BENDING OF RECTANGULAR PLATE OF VARIABLE THICKNESS UNDER NORMAL VARIABLE LOAD

A. DE AND M. CHAUDHURI

Abstract

The problems of deflection of rectangular plates of variable thickness were earlier discussed by many authors, a review of which may found in the book of Timoshenko and Woinowsky-Krieger [9], Conway [1] solved the problem of bending of symmetrical loaded circular plate of variable thickness and that [2] of the axially symmetric plate with linearly varying thickness. Mansfield [5, 6], Olsson [7], Reissner [8] also discussed some cases of bending of plates. Fabre and Gillig [3] obtained the approximate solution of the bending of a simply supported rectangular plate of linearly varying thickness under normal hydrostatic load by using fundamental perturbation technique. Kundu and Basuli [4] solved the problem of the bending of rectangular plate of variable thickness under normal variable load where flexural rigidity varies in one direction as a power of the distance from the centre. In this problem an attempt has been made to obtain an approximate solution of the bending of a rectangular plate with variable thickness in which the flexural rigidity is of a homogeneous quadratic variation in both x and y directions and the plate is subjected to variable normal loads, the boundary being simply supported.