ON COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON SUBSETS

K. SUVARANA AND Y. S. KALYAN CHAKRAVARTHY
Department of Mathematics, Sri Krishnadevaraya University, Anantapur 515005,Andhra pradesh,India

Abstract

Let R be a ring with center $Z(R)$, and $A(R)$ be an appropriate subset of R. In this paper, it is shown that R is commutative if and only if for every $x, y \in R$, there exist integers $k=k(x, y) \geq 0, m=m(x, y)>1$ and $n=n(x, y) \geq 0$ such that $\left[x, x^{n} y+y^{m} x^{k}\right]=0$ and for each $x \in R$ either $x \in Z(R)$ or there exists a polynomial $f(t)$ in $Z[t]$ such that $x-x^{2} f(x) \in A(R)$, where $A(R)$ is a nil commutative subset of R. If R is a left or right s-unital ring, then the following are equivalent: (i) R is commutative. (ii) For every $x, y \in R$ there exist integers $k=k(x, y) \geq 0, m=m(x, y)>1$ and $n=n(x, y) \geq 0$ such that $\left[x, x^{n} y+y^{m} x^{k}\right]=0$ and for each $x \in R$ either $x \in Z(R)$ or there exists a polynomial $f(t)$ in $Z[t]$ such that $x-x^{2} f(x) \in A(R)$, where $A(R)$ is a nil subset of R. (iii) For each $y \in R$, there exists an integer $m=m(y)>1$ such that $\left[x, x^{n} y+y^{m} x^{k}\right]=0=\left[x, x^{n} y^{m}+y^{m^{2}} x^{k}\right]$ for all $x \in R$, where $k \geq 0, n \neq 1$ is fixed non-negative integers.

Key Words and Phrases : Commutativity of rings, s-unital rings, Polynomial.
1991 AMS Subject Classification : 16A70.

