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Abstract

The aim of this manuscript is to establish fixed point results satisfying contractive
conditions of rational type in the setting of b-metric spaces. The results proved
herein are the generalization and extension of some well known results in the ex-
isting literature. Example is also given in order to illustrate the validity of the
presented results.

1. Introduction and Preliminaries
The Banach contraction principle [2] is considered to be the pioneering result of the
fixed point theory, and plays an important role for solving existence problems in
many branches of nonlinear analysis. This principle asserts if (X, d) is a complete
metric space and K : X → X satisfies

d(Kx,Ky) ≤ λd(x, y), (1.1)

for all x, y ∈ X with λ ∈ [0, 1), then K has a unique fixed point.
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This principle have been improved and extended by several mathematicians in
different directions some of them are as follows. Let K be a mapping on a metric
space (X, d) and x, y ∈ X, then K is said to be

1. Kannan type contraction [10], if there exists a number λ ∈ [0, 1
2
) such that

d(Kx,Ky) ≤ λ[d(x,Kx) + d(y,Ky)]. (1.2)

2. Chatterjee type contraction [4], if there exists a number λ ∈ [0, 1
2
) such that

d(Kx,Ky) ≤ λ[d(x,Ky) + d(y,Kx)]. (1.3)

3. Reich type contraction [12], if there exists a number λ, µ, ν ∈ [0, 1) with
λ+ µ+ ν < 1 such that

d(Kx,Ky) ≤ λd(x, y) + µd(x,Kx) + νd(y,Ky). (1.4)

4. Das and Gupta [7] rational type contraction, if there exists a number λ, µ ∈
[0, 1) with λ+ µ < 1 such that

d(Kx,Ky) ≤ λd(x, y) + µ
d(y,Ky)[1 + d(x,Kx)]

1 + d(x, y)
. (1.5)

The contractive conditions on underlying functions play an important role for
finding solutions of metric fixed point problems. Inspired from the impact of
this natural idea, the above contractions have been extended and generalized
by several researchers in various spaces such as quasi-metric spaces, cone metric
spaces, G-metric spaces, partial metric spaces and vector valued metric spaces etc.
Following this trend, Bakhtin [1] and Czerwik [5] generalized metric space with non
Hausdorff topology called b.metric space to overcome the problem of measurable
functions with respect to measure and their convergence. They presented the
generalization of the Banach contraction principle in b.metric spaces. Since then,
several papers has been studied by many authors dealing with the existence of
fixed point in b.metric spaces (see, [3, 6, 8, 9, 11, 13, 14] and the references
therein).
The aim of this contribution is to investigate some fixed point results using the
concept of the contractive conditions of rational type in the context of b.metric
spaces. Moreover, an example is given here to illustrate the validity of the obtained
results. Actually the derived results generalizes the results of [2, 4, 7, 10, 12].
Now, we recall some essential notations, definitions and primary results known
in the literature. Through- out this manuscript, R = set of real numbers, R+ =
[0,∞) and N = set of positive integers.
Definition 1.1. [1, 5] : Let X be a nonempty set. A function d : X ×X → R+
is called a b-metric with coefficient s ≥ 1 if:
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(1) d(x, y) = 0⇔ x = y;

(2) d(x, y) = d(y, x)∀x, y ∈ X;

(3) d(x, y) ≤ s[d(x, y) + d(z, y)] ∀ x, y, z ∈ X.

Then the pair (X, d) is called a b-metric space.
Remark 1.1 : Every metric space is b-metric space with s = 1, but in general, a
b- metric space need not necessarily be a metric space, as in below example 1.1,
(X, d) is b-metric space but not a metric space (see also, examples in [6, 13]).
Example 1.1 : Let X = R and let the mapping d : X ×X → R+ be defined by
d(x, y) = |x− y|2 for all x, y ∈ X. Then (X, d) is a b-metric space with coefficient
s = 2.
Sintunavarat [14] generalized Example 1.1 as:
Example 1.2 : Let (X, ρ) be a metric space and p ≥ 1 be a given real number.
Then d(x, y) = [ρ(x, y)]p is a b-metric on X with parameter s ≤ 2p−1.
The following example 1.3 shows that b-metric is not continuous in general (see
also, examples in [9, 11]).
Example 1.3. [8] : Let X = N ∪ {∞} and d : X ×X → R be defined by

d(m,n) =



0, if m = n,∣∣ 1
m

+ 1
n

∣∣ , if one of m,n is even and
the other is even (and m = n) or ∞

5, if one of m,n is odd and
the other is odd (and m = n) or ∞

2 otherwise

Then, considering all possible cases, it can be checked that (X, d) is a b- metric
space with s = 5

2
.However, let xn = 2n for each n ∈ N . Then limn→∞d(2n,∞) =

lim
n→∞

1
2n

= 0, that is, xn →∞, but d(xn, 1) = 2/→ 5 = d(∞, 1) as n→∞.

Definition 1.2 [3] : Let {xn} be a sequence in b-metric space (X, d) and x ∈ X.
Then

1. {xn} converges to x if and only if for every ε > 0, there exists n(ε) ∈ N ,
such that d(xn, x) < ε for all n > n(ε) and we write lim

n→∞
d(xn, x) = 0 or

lim
n→∞

xn = x.

2. {xn} is a Cauchy sequence if for every ε > 0, there exists n(ε) ∈ N , such that
d(xn, xm) < ε for all m,n > n(ε).

Proposition 1.1 [3] : In a b-metric space (X, d), the following assertions hold:

• a convergent sequence has a unique limit;
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• each convergent sequence is Cauchy;

• a metric space (X, d) is complete if every Cauchy sequence is convergent inX.

2. Fixed Point Results in b-metric Spaces
To present the main results, we need the following lemma.
Lemma 2.1 : Let (X, d) be a complete b-metric space and L : X → X. Let
x0 ∈ X and define the sequence {xn} by

Lxn = xn+1 ∀ n = 0, 1, 2, · · ·

Let there exists a mapping λ : X ×X → [0, 1) satisfying

λ(Lx, y) ≤ λ(x, y) and λ(x, Ly) ≤ λ(x, y) for all x, y ∈ X.

Then λ(xn, y) ≤ λ(x0, y) and λ(x, xn+1) ≤ λ(x, x1) for all x, y ∈ X and n =
0, 1, 2, · · · .
Proof : Let x, y ∈ X and n = 0, 1, 2, · · · , then

λ(xn, y) = λ(Lxn−1, y) ≤ λ(xn−1, y) = λ(Lxn−2, y) ≤ λ(xn−2, y) = · · · ≤ λ(x0, y).

Similarly,

λ(x, xn+1) = λ(x, Lxn) ≤ λ(x, xn) = λ(x, Lxn−1) = · · · ≤ λ(x, x0).

3. Main Results
Theorem 3.1 :. Let (X, d) be a complete b-metric space and λ1 : X×X → [0, 1),
i = 1, 2, · · · , 6. If L : X → X be a self-map such that for all x, y ∈ X the following
conditions are satisfied:

(i) λi(Lx, y) ≤ λi(x, y) and λi(x, Ly) ≤ λi(x, y);

(ii)

d(Lx, Ly) ≤ λ1(x, y)d(x, y) + λ2(x, y)
[d(x, Ly) + d(y, Lx)]S

s

+λ3
(x, y)[d(x, Lx) + d(y, Ly)]

s
+ λ4(x, y)

d(y, Ly)[1 + d(x, Lx)]

1 + d(x, y)

+λ5(x, y)
d(x, Ly)d(x, Lx)

s[1 + d(x, y)]
+ λ6(x, y)

d(x, Ly)d(y, Lx)

s[1 + d(x, y)d(y, Lx)]
,

where λ2(x, y) + λ3(x, y) + λ5(x, y) + s
6∑
i=1

λi(x, y) < 1, with 0 ≤
6∑
i=1

λi(x, y) < 1.

Then the mapping L has a unique fixed point in X.
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Proof : Let x0 ∈ X and construct a sequence {xn} by the rule

Lxn = xn+1, ∀ n = 0, 1, 2, · · · (3.1)

First, we show that {xn} is a Cauchy sequence in X. For this, consider

d(xn+1, xn+2) = d(Lxn, Lxn+1),

by using condition (ii) of Theorem 3.1 with x = xn and y = xn+1, we have

d(Lxn, Lxn+1) ≤ λ1(xn, xn+1)d(xn, xn+1) + λ2(xn, xn+1)
[d(xn, Lxn+1) + d(xn+1, Lxn)]

s
+λ3(xn, xn+1)[d(xn, Lxn)d+ d(xn+1, Lxn+1)]

+λ4(xn, xn+1)
d(xn+1, Lxn+1)[1 + d(xn, Lxn)]

1 + d(xn, xn+1)

+λ5(xn, xn+1)
d(xn, Lxn+1)d(xn, Lxn)

s[1 + d(xn, xn+1)]

λ6(xn, xn+1)
d(xn, Lxn+1)d(xn+1, Lxn)

s[1 + d(xn, xn+1)d(xn+1, Lxn)]
.

Using (3.1), we get

d(xn+1, xn+2) ≤ λ1(xn, xn+1)d(xn, xn+1) + λ2(xn, xn+1)
[d(xn, xn+2) + d(xn+1, xn+1)]

s
+λ3(xn, xn+1)[d(xn, xn+1) + d(xn+1, xn+2)]

+λ4(xn, xn+1)
d(xn+1, xn+2)[1 + d(xn, xn+1)]

1 + d(xn, xn+1)

+λ5(xn, xn+1)
d(xn, xn+2)d(xn, xn+1)

s[1 + d(xn, xn+1)]

+λ6(xn, xn+1)
d(xn, xn+2) + d(xn+1, xn+1)

s[1 + d(xn, xn+1)d(xn+1, xn+1)]
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with the help of condition (i) of Theorem 3.1, we get

d(xn+1, xn+2) ≤ λ1(x0, x0)d(xn, xn+1)

+λ2(x0, x0)
[d(xn, xn+2) + d(xn+1, xn+1)]

S
+λ3(x0, x0)[d(xn, xn+1) + d(xn+1, xn+2)]

+λ4(x0, x0)
d(xn+1, xn+2)[1 + d(xn, xn+1)]

1 + d(xn, xn+1)

+λ5(x0, x0)
d(xn, xn+2)d(xn, xn+1)

s[1 + d(xn, xn+1)]

≤ λ1(x0, x0)d(xn, xn+1) + λ2(x0, x0)
d(xn, xn+2)

S
+λ3(x0, x0)[d(xn, xn+1) + d(xn+1, xn+2)]

+λ4(x0, x0)d(xn+1, xn+2) + λ5(x0, x0)
d(xn, xn+2)

S
.

Using triangular inequality, we get

d(xn+1, xn+2) ≤ λ1(x0, x0)d(xn, xn+1)

+λ2(x0, x0)[d(xn, xn+1) + d(xn+1, xn+2)]

+λ3(x0, x0)[d(xn, xn+1) + d(xn+1, xn+2)]

+λ4(x0, x0)d(xn+1, xn+2)

+λ5(x0, x0)[d(xn, xn+1) + d(xn+1, xn+2)],

which implies that

d(xn+1, xn+2) ≤

3∑
i=1

λi(x0, x0) + λ5(x0, x0)

1−
5∑
i=2

λi(x0, x0)

d(xn, xn+1).

Let h =

3∑
i=1

λi(x0,x0)+λ5(x0,x0)

1−
5∑

i=2
λi(x0,x0)

< 1
s
. Then

d(xn+1, xn+2) ≤ hd(xn, xn+1).

Similarly,
d(xn, xn+1) ≤ hd(xn−1, xn).

Consequently,

d(xn+2, xn+1) ≤ hd(xn+1, xn) ≤ h2d(xn, xn−1) ≤ · · · ≤ hn+1d(x1, x0).
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Now, for m > n and sh < 1, we have

d(xn, xm) ≤ sd(xn, xn+1, xn+2) + s2d(xn+1, xn+2) ≤ · · · ≤ hn+1d(x1, x0)

≤ shnd(x1, x0) + s2hn+1d(x1, x0) + · · ·+ sm−nhm−1d(x1, x0)

≤ [shn + s2hn+1 + · · ·+ sm−nhm−1]d(x1, x0)

≤ shn[1 + (sh)1 + (sh)2 + · · ·+ (sh)m−n−1]d(x1, x0)

≤ shn

1− sh
d(x1, x0).

Therefore lim
n→∞

d(xz, zm) = 0. Hence, {xn} is a Cauchy sequence. But X is

complete, so there exists t ∈ X such that xn → t as n→ n.
Next, we show that t is a fixed point of L. For this, assume that Lt 6= t, then
d(t, Lt) 6= 0. Now

d(t, Lt) ≤ d(t, Lxn) + d(Lxn, Lt). (3.2)

By applying condition (ii) of Theorem 3.1, equation (3.2) become

d(t, Lt) ≤ d(t, Lxn) + λ1(xn, t)d(xn, t) + λ2(xn, t)
[d(xn, Lt) + d(t, Lxn)]

s

+λ3(xn, t)[d(xn, Lxn) + d(t, Lt)] + λ4(xn, t)
d(t, Lt)[1 + d(xn, Lxn)]

1 + d(xn, t)

+λ5(xn, t)
d(xn, Lt)d(xn, Lxn)

s[1 + d(xn, t)]
+ λ6(xn, t)

d(xn, Lt)d(t, Lxn)

s[1 + d(xn, t)d(t, Lxn)]

with the help of equation (3.1) and condition (i) of Theorem 3.1, we can write

d(t, Lt) ≤ d(t, xn+1) + λ1(x0, t)d(xn, t) + λ2(x0, t)
[d(xn, Lt) + d(t, xn+1)]

s

+λ3(x0, t)[d(xn, xn+1) + d(t, Lt)] + λ4(x0, t)
d(t, Lt)[1 + d(xn, xn+1)]

1 + d(xn, t)

+λ5(x0, t)
d(xn, Lt)d(xn, xn+1)]

s[1 + d(xn, t)]
+ λ6(x0, t)

d(xn, Lt)d(t, xn+1)

s[1 + d(xn, t)d(t, xn+1)]
.

Taking limit as n→∞, we get

d(t, Lt) ≤ λ2(x0, t)
d(t, Lt)

s
+ λ3(x0, t)d(t, Lt) + λ4(x0, t)d(t, Lt).

d(t, Lt) ≤ [λ2(z0, t) + sλ3(z0, t) + sλ4(z0, t)]
d(t, Lt)

s
. (3.3)

But λ2(z0, t) + sλ3(z0, t) + sλ4(z0, t) < 1, so the above inequality (3.3) contradict
the fact that d(t, Lt) 6= 0. Thus Lt = t. Hence t is a fixed point of L.
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Finally, we have to show that t is a unique fixed point of L. For this, let t∗ 6= tt
be another fixed point of L. Then on putting x = t and y = t. in condition (ii) of
Theorem 3.1, we get

d(t, t∗) = d(Lt, Lt∗)

≤ λ1(t, t
∗)d(t, t∗) + λ2(t, t

∗)
d(t, Lt∗)[1 + d(t∗, Lt)]

s

+λ3(t, t
∗)[d(t, Lt) + d(t∗, Lt∗)] + λ4(t, t

∗)
d(t∗, Lt∗)[1 + d(t, Lt)]

1 + d(t, t∗)

+λ5(t, t
∗)

[d(t, Lt∗)d(t, Lt)]

s[1 + d(t, t∗)]
+ λ6(t, t

∗)
[d(t, Lt∗)d(t∗, Lt)]

s[1 + d(t, t∗)d(t∗, Lt)]

≤ λ1(t, t
∗)d(t, t∗) + λ2(t, t

∗)
d(t, t∗) + d(t∗, t)]

s

+λ6(t, t
∗)

[d(t, t∗)d(t∗, t)]

s[1 + d(t, t∗)d(t∗, Lt)]
,

implies that

d(t, t∗) ≤ λ1(t, t
∗)d(t, t∗) + λ2(t, t

∗)
2d(t, t∗)

s

+λ6(t, t
∗)

[d(t, t∗)d(t∗, t)]

s[1 + d(t, t∗)d(t∗, t)]

≤ [sλ1(t, t
∗) + 2λ2(t, t

∗) + λ6(t, t
∗)]
d(t∗t)

s
,

which is contradiction because sλ1(t, t
∗) + 2λ2(t, t

∗) + λ6(t, t
∗) < 1. Hence t is a

unique fixed point of L.
From Theorem 3.1, we can easily derive the following corollaries and the proofs
of which are simple.
Corollary 3.1 : Let (X, d) be a complete b-metric space and λi : X×X → [0, 1),
i = 1, 3. If L : X → X be a self-map such that for all x, y ∈ X the following
conditions are satisfied:

(i) λi(Lx, y) ≤ λi(x, y) and λi(x, Ly) ≤ λi(x, y);

(ii) d(Lx, Ly) ≤ λ3(x, y)[d(x, Lx) + d(y, Ly)],

where 0 ≤ λ3(x, y) < 1
s+1

. Then the mapping L has a unique fixed point in X.
Corollary 3.2 : Let (X, d) be a complete b-metric space and λi : X×X → [0, 1),
i = 1, 2, · · · , 8. If L : X → X be a self-map such that for all x, y ∈ X the following
conditions are satisfied:

(i) λi(Lx, y) ≤ λi(x, y) and λi(x, Ly) ≤ λi(x, y);
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(ii) d(Lx, Ly) ≤ λ2(x, y) [d(x,Ly)+d(y,Lx)]
s

where 0 ≤ λ2(x, y) 1
s+1

. Then the mapping L has a unique fixed point in X.
Corollary 3.3 : Let (X, d) be a complete b-metric space and λ1 : X×X → [0, 1),
i = 1, 4. If L : X → X be a self-map such that for all x, y ∈ X the following
conditions are satisfied:

(i) λi(Lx, y) ≤ λi(x, y) and λi(x, Ly) ≤ λi(x, y);

(ii) d(Lx, Ly) ≤ λ1(x, y)d(x, y) + λ4(x, y)d(y,Ly)[1+d(x,Lx)]
1+d(x,y)

where 0 ≤ sλ1(x, y) + λ4(x, y) < 1. Then the mapping L has a unique fixed point
in X.
Corollary 3.4 : Let (X, d) be a complete b-metric space and λi : X×X → [0, 1),
i = 1, 2, 3. If L : X → X be a self-map such that for all x, y ∈ X the following
conditions are satisfied:

(i) λi(Lx, y) ≤ λi(x, y) and λi(x, Ly) ≤ λi(x, y);

(ii) d(Lx, Ly) ≤ λ1(x, y)d(x, y) + λ2(x, y)d(x, Lx) + λ3(x, y)d(y, Ly),

where 0 ≤ s[λ1(x, y) + λ2(x, y)] + λ3(x, y) < 1. Then the mapping L has a unique
fixed point in X.
Corollary 3.5 :. Let λ6 = 0 and all other conditions of Theorem 3.1 are satisfied,
then L has a unique fixed point in X.
Corollary 3.6 : Let λ5 = λ6 = 0 and all other conditions of Theorem 3.1 are
satisfied, then L has a unique fixed point in X.
Corollary 3.7 : Let λ2 = λ3 = 0 and all other conditions of Theorem 3.1 are
satisfied, then L has a unique fixed point in X.
Corollary 3.8 : Let λ4 = λ5 = λ6 = 0 and all other conditions of Theorem 3.1
are satisfied, then L has a unique fixed point in X.

4. Common Fixed Point Results in b-metric Spaces
For the proof of our next result we use the following Lemma.
Lemma 4.1 : Let (X, d) be a complete b-metric space and K,L : X → X. Let
x0 ∈ X and define the sequence {xn} by

Kx2n = x2n+1 and Lx2n+1 = x2n+2 ∀ n = 0, 1, 2, · · · .

Let there exists a mapping λ : X ×X → [0, 1) satisfying

λ(LKx, y) ≤ λ(x, y) and λ(x,KLy) ≤ λ(x, y), for all x, y ∈ X.

Then

λ(x2n, y) ≤ λ(x0, y) and λ(x, x2n+1) ≤ λ(x, x1) for all x, y ∈ X.



34 D. P. SHUKLA & VIMLESH KUSHWAHA

Theorem 4.1 : Let (X, d) be a complete b-metric space with s ≥ 1 and λi :
X ×X → [0, 1), i = 1, 2, · · · , 5. If K,L : X → X be two self-mappings such that
for all x, y ∈ X the following conditions are satisfied:

(i) λi(LKx, y) ≤ λi(x, y) and λi(x,KLy) ≤ λi(x, y);

(ii)

d(Kx,Ly) ≤ λ1(x, y)d(x, y) + λ2(x, y)
d(x,Kx)[d(x, Ly) + d(y, Ly)]

s[1 + d(x, y)]

+λ3(x, y)
d(y,Kx)[d(x, Ly) + d(y, Ly)]

s[1 + d(x, y)]

+λ4(x, y)
d(y, Ly)[d(x,Kx) + d(y,Kx)]

s[1 + d(x, y)]

+λ5(x, y)
d(x, Ly)[d(x,Kx) + d(y,Kx)]

s[1 + d(x, y)]

where
5∑
i=2

λi(x, y)+S
5∑
i=1

λi(x, y)+ 1
s
[λ2(x, y)+λ4(x, y)] < 1, with 0 ≤

5∑
i=1

λi(x, y) <

1. Then K and L have a unique common fixed point in X.
Proof : Let x0 ∈ X and construct a sequence {xn} by the rule

Kx2n = x2n+1 and Lx2n+1 = x2n+2, ∀ n = 0, 1, 2, · · · (4.1)

First we to show that {xn} is a Cauchy sequence in X. For this, consider

d(x2k+1, x2k) = d(KLx2k−1, Lx2k−1).

By using condition (ii) of Theorem 4.1 with x = Lx2k−1 and y = x2k−1, we have

d(KLx2k−1, Lx2k−1) ≤ λ1(Lx2k−1, x2k−1)d(Lx2k−1, x2k−1)

+λ2(Lx2k−1, x2k−1)
d(Lx2k−1, KL2k−1)[d(Lx2k−1, Lx2k−1) + d(x2k−1, Lx2k−1)]

s[1 + d(Lx2k−1, x2k−1)]

+λ3(Lx2k−1, x2k−1)
d(x2k−1, KL2k−1)[d(Lx2k−1, Lx2k−1) + d(x2k−1, Lx2k−1)]

s[1 + d(Lx2k−1, x2k−1)]

+λ4(Lx2k−1, x2k−1)
d(x2k−1, Lx2k−1)[d(Lx2k−1, KLx2k−1) + d(x2k−1, KLx2k−1)]

s[1 + d(Lx2k−1, x2k−1)]

+λ5(Lx2k−1, x2k−1)
d(x2k−1, Lx2k−1)[d(Lx2k−1, KLx2k−1) + d(x2k−1, KLx2k−1)]

s[1 + d(Lx2k−1, x2k−1)]
.
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By equation (4.1), we get

d(x2k+1, x2k) ≤ λ1(x2k, x2k−1)d(x2k, x2k−1)

+λ2(x2k, x2k−1)
d(x2k, x2k+1)[d(x2k, x2k) + d(x2k−1, x2k)]

s[1 + d(x2k, x2k−1)]

+λ3(x2k, x2k−1)
d(x2k−1, x2k+1)[d(x2k, x2k) + d(x2k−1, x2k)]

s[1 + d(x2k, x2k−1)]

+λ4(x2k, x2k−1)
d(x2k−1, x2k)[d(x2k, x2k+1) + d(x2k−1, x2k+1)]

s[1 + d(x2k, x2l−1)]

+λ5(x2k, x2k−1)
d(x2k, x2k)[d(x2k, x2k+1) + d(x2k−1, x2k+1)]

s[1 + d(x2k, x2k−1)]

≤ λ1(x2k, x2k−1)d(x2k, x2k−1)

+λ2(x2k, x2k−1)
d(x2k, x2k+1)d(x2k−1, x2k)

s[1 + d(x2k, x2k−1)]

+λ3(x2k, x2k−1)
d(x2k−1, x2k+1)d(x2k−1, x2k)

s[1 + d(x2k, x2k−1)]

+λ4(x2k, x2k−1)
d(x2k, x2k+1)d(x2k−1, x2k+1)

s

≤ λ1(x2k, x2k−1)d(x2k, x2k−1) + λ2(x2k, x2k−1)
d(x2k, x2k+1)

s

+λ3(x2k, x2k−1)
d(x2k−1, x2k+1)

s

+λ4(x2k, x2k−1)
d(x2k, x2k+1) + d(x2k−1.x2k+1)

s
.

From Lemma 4.1 and triangular inequality, we can write

d(x2k+1, x2k) ≤ λ1(x0, x1)d(x2k, x2k−1) + λ2(x0, x1)
d(x2k, x2k+1)

s

+λ3(x0, x1)[d(x2k−1, x2k) + d(x2k, x2k+1)]λ4(x0, x1)
d(x2k, x2k+1)

s
+λ4(x0, x1)[d(x2k−1, x2k) + d(x2k, x2k+1)].

Finally one can get

d(x2k+1, x2k) ≤
λ1(x0, x1)λ3(x0, x1) + λ4(x0, x1)

1−
(

1
s
λ2(x0, x1) + λ3(x0, x1) + (1+s)

s
λ4(x0, x1)

)d(x2k, x2k−1).
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Let

h =

5∑
i=1

λi(x0, x1)

1−
(

(1+s)
s
λ2(x0, x1) + λ3(x0, x1) + (1+s)

s
λ4(x0, x1) + λ5(x0, x1)

) < 1

s
.

Then
d(x2k+1, x2k) ≤ hd(x2k, x2k−1). (4.2)

Similarly, consider

d(x2k−1, x2k) = d(Kx2k−2, LKx2k−2). (4.3)

By applying condition (ii) of Theorem 4.1 with x = x2k−2 and y = Kx2k−2 to
equation (4.3), we get

d(Kx2k−2, LKx2k−2) ≤ λ1(x2k−2, Kx2k−2)d(x2k−2, Kx2k−2)

+λ2(x2k−2, Kx2k−2)
d(x2k−2, Kx2k−2)[d(x2k−2, LKx2k−2) + d(Kx2k−2, Lkx2k−2)]

s[1 + d(x2k−2, Kx2k−2)]

λ3(x2k−2, Kx2k−2)
d(Kx2k−2, Kx2k−2)[d(x2k−2, Lkx2k−2) + d(Kx2k−2, Lkx2k−2)]

s[1 + d(x2k−2, Kx2k−2)]

λ4(x2k−2, Kx2k−2)
d(Kx2k−2, LKx2k−2)[d(x2k−2, Kx2k−2) + d(Kx2k−2, Kx2k−2)]

s[1 + d(x2k−2, Kx2k−2)]

+λ5(x2k−2, Kx2k−2)
d(Kx2k−2, LKx2k−2)[d(x2k−2, Kx2k−2) + d(Kx2k−2, Kx2k−2)]

s[1 + d(x2k−2, Kx2k−2)]

with the help of (4.1), we get

d(x2k−1, x2k) ≤ λ1(x2k−2, x2k−1)d(x2k−2, x2k−1)

λ2(x2k−2, x2k−1)
d(x2k−2, x2k−1)[d(x2k−2, x2k) + d(x2k−1, x2k)]

s[1 + d(x2k−2, x2k−1)]

λ3(x2k−2, x2k−1)
d(x2k−1, x2k−1)[d(x2k−2, x2k) + d(x2k−1, x2k)]

s[1 + d(x2k − 2, x2k−1)]

+λ4(x2k−2, x2k−1)
d(x2k−1, x2k)[d(x2k−2, x2k−1) + d(x2k−1, x2k−1)]

s[1 + d(x2k−2, x2k−1)]

+λ5(x2k−2, x2k−1)
d(Kx2k−2, x2k)[d(x2k−2, x2k−1) + d(x2k−1, x2k−1)]

s[1 + d(x2k−2, x2k−1)]

+λ1(x2k−2, x2k−1)d(x2k−2, x2k−1)

λ2(x2k−2, x2k−1)
d(x2k−2, x2k) + d(x2k−1, x2k)

s

λ4(x2k−2, x2k−1)
d(x2k−1, x2k)

s
+ λ5(x2k−2, x2k−1)

d(x2k−2, x2k)

s
.
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Using Lemma 4.1, one can get

d(x2k−1, x2k) ≤ λ1(x0, x1)d(x2k−2, x2k−1)

+λ2(x0, x1)[d(x2k−2, x2k−1) + d(x2k−1, x2k)

+λ3(x0, x1)
d(x2k−1, x2k)

s
+ λ4(x0, x1)

d(x2k−1, x2k)

s
+λ5(x0, x1)[d(x2k−2, x2k−1) + d(x2k−1, x2k)].

Finally,

d(x2k−1, x2k) ≤
λ1(x0, x1) + λ2(x0, x1) + λ5(x0, x1)

1−
(
1+s
s
λ2(x0, x1) + 1

s
λ4(x0, x1) + λ5(x0, x1)

)d(x2k−2, x2k−1).

Implies that

d(x2k−1, x2k) ≤ hd(x2k−2, x2k−1) (4.4)

Now, from equations (4.2) and (4.4), we have

d(x2k+1, x2k) ≤ hd(x2k, x2k−1) ≤ h2d(x2k−1, x2k−2).

Consequently, we can write

d(xn+1, xn) ≤ hd(xn, xn−1) ≤ h2d(x2n−1, xn−2) ≤ · · · ≤ h2d(x1, x0).

Now, for m > n and sh < 1, we have

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·+ Sm−nd(xm−1, xm)

≤ shnd(x1, x0) + s2hn−1d(x1, x0) + · · ·+ sm−nhm−1d(x1, x0)

≤ [shn + s2hn+1 + · · ·+ sm−nhm−1]d(x1, x0)

≤ shn[1 + (sj)1 + (sh)2 + · · ·+ (shm−n−1)]d(x1, x0)

≤ shn

1− sh
d(x1, x0).

Therefore lim
n→∞

d(xn, zm) = 0. Hence, {xn}nis a Cauchy sequence. But X is

complete, so there exists t ∈ X such that xn → t as n→∞.

Next, to show that t is a fixed point of K. For this, consider

d(t,Kt) ≤ d(t, Lx2n+1) + d(Lx2n+1, Kt).
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Using condition (ii) of Theorem 4.1 with x = t and y = x2n+1, we have

d(t,Kt) ≤ d(t, Lx2n+1) + λ1(t, x2n+1)d(t, x2n+1)

+λ2(t, x2n+1)
d(t,Kt)[d(t, Lx2n+1) + d(x2n+1, Lx2n+1)]

s[1 + d(t, x2n+1)]

+λ3(t, x2n+1)
d(x2n+1, Kt)[d(t, Lx2n+1) + d(x2n+1, Lx2n+1)]

s[1 + d(t, x2n+1)]

+λ4(t, x2n+1)
d(x2n+1, Lx2n+1)[d(t,Kt) + d(x2n+1, Kt)]

s[1 + d(t, x2n+1)]

+λ5(t, x2n+1)
d(t, Lx2n+1)[d(t,Kt) + d(x2n+1, Kt)]

s[1 + d(t, x2n+1)]
.

Using equation (4.1) and Proposition 4.1, we get

d(t,Kt) ≤ d(t, x2n+2) + λ1(t, x1)d(t, x2n+1)

+λ2(t, x1)
d(t,Kt)[d(t, x2n+2) + d(x2n+1, x2n+2)]

s[1 + d(t, x2n+1)]

+λ3(t, x1)
d(x2n+1, Kt)[d(t, Lx2n+2) + d(x2n+1, Lx2n+2)]

s[1 + d(t, x2n+1)]

+λ4(t, x1)
d(x2n+1, x2n+2)[d(t,Kt) + d(x2n+1, Kt)]

s[1 + d(t, x2n+1)]

+λ5(t, x1)
d(t, x2n+2)[d(t,Kt) + d(x2n+1, Kt)]

s[1 + d(t, x2n+1)]
.

Taking limit as n → ∞, we get d(Kt, t) ≤ 0. Thus d(Kt, t) = 0 implies that
Kt = t. Hence t is a fixed point of K.
Analogously, using condition (ii) of Theorem 4.1 with x = x2n and y = t one can
show that t is a fixed point of L. Therefore Kt = Lt = t, that is t is a common
fixed point of K and L.
Finally, we prove that t is a unique common fixed point of K and L. For this,
suppose that t∗ 6= t be another fixed point of K and L. Then putting x = t and
y = t∗ in condition (ii) of Theorem 4.1, we have

d(Kt, Lt∗) ≤ λ1(t, t
∗)d(t, t∗) + λ2(t, t

∗)
d(t,Kt)[d(t, Lt∗) + d(t∗, Lt∗)]

s[1 + d(t, t∗)]

+λ3(t, t
∗)
d(t∗, Kt)[d(t, Lt∗) + d(t∗, Lt∗)]

s[1 + d(t, t∗)]

+λ4(t, t
∗)
d(t∗, Lt∗)[d(t,Kt) + d(t∗, Kt)]

s[1 + d(t, t∗)]

λ5(t, t
∗)
d(t, Lt∗)[d(t,Kt) + d(t∗, Kt)]

s[1 + d(t, t∗)]
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which implies that

d(t, t∗) ≤ λ1(t, t
∗)d(t, t∗) + λ3

d(t∗, t)d(t, t∗)

s[1 + d(t, t∗)]
+ λ5(t, t

∗)
d(t, t∗)d(t∗, t)

s[1 + d(t, t∗)]

≤ λ1(t, t
∗)d(t, t∗) + λ3(t, t

∗)
d(t∗, t)

s
+ λ5(t, t

∗)
d(t, t∗)

s

≤ [sλ1(t, t
∗) + λ3(t, t

∗) + λ5(t, t
∗)]
d(t, t∗)

s

which is contradiction because sλ1(t,
t ∗)+λ+3(t, t∗)+λ5(t, t

∗) < 1, thus d(t∗, t) = 0
and hence t∗ = t.
Therefore t is a unique common fixed point of K and L.
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