a Bernoulli type identity for

Bn(0, x) =
n∑
k=0

(
n

k

)
xk = (x+ 1)n , Bn(m,x) =

n∑
k=0

(
n

k

)
kmxk is given by

1

n+ 1
Bn+1(m+ 1, x) = x

[(m
0

)
Bn(m,x) +

(
m

1

)
Bn(m− 1, x) + · · ·+

(
m

m

)
Bn(0, x)

]
m=0,1,2,. . .

Table 2 : First four sums Bn(m,x)

Bn(0, x) (x+ 1)n

Bn(1, x) (nx)(x+ 1)n−1

Bn(2, x) (nx)(nx+ 1)(x+ 1)n−2

Bn(3, x) (nx)2(nx+ 3)(x+ 1)n−3 − (nx)(x− 1)(x+ 1)n−3
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For x = 1, we get back the Table (1) for Bn(m). The above table is very useful to

derive binomial convolution identities satisfied by f
(H)
(n) (x, y) and l

(H)
(n) (x, y) (c.f. (1.1)

and (1.2)) which will be stated and proved in the next two sections.

3. Binomial Convolution Identities at the Levels m = 0 and m = 1

The Binomial Convolution Identities at m = 0 and m = 1 are stated and proved in

Theorems(1) and (2) respectively.

Theorem 1 : The convolution identities at the level m = 0 are

(1.1)
n∑
k=0

(
n

k

)
f
(H)
k (x, y)f

(H)
n−k(x, y) =

2n l
(H)
n (x, y)− 2xn

(x2 + 4y)

(1.2)
n∑
k=0

(
n

k

)
l
(H)
k (x, y)l

(H)
n−k(x, y) = 2nl(H)

n (x, y) + 2xn

(1.3)
n∑
k=0

(
n

k

)
l
(H)
k (x, y)f

(H)
n−k(x, y) = 2nf (H)

n (x, y)

(1.4)
n∑
k=0

(
n

k

)
f
(H)
k (x, y)l

(H)
n−k(x, y) = 2nf (H)

n (x, y)

Proof : The result in Table 1 for m = 0, Table 2 for Bn(0, αβ ), Bn(0, βα) and the

equations (1.6) and (1.7) will take us through the derivation step by step for all four

identities.

(1.1) :

n∑
k=0

(
n

k

)
f
(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2

[ n∑
k=0

(
n

k

)
(αn + βn)− βn

n∑
k=0

(
n

k

)(α
β

)k
− αn

n∑
k=0

(
n

k

)(β
α

)k]
=

1

(x2 + 4y)

[
2nl(H)

n (x, y)− βn
(

1 +
α

β

)n
− αn

(
1 +

β

α

)n]
=

1

(x2 + 4y)

[
2nl(H)

n (x, y))− 2(α+ β)n
]

=
2nl

(H)
n (x, y)− 2xn

2(x2 + 4y)
.
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(1.3) :
n∑
k=0

(
n

k

)
l
(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)
(αk + βk)

(
αn−k − βn−k

α− β

)

=
1

(α− β)

[ n∑
k=0

(
n

k

)
(αn − βn)− βn

n∑
k=0

(
n

k

)(α
β

)k
+ αn

n∑
k=0

(
n

k

)(β
α

)k]
=

n∑
k=0

(
n

k

)(αn − βn
α− β

)
− βn

(α− β)

(
1 +

α

β

)n
+

αn

(α− β)

(
1 +

β

α

)n
= 2nf (H)

n (x, y) +
1

(α− β)
[−(α+ β)n + (α+ β)n]

= 2nf (H)
n (x, y).

The proofs of (1.2) and (1.4) are similar to that of (1.1) and (1.3) respectively.

Theorem 2 : The convolution identities at the level m = 1 are

(2.1)
n∑
k=0

(
n

k

)
k f

(H)
k (x, y)f

(H)
n−k(x, y) =

2n−1n l
(H)
n (x, y)− nxn

(x2 + 4y)

(2.2)
n∑
k=0

(
n

k

)
k l

(H)
k (x, y)l

(H)
n−k(x, y) = 2n−1n l(H)

n (x, y) + nxn

(2.3)
n∑
k=0

(
n

k

)
k l

(H)
k (x, y)f

(H)
n−k(x, y) = 2n−1n f (H)

n (x, y)− nxn−1

(2.4)
n∑
k=0

(
n

k

)
k f

(H)
k (x, y)l

(H)
n−k(x, y) = 2n−1n f (H)

n (x, y) + nxn−1

Proof : The result in Table 1 for m = 1, Table 2 for Bn(1, αβ ), Bn(1, βα) and the

equations (1.6) and (1.7) will take us through the derivation step by step for all four

identities.

(2.1) :

n∑
k=0

(
n

k

)
k f

(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)
k

(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2

[ n∑
k=0

(
n

k

)
k(αn + βn)− βn

n∑
k=0

(
n

k

)
k
(α
β

)k
− αn

n∑
k=0

(
n

k

)
k
(α
β

)k]
=

1

(x2 + 4y)

[
n2n−1l(H)

n (x, y)− βnnα
β

(
1 +

α

β

)n−1
− αnnβ

α

(
1 +

β

α

)n−1]
=

1

(x2 + 4y)

[
n2n−1l(H)

n (x, y))− n(α+ β)n−1(α+ β)
]

=
n2n−1l

(H)
n (x, y)− nxn

(x2 + 4y)
.



BINOMIAL CONVOLUTIIONS IDENTITIES OF HYBRID... 107

(2.3)
n∑
k=0

(
n

k

)
k l

(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)
k
(
αk + βk

)(αn−k − βn−k
α− β

)

=
1

(α− β)

[ n∑
k=0

(
n

k

)
k(αn − βn)− βn

n∑
k=0

(
n

k

)
k
(α
β

)k
+ αn

n∑
k=0

(
n

k

)
k
(β
α

)k]
=

n∑
k=0

(
n

k

)
k
(αn − βn
α− β

)
− βn

(α− β)
n
α

β

(
1 +

α

β

)n−1
+

αn

(α− β)
n
β

α

(
1 +

β

α

)n−1

= n2n−1f (H)
n (x, y) +

1

α− β
(n)(α+ β)n−1(β − α)

= n2n−1f (H)
n (x, y)− nxn−1.

The proofs of (2.2) and (2.4) are similar to that of (2.1) and (2.3) respectively.

4. Binomial Convolution Identities at the Levels m = 2 and m = 3

In this section, we continue the computation of the Convolution identities at next two

higher levels.

Theorem 3 : The convolution identities at the level m = 2 are

(3.1)
n∑
k=0

(
n

k

)
k2 f

(H)
k (x, y)f

(H)
n−k(x, y)

=
1

(x2 + 4y)

[
2n−2n(3n− 1)l(H)

n (x, y)− [n(n− 1)(x2 + 2y)xn−2 + nxn]
]

(3.2)
n∑
k=0

(
n

k

)
k2 l

(H)
k (x, y)l

(H)
n−k(x, y)

= 2n−2n(3n− 1) l(H)
n (x, y) + n(n− 1)xn−2(x2 + 2y) + nxn

(3.3)

n∑
k=0

(
n

k

)
k2 l

(H)
k (x, y)f

(H)
n−k(x, y) = 2n−2n(3n− 1)f (H)

n (x, y)− n2xn−1

(3.4)

n∑
k=0

(
n

k

)
k2 f

(H)
k (x, y)l

(H)
n−k(x, y) = 2n−2n(3n− 1)f (H)

n (x, y) + n2xn−1

Proof : The result in Table 1 for m = 2, Table 2 for Bn(2, αβ ), Bn(2, βα) and the

equations (1.6) and (1.7) will take us through the derivation step by step for all four
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identities.

(3.1)

n∑
k=0

(
n

k

)
k2 f

(H)
k (x, y)f

(H)
n−k(x, y) ==

n∑
k=0

(
n

k

)
k2
(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2

[ n∑
k=0

(
n

k

)
k2(αn + βn)− βn

n∑
k=0

(
n

k

)
k2
(α
β

)k
− αn

n∑
k=0

(
n

k

)
k2
(α
β

)k]
=

1

(x2 + 4y)

[
n(3n− 1)2n−2l(H)

n (x, y)− βn
(
n(n− 1)

α2

β2

(
1 +

α

β

)n−2
+ n

α

β

(
1 +

α

β

)n−1)
− αn

(
n(n− 1)

β2

α2

(
1 +

β

α

)n−2
+ n

β

α

(
1 +

β

α

)n−1)]
=

1

(x2 + 4y)

[
n(3n− 2)2n−2l(H)

n (x, y)

−
(
n(n− 1)(α+ β)n−2(α2 + β2) + n(α+ β)n−1(α+ β)

]
=

1

(x2 + 4y)

[
2n−2n(3n− 1)l(H)

n (x, y)− [n(n− 1)(x2 + 2y)xn−2 + nxn]
]
.

(by repeated deductions using (1.3) , (1.4) and (1.5)) .

(3.3)

n∑
k=0

(
n

k

)
k2 l

(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)
k2
(
αk + βk

)(αn−k − βn−k
α− β

)

=
1

(α− β)

[ n∑
k=0

(
n

k

)
k2(αn − βn)− βn

n∑
k=0

(
n

k

)
k2
(α
β

)k
+ αn

n∑
k=0

(
n

k

)
k2
(β
α

)k]
=

n∑
k=0

(
n

k

)
k2
(αn − βn
α− β

)
− βn

(α− β)

[
n(n− 1)

α2

β2

(
1 +

α

β

)n−2

+ n
α

β
(1 +

α

β
)n−1

]
+

αn

(α− β)

[
n(n− 1)

β2

α2

(
1 +

β

α

)n−2
+ n

β

α

(
1 +

β

α

)n−1]
= n(3n− 1)2n−1f (H)

n (x, y) +
1

α− β

[
n(n− 1)(α+ β)n−2(β2 − α2)

+ n(α+ β)n−1(β − α)
]

= n(3n− 1)2n−2f (H)
n (x, y)− n2xn−1.

(by repeated deductions using (1.3) , (1.4) and (1.5)) .

The proofs of (3.2) and (3.4) are similar to that of (3.1) and (3.3) respectively.
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Theorem 4 : The convolution identities at the level m = 3 are

(4.1)
n∑
k=0

(
n

k

)
k3 f

(H)
k (x, y)f

(H)
n−k(x, y)

=
1

(x2 + 4y)

[
2n−3n2(n+ 3)l(H)

n (x, y)− [(3n3 − 3n2)xn−2y + n3xn]
]

(4.2)
n∑
k=0

(
n

k

)
k3 l

(H)
k (x, y)l

(H)
n−k(x, y)

= 2n−3n2(n+ 3) l(H)
n (x, y) + (3n3 − 3n2)xn−2y + n3xn

(4.3)
n∑
k=0

(
n

k

)
k3 l

(H)
k (x, y)f

(H)
n−k(x, y)

= 2n−3n2(n+ 3)f (H)
n (x, y)− [(n3 − 3n2 + 2n)xn−3y + n3xn−1]

(4.4)
n∑
k=0

(
n

k

)
k3 f

(H)
k (x, y)l

(H)
n−k(x, y)

= 2n−3n2(n+ 3)f (H)
n (x, y) + [(n3 − 3n2 + 2n)xn−3y + n3xn−1]

Proof : The result in Table 1 for m = 3, Table 2 for Bn(3, αβ ), Bn(3, βα) and the

equations (1.6) and (1.7) will take us through the derivation step by step for all four

identities.

(4.1)

n∑
k=0

(
n

k

)
k3 f

(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)
k3
(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2

[ n∑
k=0

(
n

k

)
k3(αn + βn)− βn

n∑
k=0

(
n

k

)
k3
(α
β

)k
− αn

n∑
k=0

(
n

k

)
k3
(α
β

)k]
=

1

(x2 + 4y)

[
n2(n+ 3)2n−3l(H)

n (x, y)− βn
(
n(n− 1)(n− 2)

α3

β3

(
1 +

α

β

)n−3

+ 3n(n− 1)
α2

β2

(
1 +

α

β

)n−2
+ n

α

β

(
1 +

α

β

)n−1)
− αn

(
n(n− 1)

β3

α3

(
1 +

β

α

)n−3

+ 3n(n− 1)
β2

α2

(
1 +

β

α

)n−2
+ n

β

α

(
1 +

β

α

)n−1)]
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=
1

(x2 + 4y)

[
n2(n+ 3)2n−3l(H)

n (x, y)−
(
n(n− 1)(n− 2)(α+ β)n−3(α3 + β3)

+ 3n(n− 1)(α+ β)n−2(α2 + β2) + n(α+ β)n−1(α+ β)
)]

=
n2(n+ 3)2n−3l

(H)
n (x, y)−

[
(3n3 − 3n2)xn−2y + n3xn

]
(x2 + 4y)

.

(by repeated deductions using (1.3) , (1.4) and (1.5)) .

(4.3)

n∑
k=0

(
n

k

)
k3 l

(H)
k (x, y)f

(H)
n−k(x, y) =

n∑
k=0

(
n

k

)
k3
(
αk + βk

)(αn−k − βn−k
α− β

)

=
1

(α− β)

[ n∑
k=0

(
n

k

)
k3(αn − βn)− βn

n∑
k=0

(
n

k

)
k3
(α
β

)k
+ αn

n∑
k=0

(
n

k

)
k3
(β
α

)k]
=

n∑
k=0

(
n

k

)
k3
(αn − βn
α− β

)
− βn

(α− β)

[
n(n− 1)(n− 2)

α3

β3

(
1 +

α

β

)n−3

+ 3n(n− 1)
α2

β2

(
1 +

α

β

)n−2
+ n

α

β
(1 +

α

β
)n−1

]
+

αn

(α− β)

[
n(n− 1)(n− 2)

β3

α3

(
1 +

β

α

)n−3

+ 3n(n− 1)
β2

α2

(
1 +

β

α

)n−2
+ n

β

α

(
1 +

β

α

)n−1]
= n2(n+ 3)2n−3f (H)

n (x, y) +
1

α− β

[
n(n− 1)(n− 2)(α+ β)n−3(β3 − α3)

+ 3n(n− 1)(α+ β)n−2(β2 − α2) + n(α+ β)n−1(β − α)
]

= n2(n+ 3)2n−3f (H)
n (x, y)− [(n3 − 3n2 + 2n)xn−3y + n3xn−1].

(by repeated deductions using (1.3) , (1.4) and (1.5)) .

The proofs of (4.2) and (4.4) are similar to that of (4.1) and (4.3) respectively.

The same procedure of employing generalized Binomial summation can be applied to

compute convolution identities at any level.
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