International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 9 No. II (June, 2015), pp. 179-185

FUNNELS IN $B C L^{+}$ALGEBRAS

YONGHONG LIU

School of Automation, Wuhan University of Technology, 430070 Wuhan, China

E-mail: hylinin@163.com

Abstract

The two concepts of filtrations and deductive systems were introduced in $B C L^{+}$ algebras by the author. In this article, we introduce the concept of funnels, is fairly fundamental concept in $B C L^{+}$algebras. We show that the new version of the definition is equivalent to the filtration and it more general case. We studies unions and intersections of the funnels. We discuss the funnels coming into the deductive systems of $B C L^{+}$algebras and how to generate funnels by subalgebra. An interesting outcome from our result is that we shall prove that for $B C L^{+}$algebras there exists a filtration H such that H is funnel to a deductive system.

1. Introduction

In 2011 the author [1] first studied that the $B C L$-algebras. Later on, more papers have appeared in which $B C L$-algebras and their related concepts were developed by D. Al-Kadi and R. Hosny [2], and soft $B C L$-algebras were treated by D. Al-Kadi [3]. The author [4] in 2012 was introduced $B C L^{+}$algebras. For the general development of $B C L^{+}$algebras, the author [5-8] gives a characterization of a partial order and a

Key Words : BCL-algebras, BCL ${ }^{+}$algebras, Funnel, Filtration, Deductive system, Subalgebra. 2000 AMS Subject Classification : 03G25, 06F99.
topology in $B C L^{+}$algebras; discuss some distributions of $B C L^{+}$algebras; introduce filtrations and deductive systems in $B C L^{+}$algebras.
In this paper, we will introduce a new concept called funnels in $B C L^{+}$algebras. We discuss their interesting properties and relationships relevant to subalgebra, deductive systems and filtrations.

2. Preliminary (1)

In this section, let's first review relevant concept, as follows.
Definition 1 ([4]) : A $B C L^{+}$algebra is a triple $(Y ; *, 1)$, where Y is a nonempty set, ${ }^{\prime} *^{\prime}$ is a binary operation on Y and $1 \in Y$ is an element such that the following three axioms hold for any $x, y, z \in Y$:
$\left(B C L^{+} 1\right) \quad x * x=1$.
$\left(B C L^{+} 2\right) \quad x * y=1$ and $y * x=1$ imply $x=y$.
$\left(B C L^{+} 3\right) \quad((x * y) * z) *((x * z) * y)=(z * y) * x$.
Theorem $2([4])$: Assume that $(Y ; *, 1)$ is a $B C L^{+}$algebra. Then the following hold for any $x, y, z \in Y$.
(i) $(x *(x * y)) * y=1$.
(ii) $x * 1=x$ implies $x=1$.
(iii) $((x * y) *(x * z)) *(z * y)=1$.
(iv) $\left(B C L^{+} 2\right) \quad x * y=1$ and $y * x=1$ imply $x=y$.

3. Preliminary (2)

The concept of filtration has been intensively studied in [8] for $B C L^{+}$algebras. It has become an important tool in $B C L^{+}$algebras, as follows.
Definition 3 ([8]) : If D be a nonempty subset of a $B C L^{+}$algebra $(Y ; *, 1)$. Then we say that D be a deductive system if
(D1) $1 \in D$.
(D2) $x \in D$ and $x * y \in D$ imply $y \in D$.

Lemma 4 ([8]): Let D be a deductive system of a $B C L^{+}$algebra $(Y ; *, 1)$ and suppose $a \leq x$ whenever $a \in D$. Then $x \in D$.

Lemma 5 ([8]) : Let Y be commutative and let for all $x, y, z \in Y$. Then the following equalities are satisfied:
(Y1) $x *(y * z)=y *(x * z)$.
(Y2) $(x * y) * z=(x * z) * y$.
Theorem 6 ([8]) : Suppose that B is subalgebra of Y. Then B is a filtration and $x \in B$ if and only if $1 * x \in B$.
Theorem 7 ([8]) : Let H be a nonempty subset of a $B C L^{+}$algebra $(Y ; *, 1)$. Then H is a filtration if and only if it is a deductive system.

Theorem 8 ([8]): If $(Y, *, 1)$ is a $B C L^{+}$algebra, then $Y=\{1\}$.

4. Main Results in the Case of Funnels

Let $A, B \subseteq Y$ be any two subsets of $B C L^{+}$algebras $(Y ; *, 1)$. We can write

$$
A * B=\{x * y \mid x \in A, y \in B\} .
$$

Definition 9: Let H be a nonempty subset of a $B C L^{+}$algebra ($Y ; *, 1$) and satisfies $Y * H=H$. Then H is a funnel of $B C L^{+}$algebras. (Of course, the Y and $\{1\}$ itself are funnels of $B C L^{+}$algebras.)
Funnels that are $B C L^{+}$algebras are given in the next basic example.
Example 10: Let $Y=\{1, a, b, c\}$ and the operation $*$ on Y can be represented by

Table 1: $B C L^{+}$operation

$*$	1	a	b	c
1	1	1	1	1
a	a	1	1	c
b	b	1	1	c
c	c	1	c	1

By Definition $1\left(B C L^{+} 3\right)$.
(i) The left side of the equation is

$$
((a * b) * c) *((a * c) * b)=(1 * c) *(c * b)=1 * c=1 .
$$

(ii) The right side of the equation is

$$
(c * b) * a=c * a=1
$$

Then $(Y ; *, 1)$ is a $B C L^{+}$algebra, and so $H=\{1, c\}$ is a subset of Y, it is also a funnel. Theorem 11: If $(Y ; *, 1)$ is a $B C L^{+}$algebra, then Y is a funnel.
Proof: The proof is simple. Let $1=H$. By Theorem 8. Since $1=Y * Y=H$, by Definition 9, we have $Y=H$.

Theorem 12: Let H be a funnel of $B C L^{+}$algebras. Then there exists $1 \subseteq H$.
Proof : Let H be a funnel of $B C L^{+}$algebras. Then $0 \neq H=Y * H$. By Definition 9, if $a \subseteq H$, then

$$
1=a * a \subseteq Y * H=H
$$

and so $1 \subseteq H$.
Theorem 13: Let H be a funnel of $B C L^{+}$algebras $(Y ; *, 1)$. Then H is a subalgebra of $B C L^{+}$algebras ($Y ; *, 1$).
Proof: Let $a, b \in H$. Then by Definition 9, we have

$$
a * b \in H * H \subseteq Y * H=H \subseteq Y
$$

therefore, this proves the funnel H is a subalgebra of $B C L^{+}$algebras.
Remark 14 : As we shall see, the converse of Theorem 13 is not true. For example, $H=\{1, a\}$ is a subset of Y, but it is not a funnel of $B C L^{+}$algebras $(Y ; *, 1)$ in Example 10.

Next, we discuss the unions and intersections of funnels in $B C L^{+}$algebras.
Theorem 15: Let A and B be two funnels of a $B C L^{+}$algebra $(Y ; *, 1)$. Then $A \cap B$ and $A \cup B$ are funnels of $B C L^{+}$algebras $(Y ; *, 1)$.
Proof : For $\Psi \in Y$, we see that if $\Psi=A \cap B$, then by Definition 9 , we have

$$
\Psi \subseteq Y * \Psi=Y *(A \cap B) \subseteq(Y * A) \cap(Y * B)=A \cap B=\Psi
$$

and so $Y * \Psi=\Psi$. Thus $A \cap B$ is a funnel of $B C L^{+}$algebras $(Y ; *, 1)$.
Obviously, we also use the same method for $A \cup B$.
Remark 16: Let M be funnel of $B C L^{+}$algebras $(Y ; *, 1)$ and suppose N is a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$. Then $M \cup N$ not necessarily the funnel of $B C L^{+}$ algebras, but for $M \cap N$, we prove the following theorem.

Theorem 17 : Let M be funnel of $B C L^{+}$algebras $(Y ; *, 1)$, and suppose N is a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$. Then $M \cap N$ is a funnel of N.

Proof : Write

$$
N *(M \cap N) \subseteq(N * M) \cap(N * N) \subseteq(Y * M) \cap(N * N)
$$

By Theorem 15, let $N=Y$, then

$$
(Y * M) \cap(N * N)=M \cap N \subseteq N *(M \cap N)
$$

and so $N *(M \cap N)=M \cap N$.
The following corollary is crucial for what want to do.
Corollary 18 : Let M be funnel of $B C L^{+}$algebras $(Y ; *, 1)$ and assume that M is a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$. If $E \subseteq M$, then E is a funnel of Y iff E is a funnel of M.

Corollary 19 : Let M be funnel of $B C L^{+}$algebras $(Y ; *, 1)$ and suppose N is a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$. If $M \cap N=\phi$, then there exists a deductive system D and $M \subseteq D$ such that $D \cap N=\phi$.
Theorem 20 : Let $\Im=(Y ; *, 1)$ and $\Re=(X ; *, 1)$ be two $B C L^{+}$algebras, define $\theta: \Im \rightarrow \Re$ is a morphism. Let θ be onto and let M be funnel of \Im. Then $\theta(M)$ is a funnel of \Re.

Proof: We may assume that θ be onto and let M be funnel of \Im. By Corollary 18, we have

$$
\theta(M) \subseteq X * \theta(M)
$$

Now let $a \in \theta(M)$ and $x \in X$ for some $b \in M$ and $y \in Y$, then $a=\theta(b)$ and $x=\theta(y)$, we see that

$$
x * a=\theta(y) * \theta(b)=\theta(y * b) \in \theta(Y * M)=\theta(M)
$$

and so $X * \theta(M) \subseteq \theta(M)$, we have $\theta(M)$ is a funnel of \Re.
Our next goal is somewhat more ambitions.
Theorem 21 : Let H be a filtration of $B C L^{+}$algebras $(Y ; *, 1)$ and let H be a deductive system. Then H is a funnel of Y.
Proof : We may assume that H be a deductive system of $B C L^{+}$algebras $(Y ; *, 1)$.

By Definition 3 we have $1 \in H$ and H be a nonempty subset of a $B C L^{+}$algebra $(Y ; *, 1)$. Suppose that $a \in H$ and $b \in Y$, hence $a \leq b * a$, then $b * a \in H$ and so $Y * H \in H$. We thus have

$$
H=\{1\} * H \subseteq Y * H
$$

and therefore $Y * H=H$. We deduce H be a deductive system and H is a funnel. Therefore H is a filtration by Theorem 7 .
Theorem 22: Let H be a deductive system of $B C L^{+}$algebras $(Y ; *, 1)$. Then for every nonempty subset K of Y and $K * H$ is a funnel of $B C L^{+}$algebras $(Y ; *, 1)$.
Proof: By Theorem 21 and by Lemma 5 (Y1), we have

$$
Y *(K * H)=K *(Y * H)=K * H,
$$

and $K * H$ is a funnel of Y.
Theorem 23: Let M be a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$. Then M is a funnel iff $a \in M$ and $1 * a \in M$.
Proof : Let M be a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$ and let M is a funnel of $B C L^{+}$algebras $(Y ; *, 1)$, then $a \in M$ and $1 \in M$ and so $1 * a \in M$.
Conversely, let $a, b \in M$, by Lemma 5 (Y2), we have

$$
(a * b) * a=(a * a) * b=1 * b \in M .
$$

Since $a \in M$ and M be a funnel, thus $a * b \in M$. By Theorem 12 and Theorem 13, we have

$$
a * b \in M \subseteq Y * M,
$$

it is easy to see $Y * M=M$, and so M be a subalgebra of $B C L^{+}$algebras $(Y ; *, 1)$, it is also a funnel.

5. Conclusion

Relation between filtrations and deductive systems is very interesting in $B C L^{+}$algebras. In this paper, we introduce the concepts of funnels for $B C L^{+}$algebras in Definition 9. We show some useful properties of these funnels that give various methods how to get funnels from them. Although the funnel is a basic concept in $B C L^{+}$algebras, the idea
in this paper, but can be applied to other algebraic logic, like $B L$-algebras in [9], Heyting algebras in [10], Hilbert algebras in [11], etc.

References

[1] Liu Y. H., A new branch of the pure algebra: BCL-algebras, Advances in Pure Mathematics, 1 (2011), 297-299. http:// dx.doi.org/ 10.4236/ apm.2011.15054
[2] Al-Kadi D. and Hosny R., On BCL-algebra. Journal of Advances in Mathematics, 3 (2013), 184-190.
[3] Al-Kadi D., Soft BCL-algebra, International Journal of Algebra, 8 (2014), 57-65. http://dx.doi.org/10.12988/ija.2014.311122
[4] Liu Y. H., On $B C L^{+}$-algebras, Advances in Pure Mathematics, 2 (2012), 59-61. http://dx.doi.org/10.4236/apm.2012.21012
[5] Liu Y. H., Partial orders in $B C L^{+}$-algebra, Journal of Advances in Mathematics, 5 (2013), 630-634.
[6] Liu Y. H., Topological $B C L^{+}$-algebras, Pure and Applied Mathematics Journal, 3 (2014), 11-13.
[7] Liu Y. H., Some distributions of $B C L^{+}$-algebras, International Journal of Algebra, 8 (2014), 495-503. http://dx.doi.org/10.12988/ija.2014.4556
[8] Liu Y. H., Filtrations and deductive systems in $B C L^{+}$algebras, British Journal of Mathematics \& Computer Science, 8 (2015), 274-285.
[9] Hajek P., Basic fuzzy logic and BL-algebras, Soft Computing, 2 (1998), 124-128.
[10] Heyting A., Die formalen Regeln der intuitionistischen Logik. I, II, III, Sitzungsberichte Akad. Berlin. (1930).
[11] Busnesg D. and Ghita M., Some properties of epimorphisms of Hilbert algebras, Central European Journal of Mathematics, 8 (2010), 41-52.

