International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 1-9

FUZZY GENERALISED LATTICES

P. RADHA KRISHNA KISHORE

Department of Mathematics Arbaminch University, Arabminch, Ethiopia E-mail: parimirkk@gmail.com

Abstract

This paper, deals with the concept of fuzzy subgeneralised lattice of a generalised lattice which can also be call as fuzzy generalised lattice. The concepts of fuzzy ideal (filter), fuzzy prime ideal (filter) and fuzzy convex subgeneralised lattice of a generalised lattice are also introduced and obtained their characterizations. Discussed about the products of fuzzy subgeneralised lattices (ideals, filters, convex subgeneralised lattices) and obtain a necessary and sufficient condition for a fuzzy ideal on the direct product of generalised lattices to be representable as a direct product of fuzzy ideals on each generalised lattice.

1. Introduction

Murty and Swamy [5] introduced the concept of generalised lattice. In [2] the author developed the theory of generalised lattices that can play an intermediate role between the theories of lattices and posets. The concept of fuzzy lattice is well known by [1] and [7]. In this paper section 2 contains preliminaries which are taken from the references. In section 3 introduced the concepts of fuzzy subgeneralised lattice, fuzzy ideal (filter) and fuzzy prime ideal (filter) of a generalised lattice with proper examples. Proved that these are characterized by their level subsets. In section 4 the concept of fuzzy convex

© http://www.ascent-journals.com

subgeneralised lattice introduced and discussed. In section 5 discussed about the products of fuzzy subgeneralised lattices (ideals, filters, convex subgeneralised lattices) and obtain a necessary and sufficient condition for a fuzzy ideal on the direct product of generalised lattices to be representable as a direct product of fuzzy ideals on each generalised lattice.

2. Preliminaries

Definition 2.1 [Murty [5]] : Let (P, \leq) be a poset. P is said to be a generalised meet semilattice if for every non empty finite subset A of P, there exist a non empty finite subset B of P such that, $x \in L(A)$ if and only if $x \leq b$ for some $b \in B$. P is said to be a generalised join semilattice if for every non empty finite subset A of P, there exist a non empty finite subset B of P such that, $x \in U(A)$ if and only if $b \leq x$ for some $b \in B$. P is said to be a generalised lattice if it is both generalised meet and join semilattice.

It is observed that if P is a generalised meet (join) semilattice, then for any $L(A) \in \mathcal{L}(P)$ $(U(A) \in \mathcal{U}(P))$ there exists a unique finite subset B of P such that $L(A) = \bigcup_{b \in B} L(b)$ $(U(A) = \bigcup_{b \in B} U(b))$ and the elements of B are mutually incomparable and the set is denoted by ML(A) (mu(A)).

Definition 2.2 [Kishore [2]] : Let P be a generalised lattice. A non empty subset S of P is said to be a subgeneralised lattice if for any finite subset A of S, $ML(A) \subseteq S$ and $mu(A) \subseteq S$. An initial segment I of a P is said to be a strong ideal if $mu(A) \subseteq I$, for any finite subset A of I. Dually a final segment F of P is said to be a strong filter if $ML(A) \subseteq F$, for any finite subset A of F.

It is observed that in a generalised lattice, every strong ideal (filter) is a subgeneralised lattice and an ideal (filter)(see [5]).

Definition 2.3 [Kishore [4]] : An ideal (filter) I(F) of a poset P is said to be prime if for any $a, b \in P - I$ $(a, b \in P - F)$ there exist $c \in P - I$ $(c \in P - F)$ such that $c \leq a, b$ $(c \geq a, b)$.

It is observed that in a generalized lattice, an ideal (filter) I(F) is prime if and only if for any $a, b \in P - I$, $(a, b \in P - F)$ there exist $c \in ML(\{a, b\})$ $(c \in mu(\{a, b\}))$ such that $c \in P - I$ $(c \in P - F)$.

Definition 2.4 [Kishore [3]] : A subset C of a poset P is said to be convex if for

any $a, b \in C, c \in P$ and $a \leq c \leq b$, we have $c \in C$. If a subgeneralised lattice of a generalised lattice is convex then it is said to be a convex subgeneralised lattice.

Definition 2.5: Let μ be a fuzzy set in P. For any $t \in [0, 1]$, the set $\mu_t = \{x \in X \mid \mu(x) \geq t\}$ is called level subset of μ . The fuzzy set μ' defined by $\mu'(x) = 1 - \mu(x)$ for all $x \in P$ is called complement of μ .

Definition 2.6: Let μ , θ be a fuzzy sets in *P*. Then their intersection $\mu \cap \theta$ defined by $(\mu \cap \theta)(x) = min\{\mu(x), \theta(x)\}.$

3. Fuzzy Subgeneralised Lattices and Fuzzy Ideals

Throughout this section, we shall denote by P a generalised lattice. In a generalised lattice, first we define the concepts: fuzzy subgeneralised lattice, fuzzy ideal, fuzzy filter, fuzzy prime ideal and fuzzy prime filter with proper examples.

Definition 3.1: A fuzzy set μ in P is said to be a fuzzy subgeneralised lattice if for any finite subset A of P, $(i) \ \mu(s) \ge \min_{a \in A} \{\mu(a)\}$ for all $s \in mu(A)$ and $(ii) \ \mu(t) \ge \min_{a \in A} \{\mu(a)\}$ for all $t \in ML(A)$.

Definition 3.2: Let μ be a fuzzy subgeneralised lattice of P. μ is called a fuzzy ideal if $x \leq y$ in P implies $\mu(x) \geq \mu(y)$. μ is called a fuzzy filter if $x \leq y$ in P implies $\mu(x) \leq \mu(y)$.

Definition 3.3: A fuzzy ideal μ of P is said to be a fuzzy prime ideal if for any finite subset A of P, $(iii) \ \mu(t) \leq \max_{a \in A} \{\mu(a)\}$ for all $t \in ML(A)$.

Definition 3.4: A fuzzy filter μ of P is said to be a fuzzy prime filter if for any finite subset A of P, $(iv) \ \mu(s) \leq \max_{a \in A} \{\mu(a)\}$ for all $s \in mu(A)$.

For a fuzzy set μ in P and $x, y \in P$, consider the following conditions: $(i') \ \mu(s) \ge \min\{\mu(x), \mu(y)\}$ for all $s \in mu(\{x, y\})$, $(ii') \ \mu(t) \ge \min\{\mu(x), \mu(y)\}$ for all $t \in ML(\{x, y\})$, $(iii') \ \mu(t) \le \max\{\mu(x), \mu(y)\}$ for all $t \in ML(\{x, y\})$ and $(iv') \ \mu(s) \le \max\{\mu(x), \mu(y)\}$ for all $s \in mu(\{x, y\})$. Then we have $(i) \Leftrightarrow (i')$, $(ii) \Leftrightarrow (ii')$, $(iii) \Leftrightarrow (iii')$ and $(iv) \Leftrightarrow (iv')$.

Example 3.5: Consider the generalised lattice $P = \{0, a, b, c, d, 1\}$ under the order 0 < x < 1 for all $x \in P$ and a < c, a < d, b < c, b < d. Define the fuzzy sets μ_1 , μ_2 : $P \to [0, 1]$ by $\mu_1(0) = 0.3$, $\mu_1(a) = 0.2$, $\mu_1(b) = 0.5$, $\mu_1(c) = 0.6$, $\mu_1(d) = 0.2$, $\mu_1(1) = 0.4$ and $\mu_2(0) = 0.6$, $\mu_2(a) = 0.2$, $\mu_2(b) = 0.4$, $\mu_2(c) = \mu_2(d) = \mu_2(1) = 0.2$. Then μ_1 is a fuzzy subgeneralised lattice but not a fuzzy ideal of P and μ_2 is a fuzzy ideal but not

a fuzzy prime ideal of P. More over every fuzzy prime ideal of P is a constant fuzzy set. **Example 3.6**: Consider the generalised lattice $P' = \{0, a, b, c, d, e, 1\}$ under the order 0 < x < e < 1 for all $x \in P$ and a < c, a < d, b < c, b < d. Define the fuzzy set $\mu_3 : P' \to [0, 1]$ by $\mu_3(0) = \mu_3(a) = \mu_3(b) = \mu_3(c) = \mu_3(d) = \mu_3(e) = 0.4$, $\mu_3(1) = 0.2$. Then μ_3 is a fuzzy prime ideal of P' which is also a non-const map.

In the following Propositions we obtain equivalent conditions for a fuzzy set to be a fuzzy ideal (filter, prime ideal, prime filter).

Proposition 3.7: Let μ be a fuzzy set in P. Then for any $x, y \in P$ and for any finite subset A of P, the following conditions are equivalent: (i) $\mu(x) \ge \mu(y)$ whenever $x \le y$, (ii) $\mu(t) \ge \operatorname{Max}_{a \in A}{\{\mu(a)\}}$ for all $t \in ML(A)$ and (iii) $\mu(s) \le \min_{a \in A}{\{\mu(a)\}}$ for all $s \in mu(A)$.

Proof: (i) \Leftrightarrow (ii): For any $t \in ML(A)$, by (i) we have $\mu(t) \ge \mu(a)$ for all $a \in A$ and then $\mu(t) \ge \operatorname{Max}_{a \in A}{\{\mu(a)\}}$. Conversely suppose $x \le y$, then by (ii) we have $\mu(x) \ge$ $\operatorname{Max}{\{\mu(x), \mu(y)\}}$ and then $\mu(x) \ge \mu(y)$. Similarly we can prove (i) \Leftrightarrow (iii).

Observe that a fuzzy subgeneralised lattice μ of P is a fuzzy ideal if and only if μ satisfies any one of the three conditions of above theorem. Moreover a fuzzy subset μ of P is a fuzzy ideal if and only if for any finite subset A of P, $\mu(s) = \min_{a \in A} \{\mu(a)\}$ for all $s \in mu(A)$.

Proposition 3.8 : Let μ be a fuzzy set in P. Then for any $x, y \in P$ and for any finite subset A of P, the following conditions are equivalent: (i) $\mu(x) \leq \mu(y)$ whenever $x \leq y$, (ii) $\mu(s) \geq \max_{a \in A} \{\mu(a)\}$ for all $s \in mu(A)$ and (iii) $\mu(t) \leq \min_{a \in A} \{\mu(a)\}$ for all $t \in ML(A)$.

Observe that a fuzzy subgeneralised lattice μ of P is a fuzzy filter if and only if μ satisfies any one of the three conditions of above theorem. Moreover a fuzzy subset μ of P is a fuzzy filter if and only if for any finite subset A of P, $\mu(t) = \min_{a \in A} \{\mu(a)\}$ for all $t \in ML(A)$.

Proposition 3.9: Let μ be a fuzzy ideal of P. Then for any finite subset A of P, the following conditions are equivalent: (i) μ is a fuzzy prime ideal, (ii) $\mu(t) = \text{Max}_{a \in A} \{\mu(a)\}$ for all $t \in ML(A)$ and (iii) $\mu(t) = \mu(a)$ for some $a \in A$, for all $t \in ML(A)$.

Proof : (i) \Leftrightarrow (ii): If μ is a fuzzy prime ideal then by the Definition 3.3 and the Proposition 3.7, we can get (ii). Clearly the converse is true. (iii) \Leftrightarrow (ii): Let $t \in ML(A)$ and suppose $\mu(t) = \mu(a)$ for some $a \in A$. Then $\mu(t) = \mu(a) \ge \mu(b)$ for all $b \in A$.

Therefore $Max_{b \in A}{\mu(b)} = \mu(a) = \mu(t)$. The converse is clear.

Proposition 3.10: Let μ be a fuzzy filter of P. Then for any finite subset A of P, the following conditions are equivalent: (i) μ is a fuzzy prime filter, (ii) $\mu(s) = \max_{a \in A} \{\mu(a)\}$ for all $s \in mu(A)$ and (iii) $\mu(s) = \mu(a)$ for some $a \in A$, for all $s \in mu(A)$. Recall the Definition 2.5 for the complement of a fuzzy set.

Corollary 3.11: If μ is a fuzzy ideal of *P*, such that the complement μ' is a fuzzy filter then μ and μ' are fuzzy prime.

Corollary 3.12: Let μ be a fuzzy set in *P*. Then μ is a fuzzy prime ideal if and only if μ' is a fuzzy prime filter.

In the following Theorems we characterize fuzzy subgeneralised lattices (ideals, filters, prime ideals, prime filters) by their level subsets.

Theorem 3.13 : A fuzzy set μ in P is a fuzzy subgeneralised lattice if and only if each non-empty level subset μ_t is a subgeneralised lattice of P if and only if for any $t \in \text{Im}\mu$, μ_t is a subgeneralised lattice of P.

Proof : Suppose μ is a fuzzy subgeneralised lattice of P and μ_t is a non-empty level subset of P. Let A be a finite subset of μ_t . Then for any $r \in mu(A)$ and $s \in ML(A)$, we have $\mu(r), \mu(s) \geq \min_{a \in A} \{\mu(a)\} \geq t$. So that $mu(A), ML(A) \subseteq \mu_t$. Conversely suppose each non-empty level subset μ_t is a subgeneralised lattice of P. Let $A = \{a_1, a_2, \dots, a_n\}$ be a finite subset of P. For $1 \leq i \leq n$, suppose $\mu(a_i) = t_i$ and $t_i \leq t_{i-1}$. Then we have $\mu_{t_{i-1}} \subseteq \mu_{t_i}$ and $a_i \in \mu_{t_i}$. Now $mu(A), ML(A) \subseteq \mu_{t_n}$, since $A \subseteq \mu_{t_n}$. Therefore for any $r \in mu(A)$ and $s \in ML(A)$, $\min_{a \in A} \{\mu(a)\} = t_n \leq \mu(r), \mu(s)$.

Definition 3.14 : If μ is a fuzzy subgeneralised lattice of P, then for any $t \in \text{Im}\mu$, the subgeneralised lattice μ_t is called a level subgeneralised lattice of μ .

Observe that the set of level subgeneralised lattices of a fuzzy subgeneralised lattice of a generalised lattice forms a chain.

Theorem 3.15: A fuzzy set μ in P is a fuzzy ideal (filter) if and only if each non-empty level subset μ_t is a strong ideal (filter) of P if and only if for any $t \in \text{Im}\mu$, μ_t is a strong ideal (filter) of P.

Proof : Suppose μ is a fuzzy ideal of P and μ_t is a non-empty level subset of P. Let $x \in \mu_t, y \in P$ and suppose $y \leq x$. Since $\mu(y) \geq \mu(x) \geq t, y \in \mu_t$. By Theorem 3.13, μ_t is a strong ideal of P. Conversely suppose each non-empty level subset μ_t is a strong ideal of P. By theorem 3.13, μ is a subgeneralised lattice of P. Let $x, y \in P, \mu(x) = t_1, \mu(y) = t_2$

and suppose $x \leq y$. If $\mu(x) \not\geq \mu(y)$ then since μ_{t_2} is an initial segment, x not in μ_{t_2} but $y \in \mu_{t_2}$ leads to a contradiction. Therefore μ is a fuzzy ideal of P.

Definition 3.16 : If μ is a fuzzy ideal (filter) of P, then for any $t \in \text{Im}\mu$, the strong ideal (filter) μ_t is called a level strong ideal (filter) of μ .

Theorem 3.17: A fuzzy set μ in P is a fuzzy prime ideal (filter) if and only if each non-empty level subset μ_t is a prime strong ideal (filter) of P if and only if for any $t \in \text{Im}\mu$, μ_t is a prime strong ideal (filter) of P.

Proof : Suppose μ is a fuzzy prime ideal of P and μ_t is a non-empty level subset of P. Then by theorem 3.15, μ_t is a strong ideal of P. Now for any $a, b \in P - \mu_t$ and $c \in ML(\{a, b\})$, by Theorem 3.9 we have $\mu(c) \geq t$, i.e., $c \in P - \mu_t$. Conversely suppose each non-empty level subset μ_t is a prime strong ideal of P. Assume that the fuzzy ideal μ is not prime. Then by theorem 3.9 there exists $a, b \in P$ and $c \in ML(\{a, b\})$ such that $\mu(c) \neq \mu(a)$ and $\mu(c) \neq \mu(b)$. Since μ is a fuzzy ideal, $\mu(c) > \mu(a)$ and $\mu(c) > \mu(b)$. Now for $t = \mu(c)$, we have $a \in P - \mu_t$, $b \in P - \mu_t$ but $c \in \mu_t$ which leads to a contradiction. Therefore μ is a fuzzy prime ideal.

Theorem 3.18 : Let μ_i be any family of fuzzy subgeneralised lattices (ideals, filters) of *P*. Then $\bigcap \mu_i$ is a fuzzy subgeneralised lattice (ideal, filter) of *P*.

Definition 3.19: Let μ be a fuzzy set in P. Then the least fuzzy subgeneralised lattice (ideal, filter) of P containing μ is called the fuzzy subgeneralised lattice (ideal, filter) generated by μ , denoted by $[\mu]$ ((μ], $[\mu)$).

4. Fuzzy Convex Subgeneralised Lattices

Throughout this section, we shall denote by P a generalised lattice.

Definition 4.1: A fuzzy subgeneralised lattice μ of P is fuzzy convex if for every interval $[a,b] \subseteq P$, $\mu(x) \ge \min\{\mu(a),\mu(b)\}$ for all $x \in [a,b]$.

Theorem 4.2: A fuzzy set μ in P is a fuzzy convex subgeneralised lattice if and only if each non-empty level subset μ_t is a convex subgeneralised lattice of P if and only if for any $t \in \text{Im}\mu$, μ_t is a convex subgeneralised lattice of P.

Proof: Suppose μ is a fuzzy convex subgeneralised lattice of P and μ_t is a non-empty level subset of P. By Theorem 3.13 μ_t is a subgeneralised lattice of P. Let $a, b \in \mu_t$ and a < b. Since $\mu(x) \ge min\{\mu(a), \mu(b)\} \ge t$ for any $x \in [a, b]$, we have $[a, b] \subseteq \mu_t$ and then μ_t is convex. Conversely suppose each non-empty level subset μ_t is a convex subgeneralised lattice of P. Again by Theorem 3.13, μ is a fuzzy subgeneralised lattice of P. Let $[a, b] \subseteq P$, $x \in [a, b]$ and take $t = min\{\mu(a), \mu(b)\}$. Since $a, b \in \mu_t$, we have $x \in \mu_t$ i.e., $\mu(x) \ge t$. Therefore μ is a fuzzy convex subgeneralised lattice of P.

Proposition 4.3: In a generalised lattice, every fuzzy ideal (filter) is fuzzy convex.

Example 4.4: Consider the generalised lattice P as in the Example 3.5. Define the fuzzy set $\mu_4 : P \to [0, 1]$ by $\mu_4(0) = \mu_4(a) = 0.2$, $\mu_4(b) = 0.4$, $\mu_4(c) = 0.6$, $\mu_4(d) = \mu_4(1) = 0.2$. Then μ_4 is a fuzzy convex subgeneralised lattice but not a fuzzy ideal.

Observe that the fuzzy subgeneralised lattice μ_1 (defined in the Example 3.5) is not fuzzy convex.

Theorem 4.5: Let μ_i be any family of fuzzy convex subgeneralised lattices *P*. Then $\bigcap \mu_i$ is a fuzzy convex subgeneralised lattice of *P*.

Observe that in a generalised lattice, the intersection of a fuzzy ideal and a fuzzy filter is a fuzzy convex subgeneralised lattice provided the intersection is non-empty.

5. Products of Fuzzy Subgeneralised Lattices

Through out this section, we denote P_1 , P_2 are generalised lattices.

Definition 5.1: Let μ_1 , μ_2 be fuzzy subsets of P_1 , P_2 respectively. Define the product $\mu_1 \times \mu_2$, a fuzzy subset of $P_1 \times P_2$, by $(\mu_1 \times \mu_2)(x, y) = \min\{\mu_1(x), \mu_2(y)\}$ for all $(x, y) \in P_1 \times P_2$.

Definition 5.2: Let μ be a fuzzy subgeneralised lattice of $P_1 \times P_2$. Then the fuzzy subsets $\pi_1(\mu)$, $\pi_2(\mu)$ defined by $\pi_1(\mu)(x) = \sup\{\mu(x, y) \mid y \in P_2\}, \pi_2(\mu)(y) = \sup\{\mu(x, y) \mid x \in P_1\}$ are called projections of μ on P_1 , P_2 respectively.

Proposition 5.3: (i) If μ_1 , μ_2 are fuzzy subgeneralised lattices (ideals, filters, fuzzy convex) of P_1 , P_2 respectively, then $\mu_1 \times \mu_2$ is a fuzzy subgeneralised lattice (ideal, filter, fuzzy convex) of $P_1 \times P_2$. (ii) If μ is a fuzzy subgeneralised lattice (ideal, filter, fuzzy convex) of $P_1 \times P_2$, then $\pi_1(\mu)$, $\pi_2(\mu)$ are fuzzy subgeneralised lattices (ideals, filters, fuzzy convex) of P_1 , P_2 , then $\pi_1(\mu)$, $\pi_2(\mu)$ are fuzzy subgeneralised lattices (ideals, filters, fuzzy convex) of P_1 , P_2 respectively.

Proof: (i) Suppose μ_1 , μ_2 are fuzzy subgeneralised lattices of P_1 , P_2 respectively. Let C be a finite subset of $P_1 \times P_2$. Then there exists finite subsets A, B of P_1 , P_2 respectively such that $L(C) = L(A \times B)$. Now for any $(s, t) \in ML(C) = ML(A) \times ML(B)$, we have $(\mu_1 \times \mu_2)(s, t) = \min\{\mu_1(s), \mu_2(t)\} \ge \min\{\min_{a \in A} \mu_1(a), \min_{b \in B} \mu_2(b)\} = \min_{(a, b) \in C} (\mu_1 \times \mu_2)(a, b)$. Therefore $\mu_1 \times \mu_2$ is a fuzzy subgeneralised lattice of $P_1 \times P_2$.

(ii) Suppose μ is a fuzzy subgeneralised lattice of $P_1 \times P_2$. Let A be a finite subset of P_1 and $s \in mu(A)$. Then for any $z \in P_2$, we have $\mu(s, z) \ge min_{a \in A}\mu(a, z)$, since $(s, z) \in mu(A) \times mu(z) = mu(A \times \{z\})$. So that $\pi_1(\mu)(s) \ge \sup\{\min_{a \in A}\mu(a, z) \mid z \in P_2\} = \min_{a \in A}\pi_1(\mu)(a)$. Therefore $\pi_1(\mu)$ is a fuzzy subgeneralised lattice of P_1 .

Definition 5.4: Let μ be a fuzzy subset of $P_1 \times P_2$ and $a \in P_2$, $b \in P_1$. Then the fuzzy subsets $m_1^a(\mu)$, $m_2^b(\mu)$ defined by $m_1^a(\mu)(x) = \mu(x, a)$ and $m_2^b(\mu)(y) = \mu(b, y)$ are called marginal fuzzy subsets of P_1 , P_2 respectively.

Proposition 5.5: If μ is a fuzzy subgeneralised lattice (ideal, filter, fuzzy convex) of $P_1 \times P_2$, then for all $a \in P_2$, $b \in P_1$; $m_1^a(\mu)$, $m_2^b(\mu)$ are fuzzy subgeneralised lattices (ideals, filters, fuzzy convex) of P_1 , P_2 respectively.

Lemma 5.6: If μ is a fuzzy ideal of $P_1 \times P_2$, then for all $a \in P_2$, $b \in P_1$; $m_1^a(\mu) \times m_2^b(\mu) \subseteq \mu \subseteq \pi_1(\mu) \times \pi_2(\mu)$.

Proof: For any $(x, y) \in P_1 \times P_2$, we have $(m_1^a(\mu) \times m_2^b(\mu))(x, y) = \min\{m_1^a(\mu)(x), m_2^b(\mu)(y)\} = mu(\{\mu(x, a), \mu(b, y)\}) = mu(\{\mu(x, y), \mu(b, a)\}) \le \mu(x, y)$ and clearly $\mu(x, y) \le \min\{\pi_1(\mu)(x), \pi_2(\mu)(y)\} = \pi_1(\mu) \times \pi_2(\mu)(x, y).$

Theorem 5.7: Let P_1 , P_2 be generalised lattices with 0 and μ is a fuzzy ideal of $P_1 \times P_2$. Then μ is the product of a fuzzy ideal of P_1 and a fuzzy ideal of P_2 if and only if $m_1^0(\mu) \times m_2^0(\mu) = \pi_1(\mu) \times \pi_2(\mu)$.

Acknowledgement

The author would like to thank Professor M. Krishna Murty for their valuable suggestions during the preparation of the paper.

References

- Ajmal N., Thomas K. V., Fuzzy lattices, information sciences, 79 (1994), 271-291.
- [2] Kishore P. R. K., Murty M. K., Ramani V. S., Patnaik M. D. P., On generalised lattices, Southeast Asian Bulletin of Mathematics, 33 (2009), 1091-1104.
- [3] Kishore P. R. K., The lattice of convex subgeneralised lattices of a generalised lattice, International Journal of Algebra, 3(17) (2009), 815-821.

- [4] Kishore P. R. K., Distributive generalized lattices, International Journal of Computational Cognition, 7(3) (2009), 23-26.
- [5] Murty M. K., Swamy U. M., Distributive partially ordered sets, The Aligarh Bull. of Math, 8 (1978) 1-16.
- [6] Rosenfeld A., Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
- [7] Yuan Bo., Wu W., Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems, 35 (1990), 231-240.