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Abstract

In this work, the developed algorithm of the integer sub-decomposition (ISD) method
used to compute a scalar multiplication kP on another class of elliptic curves is pre-
sented. These curve are called Koblitz curves Ea, with a ∈ {0, 1}, defined over a
binary extension field F2m that have efficiently-computable endomorphisms ψj for
j = 1, 2. ISD method on Koblitz curves Ea is used for speeding the computations
of the endomorphisms ψj to compute kP . These endomorphisms are defined as the
Frobenious maps over the endomorphism ring Z[τ ], where τ is a complex number.
The endomorphism ring Z[τ ] in this case is embedded into an imaginary quadratic
field Q(

√
D), where D = −7 is a square-free number. Subsequently, the ISD sub-

decomposition idea on Koblitz curves Ea is utilized to speed the representations of
the sub-scalars k11, k12, k21 and k22 using τ -adic non-adjacent form (TNAF). On the
curves Ea defined over F2m , computing the endomorphisms and τ -adic representa-
tions of ISD sub-scalars can be carried out without using any point doublings. This
property is considered as a fundamental advantage to speed up the computation of
complex multiplication kP . The ISD complex multiplication is defined by

kP = k11P + k12ψ1(P ) + k21P + k22ψ2(P )

where k11, k12, k21 and k22 ∈ Z[τ ] and are defined by k11 = ul3−1τ
l3−1 +···+u1τ+u0,

k12 = ul4−1τ
l4−1 + · · · +u1τ + u0, k21 = ul5−1τ

l5−1 + · · · +u1τ + u0P and k22 =
ul6−1τ

l6−1 + · · · +u1τ + u0. The endomorphisms in kP formula are defined by
ψ1(P ) = ul1−1τ

l1−1 (P ) + · · ·+ u1τ (P ) + u0P and ψ2(P ) = ul2−1τ
l2−1 (P ) + · · ·+

u1τ (P )+u0P . The operations to compute ISD sub-scalars and the endomorphisms
in ISD scalar multiplication kP are called complex multiplications by τ on Ea.
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