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Abstract

In this paper, we have established continued fraction representations for certain
special type of series.

1. Introduction Notations and Definitions

We shall use the following usual notations and definitions. Let,

(a, q)n =


1 if n = 0;

(1− a)(1− aq)(1− aq2) . . . , (1− aqn−1) if n ≥ 1.

We define the basic hypergeometric series as,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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rΦs

[
a1, a2, a3, ..., ar; q; z
b1, b2, b3, ..., bs

]

=
∞∑

n=0

[a1; q]n[a2; q]n...[ar; q]nzn

[b1; q]n[b2; q]n...[bs; q]n(q; q)n
,

where |q| < 1 and |z| < 1.

An expression of the form
a1

b1+
a2

b2+
a3

b3+
....
an

bn

is said to be a terminating continued fraction and as n→∞, it is said to be an infinite

continued fraction.

Following known results are needed in our analysis.

2Φ1

[
α, β; q; z
γ

]
2Φ1

[
α, βq; q; z
γ

]

= 1− zβ(1− α)
(1− γ/βq)+

γ

βq
(1− βq)

(
1− αβzq

γ

)
1−

zβq(1− αq)
(1− γ/βq)+

γ

βq
(1− βq2)

(
1− αβzq2

γ

)
1−

zβq2(1− αq2)
(1− γ/βq)+

... (1.1)

[S. N. Singh 3]

Rogers-Fine identity is,

∞∑
n=0

(a; q)nz
n

(b; q)n
=
∞∑

n=0

(a; q)n(azq/b; q)n(bz)n(1− azq2n)qn2−n

(b; q)n(z; q)n+1
. (1.2)

[Andrews and Berndt 1; (9.1.1)]

On page 13 of Ramanujan’s Lost Notebook [2] following five identities are given,

∞∑
n=0

(−)nqn(n+1)(q; q2)n

(−q; q)2n+1
=
∞∑

n=0

(−)nqn(n+1)/2, (1.3)

∞∑
n=0

(q; q2)2nq
n

(−q; q)2n+1
=
∞∑

n=0

(−)nqn(n+1), (1.4)
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∞∑
n=0

(q; q2)nq
n

(−q; q)2n+1
=
∞∑

n=0

(−)nq3n(n+1)/2, (1.5)

∞∑
n=0

(q;−q)2n

(−q; q)2n+1
=
∞∑

n=0

(−)nq2n(n+1), (1.6)

∞∑
n=0

(q;−q)n(−q2; q2)nq
n

(−q; q)2n+1
=
∞∑

n=0

(−)nq3n(n+1). (1.7)

On the right hand side of the identities (1.3) - (1.7). There are false theta functions

∞∑
n=0

(−)nqn(n+1)/2

with q replaced by q, q2, q3, q4 and q6 respectively.

Taking β = 1 and replacing α by a and γ by b in (1.1) and also using (1.2) we get,

∞∑
n=0

(a; q)nz
n

(b; q)n
=
∞∑

n=0

(a; q)n(azq/b; q)n(bz)n(1− azq2n)qn2−n

(b; q)n(z; q)n+1

=
1

1−
z(1− a)

(1− b/q)+

b

q
(1− q)

(
1− azq

b

)
1−

zq(1− aq)
(1− b/q)+

b

q
(1− q2)

(
1− azq2

b

)
1−

zq2(1− aq2)
(1− b/q)+

... (1.8)

2. Main Results

Putting z/a for z, taking a→∞ and b=0 in (1.8) we get,

∞∑
n=0

(−)nqn(n−1)/2zn =
∞∑

n=0

(1− zq2n)z2nq2n2−n

=
1

1+
z

1−
(1− q)z

1+
zq2

1−
(1− q2)zq

1+
zq4

1−
... . (2.1)

Putting z=q in (2.1) we have

∞∑
n=0

(−)nqn(n+1)/2 =
∞∑

n=0

(1− q2n+1)q2n2+n

=
1

1+
q

1−
(1− q)q

1+
q3

1−
(1− q2)q2

1+
q5

1−
... . (2.2)
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Making use of (1.3) we have

∞∑
n=0

(−)nqn(n+1)/2 =
∞∑

n=0

(−)nqn(n+1)(q; q2)n

(−q; q)2n+1

=
1

1+
q

1−
(1− q)q

1+
q3

1−
(1− q2)q2

1+
q5

1−
... . (2.3)

From (2.3) and (1.4) it is easy to have,

∞∑
n=0

(−)nqn(n+1) =
∞∑

n=0

(q; q2)2nq
n

(−q; q)2n+1

=
1

1+
q2

1−
(1− q2)q2

1+
q6

1−
(1− q4)q4

1+
q10

1−
... . (2.4)

Similar results can be established for (1.5), (1.6) and (1.7).

For z=-q in (2.1) we find,

∞∑
n=0

qn(n+1)/2 = Ψ(q) =
(q2; q2)∞
(q; q2)∞

=
∞∑

n=0

(1 + q2n+1)q2n2+n

=
1

1−
q

1+
(1− q)q

1−
q3

1+
(1− q2)q2

1−
q5

1+
... , (2.5)

where Ψ(q) is Ramanujan’s Theta function defined in [Andrews and Berndt 1; (1.1.7)

p. 11].

Taking b=q in (1.8) we have

∞∑
n=0

(a; q)nz
n

(q; q)n
=

(az; q)∞
(z; q)∞

=
∞∑

n=0

(a; q)n(az; q)nz
nqn2

(1− azq2n)
(q; q)n(z; q)n+1

=
1

1−
z(1− a)

0+
(1− q)(1− az)

1−
zq(1− aq)

0+
(1− q2)(1− azq)

1−
... . (2.6)

For a=0, (2.6) yields

∞∑
n=0

zn

(q; q)n
=

1
(z; q)∞

=
∞∑

n=0

znqn2

(q; q)n(z; q)n+1

=
1

1−
z

0+
(1− q)

1−
zq

0+
(1− q2)

1−
zq2

0+
... . (2.7)

Taking z=q in (2.7) we get

∞∑
n=0

qn

(q; q)n
=

1
(q; q)∞

=
∞∑

n=0

qn2+n

(q; q)n(q; q)n+1
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=
∞∑

n=0

p(n)qn

=
1

1−
q

0+
(1− q)

1−
q2

0+
(1− q2)

1−
q3

0+
... , (2.8)

where p(n) stands for the number of partitions of n.

Again, replacing q by q2 and then taking z=q in (2.7) we have

∞∑
n=0

qn

(q2; q2)n
=

1
(q; q2)∞

=
∞∑

n=0

q2n2+n

(q2; q2)n(q; q2)n+1

=
∞∑

n=0

p0(n)qn

=
1

1−
q

0+
(1− q2)

1−
q3

0+
(1− q4)

1−
q5

0+
... , (2.9)

where p0(n) stands for the number of partitions of n into odd parts only.

Replacing q by q2 and then taking z = q2 in (2.7) we get,

∞∑
n=0

q2n

(q2; q2)n
=

1
(q2; q2)∞

=
∞∑

n=0

q2n2+2n

(q2; q2)n(q2; q2)n+1

=
1

1−
q2

0+
(1− q2)

1−
q4

0+
(1− q4)

1−
q6

0+
... , (2.10)

where
1

(q2; q2)∞
is the generating function of the partitions into even parts.

Putting z/a for z and then taking a→∞ in (2.6) we find,

∞∑
n=0

(−)nqn(n−1)/2zn

(q; q)n
= (z; q)∞ =

∞∑
n=0

(−)nq
3
2
n2− 1

2
n(z; q)nz

n(1− zq2n)
(q; q)n

=
1

1+
z

0+
(1− q)(1− z)

1+
zq2

0+
(1− q2)(1− zq)

1+
... . (2.11)

Putting z=-q in (2.11) we have

∞∑
n=0

qn(n+1)/2zn

(q; q)n
= (−q; q)∞ =

∞∑
n=0

q
3
2
n2+n

2 (−q; q)n(1 + q2n+1)
(q; q)n

=
1

1−
q

0+
1− q2

1−
q3

0+
1− q4

1−
q5

0+
1− q6

1−
... , (2.12)
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where (−q; q)∞ is the generating function of the partitions into distinct parts.

For z=q, (2.11) yields
∞∑

n=0

(−)nqn(n+1)/2

(q; q)n
= (q; q)∞

=
1

1+
q

0+
(1− q)2

1+
q3

0+
(1− q2)2

1+
q5

0+
... . (2.13)

Putting b=aq in (1.8) we get

(1− a)
∞∑

n=0

zn

1− aqn
=

1
1−

z(1− a)
(1− a)+

a(1− q)(1− z)
1−

zq(1− aq)
(1− a)+

a(1− q2)(1− zq)
1−

zq2(1− aq2)
(1− a)+

... . (2.14)

Replacing q by q5, a = z = qj in (2.14) we have

(1− qj)
∞∑

n=0

qjn

1− q5n+j
=

1
1−

qj(1− qj)
(1− qj)+

qj(1− q5)(1− qj)
1−

q5+j(1− q5+j)
(1− qj)+

qj(1− q10)(1− q2j)
1−

q10+j(1− q10+j)
(1− qj)+

... . (2.15)

Comparing (2.15) with [Andrews and Berndt 1; lemma (4.4.1) p. 117] we get,

(1− qj)
∞∑

n=0

q5n2+2nj

(
1 + q5n+j

1− q5n+j

)

=
1

1−
qj(1− qj)
(1− qj)+

qj(1− q5)(1− qj)
1−

q5+j(1− q5+j)
(1− qj)+

qj(1− q10)(1− q2j)
1−

q10+j(1− q10+j)
(1− qj)+

... , (2.16)

Replacing q by q5 and then putting a = qj and z = qi in (2.14) we get

(1− qj)
∞∑

n=0

qin

1− q5n+j
=

1
1−

qi(1− qj)
(1− qj)+

qi(1− q5)(1− qi)
1−

q5+i(1− q5+j)
(1− qj)+

qi(1− q10)(1− q5+i)
1−

q10+i(1− q10+j)
(1− qj)+

... . (2.17)

Similar other results can also be established.
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