International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 6 No. V (September, 2012), pp. 367-374

ON COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON SUBSETS

K. SUVARANA AND Y. S. KALYAN CHAKRAVARTHY

Department of Mathematics, Sri Krishnadevaraya University, Anantapur 515005,Andhra pradesh,India

Abstract

Let R be a ring with center Z(R), and A(R) be an appropriate subset of R. In this paper, it is shown that R is commutative if and only if for every $x, y \in R$, there exist integers $k = k(x, y) \ge 0, m = m(x, y) > 1$ and $n = n(x, y) \ge 0$ such that $[x, x^n y + y^m x^k] = 0$ and for each $x \in R$ either $x \in Z(R)$ or there exists a polynomial f(t) in Z[t] such that $x - x^2 f(x) \in A(R)$, where A(R) is a nil commutative subset of R. If R is a left or right s-unital ring, then the following are equivalent: (i) R is commutative. (ii) For every $x, y \in R$ there exist integers $k = k(x, y) \ge 0, m = m(x, y) > 1$ and $n = n(x, y) \ge 0$ such that $[x, x^n y + y^m x^k] = 0$ and for each $x \in R$ either $x \in Z(R)$ or there exists a polynomial f(t) in Z[t] such that $x - x^2 f(x) \in A(R)$, where A(R) is a nil subset of R. (iii) For each $y \in R$, there exists an integer m = m(y) > 1 such that $[x, x^n y + y^m x^k] = 0 = [x, x^n y^m + y^{m^2} x^k]$ for all $x \in R$, where $k > 0, n \neq 1$ is fixed non-negative integers.

Key Words and Phrases : Commutativity of rings, s-unital rings, Polynomial.

© http://www.ascent-journals.com

¹⁹⁹¹ AMS Subject Classification : 16A70.