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Abstract

A two fluid model has been employed to study the propagation of solitary kinetic
Alfvén waves in presence of negatively charged dust particles. The set of basic
equations governing the ions, electrons, dust and Maxwell’s equation have been re-
duced to a single equation known as the Sagdeev Potential (SP) equation. An exact
analytical expression for the SP or energy integral equation is obtained. Parametric
ranges for the existence of arbitrary amplitude soliton are studied in detail. The
SP is evaluated numerically in cases when solitary waves exist analytically. Study
has been made related to the transition of the waves from shear to kinetic Alfvén
waves and corresponding characters in terms of Mach numbers.
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1. Introduction

Alfvén waves (AWs) have been extensively studied because of their potential importance

in the particle energization of magnetized plasmas and have been applied to laboratory

[1, 2], astrophysical [3] and space [4] plasmas, tokamak plasma heating [5], the auroral

electron acceleration [6], the solar coronal plasma heating [7] and the anomalous heating

of heavy ions in the extended corona [8]. Therefore, the mechanism of generation and

excitation of AWs is of great interest in wide areas. Kinetic Alfvén waves (KAWs) are

of importance in the study of coupling between the ionosphere and magnetosphere [9].

These KAWs are dispersive waves and can generate a parallel electric field in a plasma

with β > me/mi (the electron-to-ion mass ratio), the kinetic limit. Moreover, nonlinear

interaction among the KAWs can also occur because of their polarization properties

[10]. Rau and Tajima [11] examined the ion acceleration by a nonlinear compressional

Alfvén wave propagating perpendicular to an arbitrarily strong external magnetic field.

Ofman and Davila [12] investigated the nonlinear effects that drive the solitary waves

associated with Alfvén waves in the context of coronal holes. It is worth mentioning here

that ideal magnetohydrodynamic Alfvén waves are not of a dispersive nature. However,

if the perpendicular wavelength is comparable to the gyroradius, the ions will no longer

follow the magnetic lines of force, whereas the electrons, owing to their small Larmor

radius, will still be attached to the field lines. As a result, charge separation follows and

leads to what are termed as kinetic Alfvén waves.

Most of the solitary kinetic Alfvén wave (SKAW) studies were made for plasma with

isothermal electrons, except a few. In reality, the polytropic index varies significantly

under different physical conditions. It has now become a common concept that the

acceleration of electrons and ions responsible for the aurora could be due to Alfvén

waves [13]. Alfvénic solitons are finite-amplitude waves of permanent form which owe

their existence to a balance between nonlinear wave steepening and dispersion of plasma

medium. Dissipation mechanism such as collision and viscosity can drastically change

the structure of the solitary Alfvén wave to shock-like structures [14, 15]. Initially the

formation and propagation of solitary wave solutions for KAWs were investigated by

Hasegawa and Mima [16]. Yu and Shukla [17] investigated that the existence of SKAWs

propagating in an oblique direction w.r.t. the ambient magnetic field in a magnetized

plasma with α� 1 where α = β/2Q, β → thermal pressure by electron/magnetic pres-
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sure by ambient magnetic field and Q = electron to ion mass ratio. Kalita and Kalita

[18] showed the existence of both super and subsonic rarefactive Alfvén solitons in a

low-β (� me/mi) plasma [18]. Moreover Kalita and Bhatta [19] have investigated the

exact nonlinear localized Alfvén SW solutions in a low β plasma with hot electrons and

finite electron inertia. The generation of electric fields which are parallel to the local

magnetic field direction is found to be self-consistent and accordingly the formation

and propagation of KA solitons have been studied through the Sagdeev Potential (SP)

equation [20]. Woo et al. [21] investigated the effect of a small electron viscosity on

KASWs in extremely low β plasma; they also demonstrated the formation of a kinetic

Alfvén double layer for a large amplitude KASW. The solitary waves (SWs) (double

layers (DLs)) are the localized symmetric (asymmetric) potential structures with no net

potential drop (a net potential drop). Such localized structures were detected from the

auroral acceleration region, for the first time by the S3-3 satellite [22]. Wu et al. [23]

identified kinetic Alfvén solitary waves (KASWs) accompanied by both dip-type and

hump-type density structures in the Freja observations. Louarn et al. [24] also exam-

ined the localized strong electromagnetic perturbations that were observed by the F4

experiment in the Freja satellite; Huang et al. [25] later identified these perturbations

as KASW eigenmodes. Using data from the POLAR and CLUSTER satellites, Chen

[26] reported an observation of large amplitude electromagnetic fluctuations and the

associated energization of particles in the local magnetospheric cusp region. KASWs

have also been observed during numerous space missions. More attention has been

given to solitary kinetic Alfvén waves because of the data published from Freja satellite

observations [27, 28]. Recently, spacecraft data provided new information about lower

hybrid solitary structures. Lakhina et al. [29] have suggested that electron-acoustic

solitons/double layers can explain the generation of magnetosheath electrostatic soli-

tary structures and the broadband electrostatic noise in the plasma sheet boundary

layer. Studies on the formation of large amplitude KAW solitons and double layers in

plasmas have been studied by Devi et al. [31]. They have shown that the amplitude and

width of soliton vary with the Mach number (M) and direction cosine kz. Gogoi and

Devi et al. [30] have studied the large amplitude electrostatic structures associated with

low-frequency dust kinetic Alfvenic waves are investigated under the pressure gradient

indicative of dust dynamic through SP equation [31]. In this paper we have studied
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the propagation of solitary kinetic Alfvén waves in presence of negatively charged dust

particles through SP equation. The SP is evaluated numerically in cases when solitary

waves exist analytically. Study has been made related to the transition of the waves

from shear to kinetic Alfvén solitary waves and corresponding characters in terms of

Mach numbers.

2. Basic Equations and Linear Dispersion Relation

Here we have considered a general type of ion motion under the effect of pressure gradient

and inertia of electrons moving in the direction of the external magnetic field B0 = B0ẑ.

We have adopted a fluid plasma model since the rate of Landau damping remains small

under inertial effect of electrons. We consider ions to move in the (ZX-plane), Z-axis

being the direction of external magnetic field. Electrons move along the magnetic field

to establish charge equilibrium.

Basic equations are as follows:

For the electrons,
∂ne
∂t

+
∂

∂z
(nevez) = 0 (1)

∂vez
∂t

+ vez
∂vez
∂z

= α

(
∂ψ

∂z
− 1
ne

∂ne
∂z

)
. (2)

For the ions,
∂ni
∂t

+
∂

∂x
(nivix) +

∂

∂z
(niviz) = 0 (3)

∂vix
∂t

+ vix
∂vix
∂x

+ viz
∂vix
∂z

= −αQ∂φ
∂z

+ viy (4)

∂viy
∂t

+ vix
∂viy
∂x

+ viz
∂viy
∂z

= −vix (5)

∂viz
∂t

+ vix
∂viz
∂x

+ viz
∂viz
∂z

= −αQ∂ψ
∂z
. (6)

From Maxwell’s equations,

∂4

∂x2∂z2
(φ− ψ) =

1
αQ

[
∂2ne
∂t2

+
∂2

∂z∂t
(niviz)

]
. (7)

Charge neutrality, δene + zδd − ni = 0 (8)

Charge neutrality at equilibrium gives, δd = 1− δe (9)

Here Q = me/mi (electron to ion mass ratio), two potentials φ, ψ are included to

justify a low −β plasma model, z (dust charge number), and α = β/2Q, δe = ne0
ni0

,
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δd = znd0
ni0

. We have normalized densities by the equilibrium plasma density n0, time

by the inverse of the ion cyclotron frequency Ω−1
ci , velocities by Alfvén velocity VA =

cB0/(4πn0mi)1/2, space by ρs = c/ωpi (the ratio between the velocity of light and the

ion plasma frequency), electric fields by TeΩci
eVA

and magnetic field by B0. Using linearized

equations (1) - (8) and to find the dispersion relation we have used the Poisson’s equation

as
∂2φ

∂x2
+
∂2ψ

∂z2
= −4πe(ni − ne) (10)

and after some algebraic manipulation, by using the variables,

VA =
eB0√

4πni0mi
, Ωc =

eB0

mi
, C2

s =
Te
mi
, Q =

me

mi

ω2
pi =

4πni0e2

mi
ω2
pe =

4πne0e2

me
,
ω2
pi

Ω2
c

=
c2

V 2
A

,
ω2
pe

ω2
pi

= Q

we have obtained the dispersion relation as follows:[
ω2
pe

c2

(
Q− meω

2

B

)
− 1 + k2

z

][
1
k2
z

−
Qω2

pe

(ω2 − Ω2
c)k2

z

]
=
[
ω2
pe

(
Q

ω2
− me

B

)
− 1
]

(11)

where B = (ek2
z − ω2mi).

From equation (11), we note that the dispersion relation obtained here depends on pa-

rameters kz,me and others plasma parameters.

3. Derivation of the Sagdeev’s Potential Equation

To obtain Sagdeev equation, we consider a stationary wave in the moving frame defined

by ξ = xkx + zkz −Mt with k2
x + k2

z = 1 where M is Mach number of the wave in the

unit of the Alfvén velocity VA. Using this set up for stationary frame, equations (1) -

(7) can be reduced to the followings

vez =
Mne −M
kzvez

(12)

ne = eψ
[
expA

(
1− 1

n2
e

)]
. (13)

Differentiating (13) w.r.t. “ξ” we get,

⇒ ∂ψ

∂ξ
=
[

1
ne
− 2A
n3
e

]
∂ne
∂ξ

(14)
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where the parameter A is given by A = M2

2αk2
z

kxvix + kzviz = M

(
1− 1

ni

)
(15)

−
(
M

ni

)
∂vix
∂ξ

= −αQkx
∂φ

∂ξ
+ viy (16

−
(
M

ni

)
∂viy
∂ξ

= −vix (17)

−
(
M

ni

)
∂viz
∂ξ

= −αQkz
∂ψ

∂ξ
(18)

k2
xk

2
z

∂4(φ− ψ)
∂ξ4

=
1
αQ

[
M2∂

2ne
∂ξ2

−Mkz
∂2

∂ξ2
(niviz)

]
. (19)

Under the boundary conditions vix = viz = vez = 0; φ = ψ = 0 at ni = ne = 1 when

ξ →∞. Using (14), (18) becomes,

⇒
(
M

ni

)
∂viz
∂ξ

= αQkz

[
1
ne
− 2A
n3
e

]
∂ne
∂ξ

. (20)

From now onwards we shall use the quasi neutrality condition, ni = δene + zδd in

the above equations. Also we have used charge neutrality condition ni = ne. Let,

1− ne = N , then ne = 1−N , write, 1−N = p.

Equation (20) becomes,

viz =
αQkz
M

[
−Nδe +

N

1−N
2Aδe + zδdln(1−N) +Azδd

N(2−N)
(1−N)2

]
. (21)

Using boundary conditions ne → 1, 1−N = p→ 1, ξ →∞.

Integrating (19) twice with respect to ξ under same boundary condition with some

algebraic manipulation, we get the following equation:

1
αQ

[[
δeM

2

(δep+ zδd)3
− αQ

[
1
p
− 2A
p3

]]
dp

dξ

d

dξ

[[
δeM

2

(δep+ zδd)3
− αQ

[
1
p
− 2A
p3

]]]
dp

dξ

]
=
[
−(δep+ zδd)

MαQ

[
M − M

(δep+ zδd)
− αQk2

z

M

[
δe(p− 1) +

(1− p)
p

2Aδe + zδdln p+Azδd

(1− p)(p+ 1)
p2

]]
+

1
αQk2

z

[
−M2(1− p)− kzM(δep+ zδd)

αQkz
M

[
−(1− p)δe +

(1− p)
p

2Aδe + zδdlnp+Azδd
(1− p)2

p2

]]] [[
δeM

2

(δep+ zδd)3
− αQ

[
1
p
− 2A
p3

]]
dp

dξ

]
(22)



PROPAGATION OF SOLITONS OF ARBITRARY AMPLITUDE... 171

Multiplying both sides of (22), by the term in the parentheses on the left hand side and

after some algebra, we get an expression of the form

1
2

(
dp

dξ

)2

+K(p, α,Q,M, kz, δe) = 0 (23)

which is the Sagdeev’s potential equation, with

K(p, α,Q,M, kz, δe) =
1

1
αQ

[
δeM2

(δep+zδd)3
− αQ

[
1
p −

2A
p3

]]2

[
M2

αQ

{
1

(δe + zδd)
−

1
(δep+ zδd)

}
+ δe

{
1 + 2A+Az − p− 2A

p
− Azδe

p2

}
− zδd log p+

M2

2αQ{
1

(δep+ zδd)2
− 1

(δe + zδd)2

}
+ log p+A

(
1
p2
− 1
)

+ k2
zδ

2
e

{
1

(δe + zδd)2
− 1

(δep+ zδd)2

}
+

k2
zδep

(δep+ zδd)
− k2

zδe
(δe + zδd)

+ k2
z{log(δe + zδd)− log(δep+ zδd)} − 2Ak2

zδe

{
1

(δep+ zδd)

− 1
(δe + zδd)2

}
− 2Ak2

zδ
2
e

{
1

(zδd)2
{log p− log(δep+ zδd) + log(δe + zδd)}

+
1

(zδd)

{
1

(δep+ zδd)
− 1

(δe + zδd)

}}
+
k2
zαQ

M2

{
δ2
e

2
(p2 − 1) + (zδd − δe){(

2Aδe
1
p
− δep

)
− (2Aδe − δe)

}
− log pδe(zδd + 2Aδe)−Azδeδd

(
1
p2
− 1
)}

+
k2
z

M2
2AδeαQ

{
δe log p− δe(p− 1)− zδd

(
1
p
− 1
)
− zδd log p+Aδe

(
1
p2
− 1
)

−2Aδe

(
1
p
− 1
)

+
2Azδd

3

(
1
p3
− 1
)
−Azδd

(
1
p2
− 1
)}

+ k2
zzδd

{
log p

1
(δep+ zδd)

− 1
zδd
{log p− log(δep+ zδd) + log(δe + zδd)}

}
+

k2
z

M2
zαQδd {δep(log p− 1)

+2Aδe
1
p

(log p+ 1) +
1
2
zδd(log p)2 +

Azδd
p2

(
log p+

1
2

)
− 2Aδe −

1
2
Azδd

}
+ k2

zδeAz{
1

(δep+ zδd)
− 1

(δe + zδd)

}
− k2

zδ
2
eAz

{
2δe

(zδd)3
(log(δep+ zδd)− log p)− 1

(zδd)2(
1
p
− 1
)
− δe

(zδd)2

1
(δep+ zδd)

− 2δe
(zδd)3

log(δe + zδd)
δe

(zδd)2

1
(δe + zδd)

}
+

k2
z

M2
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AzαQδe

{
δe

(
2− p− 1

p

)
+ 2Aδe

(
1

3p3
− 1
p

+
2
3

)
− zδd

(
1

2p2
− 1

2

)
− zδd log p

+Azδd

(
1

2p4
− 1
p2

+
1
2

)}
+

M4

2k2
zαQ

{
1

(δep+ zδd)3
− 1

(δe + zδd)3

}
+
M4

k2
z{

log p+
A

p2
−A

}
− M4

2k2
zαQ

{
p

(δep+ zδd)2
+

1
δe

1
(δep+ zδd)

− 1
(δe + zδd)2

− 1
δe

1
(δe + zδd)

}
− k2

z

M2

{
p+

2A
p
− 1− 2A

}
− δeM2

{
1

(δep+ zδd)
− 1

(δe + zδd)

}
+

pδeM
2

(δep+ zδd)
− δeM

2

(δe + zδd)
−M2{log(δep+ zδd)− log(δe + zδd)} − αQδe {δe(p− 1)

+2Aδe

(
1
p
− 1
)
− δe

2
(p2 − 1) + 2Aδe log p+ zδd(log p+ 1) +Azδd

(
1
p2
− 1
)

+ 2Azδd(
1− 1

p

)
− zδdp

}
− 2AδeM2

{
1

(δep+ zδd)
− 1

(δe + zδd)

}
− 2Aδ2

eM
2

{
1

(zδd)2
{log p−

log(δep+ zδd)}+
1

(zδd)

{
1

(δep+ zδd)
− 1

(δe + zδd)

}
+

1
(zδd)2

log(δe + zδd)
}

+ 2AαQδe{
Aδe

(
1
p2
− 1
)
δe(log p− p−A)− 2Aδe

(
1
p
− 1
)
− zδd log p+ 2Azδd

(
1

3p3
− 1

3

)
−Azδd

(
1
p2
− 1
)}

+ zδdM
2

{
log p

1
(δep+ zδd)

− 1
zδd

(log p− log(δep+ zδd)

+ log(δe + zδd))}+ αQzδd

{
δep(log p− 1) + 2Aδe

(
log p
p

+
1
p

)
+ zδd

(log p)2

p

+2Azδd

(
1

4p2
+

log p
2p2

)
− 2Aδe −

1
2
Azδd

}
+Azδ2

eM
2


 1(

p2 + δd
δe
zp
) 1(

2p+ z δdδe

)


−

 1(
1 + δd

δe
z
) 1(

2 + z δdδe

)

−AzδeM2

{
1

(δep+ zδd)
− 1

(δe + zδd)

}
+AzδeαQ

{
2Aδe
3p3

− δe
p
− δep− 2Aδe

(
1
p
− 1
)
− zδd

2

(
1
p2
− 1
)

+
Azδd

2

(
1
p4

+ 1
)

−zδd log p− Azδd
p2
− 2

3
Aδe + 2δe

}]
(24)

as the Sagdeev’s potential. The boundary condition used in deriving equation (23) is

given as dp
dξ = 0 at p = 1 as ξ → ∞. Equation (23) can be interpreted as an energy

integral of an oscillatory particle of an unit mass with velocity dp
dξ and position p in a

potential well K(p). That is the above equation can be considered as a motion of a
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particle whose pseudoposition is p at pseudotime ξ with pseudovelocity dp
dξ in a pseu-

dopotential well K(p). That is why Sagdeev’s potential is called pseudopotential.

4. Existence Conditions for Solitary Waves

The conditions for solitary waves are

(i) K(p) = 0 at p = 0 and p = pm

(ii) ∂K(p)
∂p

∣∣∣
p=0

= 0 and ∂2K(p)
∂p2

∣∣∣
p=0

< 0

(iii) K(p) < 0 for p lying between 0 and pm. If pm is positive then the solitary wave

is called compressive solitary wave and if pm is negative then the solitary wave is

called a rarefactive solitary wave. pm is called the amplitude of solitary wave.

5. Results and Discussions

The study of nonlinear plasma dynamics is of crucial importance for the understanding

of many astrophysical/geophysical phenomena and satellite observations as well as for

industrial applications such as controlled nuclear fusion devices, coating of surfaces

etc. Some recent observational studies on data from Freja satellite showed that the

low-frequency auroral electromagnetic fluctuations resulting in strong electric spikes,

which can be interpreted as density pulses exhibiting kinetic Recently, Woo et al. [30]

studied the double layer formation of an obliquely propagating solitary Alfvén wave by

the electron viscosity. wave field characteristics. Due to the strong nonlinearity of the

dispersive plasma medium, these may emerge out in the form of solitary kinetic Alfvén

wave, double layers, etc. Satellite experiments have carried and continue to carry out

extensive measurements which have furnished the scientific community with a wealth of

data (velocity, magnetic field, plasma density etc. or also particle distribution functions)

at a resolution which is not available in any Earth laboratory.

We have numerically analyzed the effect of various sets of plasma parameters on the

structures of kinetic Alfvén waves and have investigated the formation of arbitrary

amplitude compressive solitary waves. The existence of large amplitude solitary waves

can be determined by plotting K(p) against density p for different values of parameters.

In Figure 1, the Sagdeev potential curves for different values of Mach number M have

been plotted for subsonic positive solitons. It can be seen that the amplitude of com-



174 LATIKA KALITA, NIRUPAMA DEVI & RUMI CHAHARIA

pressive potential profile increases with the increase of the value of Mach number M . It

is clear that the compressive potential pulses become spiky with the increase of Mach

number M . So it is clear that the compressive solitons, depending on the plasma param-

eters can propagate in subsonic regimes in our present plasma model. We have varied

M ≥ 0.021 and noticed that the Sagdeev potential depth means the width of the pulse

increases and vice versa.

Figure 2 shows that the pseudopotential for different two values of β. We observed that

only compressive subsonic solitons exist and amplitudes are found to be decreasing as β

increases. We have found the amplitude to decrease in such a way that at some values

of β, the soliton condition is not satisfied. It may be clear that the compressive solitons

cease to exist when the parameter β crosses a certain limit (β ≥ 0.03), which of course

depends on the other parameter. Compressive solitary waves are also found to exist for

some parameter sets and for z less than 1. Figure 3 shows the formation of compressive

subsonic soliton for three different values of δe . It is seen that amplitude increases as

δe decreases (i.e., as dust contamination increases). Also, it is noticed that an increase

of the depth of the Sagdeev potential makes the solitary pulse narrower. Also the upper

limit of δe is found to be less than 0.34. At δe = 0.34, the soliton condition is not

satisfied. So, it is clear that the compressive solitons, depending on the parameter δe
can propagate in subsonic regimes in our plasma model. In figure 4, the effect of the

direction cosine kz on the formation of subsonic compressive soliton has been investi-

gated. It is found that the amplitude of the compressive pseudopotential increases with

the increase of direction cosine kz. So, it is observed that amplitude of the nonlinear

structures depends on the external magnetic field kz.

6. Conclusions

Though the basic development has already been started long ago to study the nonlinear

phenomena plasma-acoustic wave, but space and astroplasmas need further study for

new formulations. The present pursuit of nonlinear phenomena in plasma is an attempt

through evolutionary sequences leading to a present - day standard model, to achieve

better understanding of various interactions of macroscopic particles in the medium and

will definitely add good results to the field of plasma studies. In our present work, the

set of basic equations governing the ions, electrons, dust and Maxwell’s equation have



PROPAGATION OF SOLITONS OF ARBITRARY AMPLITUDE... 175

been reduced to a single equation known as the Sagdeev Potential (SP) equation. An

exact analytical expression for the energy integral is obtained. Furthermore, numerical

calculations reveal that the present plasma system supports compressive subsonic soli-

tons. The dependence of the solitary excitation characteristics on the different plasma

parameters has been investigated. Our present theoretical studies could be of interest

for explaining some of the recent satellite observations (e.g., Freja, Cassini) in space and

astrophysical scenarios.
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