International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. II (June, 2015), pp. 201-209

DEPENDENT ELEMENTS OF REVERSE DERIVATIONS ON SEMIPRIME RINGS

K. SANKARA NAIK¹ AND K. SUVARNA²

^{1,2} Department of Mathematics, Sri Krishnadevaraya University, Anantapur-515003, A.P., India

Abstract

In this paper, we prove that if d is a commuting reverse derivation of a semiprime ring R of char. $\neq 2$, then $a \in D(d)$, where D(d) is the collection of all dependent elements of d if and only if $a \in Z$ and $ad(x^2) = 0$ for all $x \in R$. Using this, we prove the decomposition of R. Also we show that, if d is a reverse derivation of a semiprime ring R, S is a right ideal of R and $d(xr) \in Z$ for all $x \in S$, $r \in R$, then [S, R] d(R) = 0. Using this, we give another proof of the decomposition of R. That is, we prove that if d is commuting, then there exist ideals U and V of R such that $U \oplus V$ is an essential ideal of R, $U \cap V = \{0\}$, d = 0 on U, $d(V) \subseteq V$ and d acts freely on V.

Key Words: Commuting reverse derivation, Dependent element and free action.

© http://www.ascent-journals.com