International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 8 No. V (September, 2014), pp. 217-229

MATHEMATICAL MODEL OF THE TRANSMISSION DYNAMICS OF SWINE FLU WITH THE VACCINATION OF NEWBORNS

ONUOHA JOY LJEOMA², INYAMA SIMEON CHIOMA² AND UDOFIA

SUNDAY EKERE³

¹ Department of Mathematics,
Alvan Ikoku Federal College of Education,
Owerri, Imo State, Nigeria, West Africa
² Department of Mathematics,
Federal University of Technology,
Owerri, Imo State, Nigeria, West Africa
³ Department of Mathematics/Statistics,
Akwa Ibom State University, Mkpat Enin,
Akwa Ibom State

Abstract

In this paper, the mathematical model for the transmission dynamics of swine flu among swine and humans with the vaccination of newborns is presented. The model assumes a vaccine with a life-long immunity. The analysis of the Disease-free Equilibrium (DFE) shows that it will be stable if there is a bound on the rate of transmission from swine to swine (β_s) and the rate of transmission from human to human (β_H). Endemic Equilibrium (EE) for the model shows that the disease will persist if there is a lower bound on the rate of transmission from swine to swine (β_s) and on the rate of newborn babies vaccinated (V_H). The behavior of the influenza (flu) is illustrated by simulation with different parameter values.

Key Words: Mathematical model, Swine flu, Vaccination, Newborns, Endemic Equilibrium.

© http://www.ascent-journals.com