INTEGER SUB-DECOMPOSITION ELLIPTIC SCALAR MULTIPLICATION ON KOBLITZ CURVES OVER BINARY EXTENSION FIELD

RUMA KAREEM K. AJEENA
Babylon University, Department of Mathematics, Mathematics School, Babil city, Iraq

Abstract

In this work, the developed algorithm of the integer sub-decomposition (ISD) method used to compute a scalar multiplication \(kP \) on another class of elliptic curves is presented. These curve are called Koblitz curves \(E_a \), with \(a \in \{0, 1\} \), defined over a binary extension field \(F_{2^m} \) that have efficiently-computable endomorphisms \(\psi_j \) for \(j = 1, 2 \). ISD method on Koblitz curves \(E_a \) is used for speeding the computations of the endomorphisms \(\psi_j \) to compute \(kP \). These endomorphisms are defined as the Frobenius maps over the endomorphism ring \(Z[\tau] \), where \(\tau \) is a complex number. The endomorphism ring \(Z[\tau] \) in this case is embedded into an imaginary quadratic field \(\mathbb{Q}(\sqrt{D}) \), where \(D = -7 \) is a square-free number. Subsequently, the ISD sub-decomposition idea on Koblitz curves \(E_a \) is utilized to speed the representations of the sub-scalars \(k_{11}, k_{12}, k_{21} \) and \(k_{22} \) using \(\tau \)-adic non-adjacent form (TNAF). On the curves \(E_a \) defined over \(F_{2^m} \), computing the endomorphisms and \(\tau \)-adic representations of ISD sub-scalars can be carried out without using any point doublings. This property is considered as a fundamental advantage to speed up the computation of complex multiplication \(kP \). The ISD complex multiplication is defined by

\[
kP = k_{11}P + k_{12}\psi_1(P) + k_{21}P + k_{22}\psi_2(P)
\]

where \(k_{11}, k_{12}, k_{21} \) and \(k_{22} \in \mathbb{Z}[\tau] \) and are defined by

\[
k_{11} = u_{l_1-1}\tau^{l_1-1} + \cdots + u_1\tau + u_0,
\]

\[
k_{12} = u_{l_2-1}\tau^{l_2-1} + \cdots + u_1\tau + u_0,
\]

\[
k_{21} = u_{l_5-1}\tau^{l_5-1} + \cdots + u_1\tau + u_0P
\]

and \(k_{22} = u_{l_6-1}\tau^{l_6-1} + \cdots + u_1\tau + u_0 \). The endomorphisms in \(kP \) formula are defined by

\[
\psi_1(P) = u_{l_1-1}\tau^{l_1-1}(P) + \cdots + u_1\tau(P) + u_0P
\]

and \(\psi_2(P) = u_{l_2-1}\tau^{l_2-1}(P) + \cdots + u_1\tau(P) + u_0P \). The operations to compute ISD sub-scalars and the endomorphisms in ISD scalar multiplication \(kP \) are called complex multiplications by \(\tau \) on \(E_a \).
Key Words: Elliptic Curve Cryptography, Koblitz curves, Complex Scalar Multiplication, ISD method, Efficiently computable endomorphism, Binary extension field.

2000 AMS Subject Classification: Primary-11Dxx, 11Rxx, Secondary-20Gxx, 06Bxx.