International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 187-196

ON ARITHMETIC GRAPHS

J. DEVARAJ ${ }^{1}$ AND LINTA K. WILSON ${ }^{2}$
${ }^{1,2}$ Assistant Professor, Department of Mathematics, N. M. C. College, Marthandam, India
E-mail: ${ }^{1}$ devaraj_jacob@yahoo.co.in, ${ }^{2}$ lintavijin@gmail.com

Abstract

Let G be a graph with q edges and let k and d be positive integers. A labeling f of G is said to be (k, d)-arithmetic if the vertex labels are distinct nonnegative integers and the edge labels induced by $f(x)+f(y)$ for each $x y$ are $k, k+d, k+2 d, \cdots, k+(q-1) d$. A graph is called arithmetic if it is (k, d)-arithmetic for some k and d. In this paper we prove that H_{n}-graph, generalized H_{n} graph, $H_{n} \odot S_{m}, P_{m}\left(P_{n}\right)$ are arithmetic graphs.

1. Introduction

For all terminology and notations in Graph Theory we follow Harary [2]. Unless mentioned or otherwise a graph in this paper shall mean a simple finite graph without isolated vertices.

Let G be (p, q) graph. Let $V(G), E(G)$ denote respectively the vertex set and edge set of G. Consider an injective function $g: V(G) \rightarrow X$, where $X=\{0,1,2, \cdots, q\}$ if G is a tree and $X=\{0,1,2, \cdots, q-1\}$ otherwise. Define the function $g^{*}: E(G) \rightarrow N$, the set of all natural numbers such that $g^{*}(u v)=g(u)+g(v)$ for all edge (u, v). If $g^{*}(E(G))$ is

Key Words : Sequential graph, Arithmetic graph, H_{n}-graph, Generalized H_{n} graph . 2000 AMS Subject Classification : .
a sequence of distinct consecutive integers, say $\{k, k+1, \cdots, k+q-1\}$ for some k, then the function g is said to be sequential labeling and the graph which admits such a labeling is called sequential graph [5].
In 1989 Acharya and Hegde [1] introduced a new version of sequential graph known as arithmetic graph and is defined as follows: Let G be a graph with q edges and let k and d be positive integers. A labeling f of G is said to be (k, d)-arithmetic if the vertex labels are distinct nonnegative integers and the edge labels induced by $f(x)+f(y)$ for each xy are $k, k+d, k+2 d, \cdots, k+(q-1) d$. A graph is called arithmetic if it is (k, d)-arithmetic for some k and d.

Definition 1.2 : Let H_{n}-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \cdots, v_{n}$ and $u_{1}, u_{2}, \cdots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ by means of an edge if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even.
Theorem 1.3: H_{n}-graph admits a $(2 t+1,2), t \geq 0$ arithmetic labeling.
Proof: H_{n}-graph is obtained from two paths $u_{1} u_{2} u_{3} \cdots u_{n}$ and $v_{1} v_{2} v_{3} \cdots v_{n}$ of equal length by joining an edge $u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}$ when n is odd or $u_{\frac{n}{2}} v_{\frac{n}{2}}$ when n is even.
Note that H_{n} has $2 n$ vertices and $2 n-1$ edges.
Let t be an integer such that $t \geq 0$.
Define a function $f: V\left(H_{n}\right) \rightarrow N$ (set of non-negative integers) as follows

$$
\begin{gathered}
f\left(u_{i}\right)=i+t-1, \quad 1 \leq i \leq n \\
f\left(v_{i}\right)=n+i+t-1, \quad 1 \leq i \leq n
\end{gathered}
$$

Then the edges get labels

$$
\begin{aligned}
f\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) & =2 t+2 n-1 \quad \text { when } n \text { is odd. } \\
f\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right) & =2 t+2 n-1 \quad \text { when } n \text { is even. } \\
f\left(u_{i} u_{i+1}\right) & =2(t+i)-1, \quad 1 \leq i \leq n-1 \\
f\left(v_{i} v_{i+1}\right) & =2 n+2(t+i)-1, \quad 1 \leq i \leq n-1 .
\end{aligned}
$$

Thus the value of the edge $u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}$ (when n is odd) or $u_{\frac{n}{2}+1} v_{\frac{n}{2}}$ (when n is even) is $2 t+2 n-1$.
The set of labels of the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1=\{2 t+1,2 t+3,2 t+5, \cdots, 2 t+2 n-3\}$. The set of labels of the edges $v_{i} v_{i+1}, 1 \leq i \leq n-1=\{2 t+2 n+1,2 t+2 n+3,2 t+2 n+$ $5, \cdots, 2 t+4 n-3\}$.

Also edge values are distinct and the values of the edge set of H_{n} are

$$
\begin{equation*}
\{2 t+1,2 t+3, \cdots,, 2 t+2 n-1,2 t+2 n+1,2 t+2 n+3, \cdots, 2 t+4 n-3\} . \tag{1}
\end{equation*}
$$

Take $k=2 t+1, d=2$. Now
$k+(q-1) d=2 t+1+(2 n-1-1) 2=2 t+1+(2 n-2) 2=2 t+1+4 n-4=2 t+4 n-3$.
Therefore (1) is of the form $\{k, k+d, k+2 d, ., k+(q-1) d\}$ where $k=2 t+1$ and $d=2$. Thus f is an arithmetic labeling. Hence H_{n} is a $(2 t+1,2)$-arithmetic graph.
Illustration 1.4: $(27,2)$ Where $t=13$. Arithmetic labeling of H_{6} and H_{7} are shown below.

Construction 1.5 : Let P_{n} be a path on n vertices. Take k copies of P_{n}. Let the vertices of k copies of P_{n} be $v_{i, j}, 1 \leq i \leq k, 1 \leq j \leq n$. Join the vertices $v_{i, \frac{n}{2}+1}$ and $v_{i+1, \frac{n}{2}}, 1 \leq i \leq k-1$ if n is even or $v_{i, \frac{n+1}{2}}$ and $v_{i+1, \frac{n+1}{2}}, 1 \leq i \leq k-1$ if n is odd. The resultant graph said to be generalized H_{n} graph and is denoted by $k H_{n}$.
Theorem 1.6: The graph $k H_{n}$ is a $(2 t+1,2), t \geq 0$ arithmetic graph.
Proof: Let the vertices of k copies of P_{n} be $v_{i, j}, 1 \leq i \leq k$ and $1 \leq j \leq n$. The edge set of $k H_{n}$ is $E\left(k H_{n}\right)=\left\{v_{i, j} v_{i, j+1} / 1 \leq i \leq k\right.$ and $\left.1 \leq j \leq n-1\right\} \cup\left\{v_{i, \frac{n}{2}+1} v_{i+1, \frac{n}{2}},(1 \leq\right.$ $i \leq k-1$ if n is even) or $v_{i, \frac{n+1}{2}} v_{i+1, \frac{n+1}{2}}(1 \leq i \leq k-1$ if n is odd $\left.)\right\}$.
Note that $k H_{n}$ has kn vertices and $k n-1$ edges.
Define a function $f: V\left(k H_{n}\right) \rightarrow N$ as follows.

$$
f\left(v_{i, j}\right)=(i-1) n+j+t-1 \quad t \geq 0, \quad 1 \leq i \leq k, \quad 1 \leq j \leq n
$$

The vertex labels are distinct. Then the edges get labels

$$
\begin{aligned}
f\left(v_{i, \frac{n}{2}+1} v_{i+1, \frac{n}{2}}\right) & =2 t+2 i n-1 \quad 1 \leq i \leq k-1 \text { if } n \text { is even } \\
f\left(v_{i, \frac{n+1}{2}} v_{i+1, \frac{n+1}{2}}\right) & =2 t+2 i n-1 \quad 1 \leq i \leq k-1 \text { if } n \text { is odd } \\
f\left(v_{i, j} v_{i, j+1}\right) & =2 n(i-1)+2 j+2 t-1 \quad 1 \leq i \leq k \text { and } 1 \leq j \leq n-1 .
\end{aligned}
$$

Thus the labels of the edges $v_{i, \frac{n}{2}+1} v_{i+1, \frac{n}{2}}(1 \leq i \leq k-1$ if n is even) or $v_{i, \frac{n+1}{2}} v_{i+1, \frac{n+1}{2}}(1 \leq i \leq k-1$ if n is odd $)$ os

$$
2 t+2 n-1,2 t+4 n-1,2 t+6 n-1, \cdots, 2 t+2(k-1) n-1 .
$$

The values of edges in the k copies of P_{n} are given below.

$$
\begin{aligned}
& 2 t+1,2 t+3,2 t+5, \cdots, 2 t+2 n-3 \\
& 2 t+2 n+1,2 t+2 n+3,2 t+2 n+5, \cdots, 2 t+4 n-3 \\
& 2 t+4 n+1,2 t+4 n+3,2 t+4 n+5, \cdots, 2 t+6 n-3 \\
& \vdots \\
& 2 t+2(k-2) n+1,2 t+2(k-2) n+3,2 t+2(k-2) n+5, \cdots, 2 t+2(k-1) n-3 \\
& 2 t+2(k-1) n+1,2 t+2(k-1) n+3,2 t+2(k-1) n+5, \cdots, 2 t+2 k n-3 .
\end{aligned}
$$

Hence the values of the edge set of $k H_{n}$ is $2 t+1,2 t+3,2 t+5,2 t+7, \cdots, 2 t+2 n-$
$1,2 t+2 n+1, \cdots, 2 t+4 n+1, \cdots, 2 t+2 k n-3$.
Take $k=2 t+1$ and $d=2$.
Now $k+(q-1) d=2 t+1+(k n-1-1) 2=2 t+1+2 k n-4=2 t+2 k n-3$.
Therefore (1) is of the form $k, k+d, k+2 d, \cdots, k+(q-1) d$ where $k=2 t+1$ and $d=2$. Thus f is an arithmetic labeling. Hence $k H_{n}$ is a ($2 t+1,2$)-arithmetic graph.
Illustration 1.7 : $(15,2)$ Arithmetic labeling of $7 \mathrm{H}_{6}$ is given below.

(3,2) Arithmetic labeling of $7 \mathrm{H}_{5}$ is given below.

Definition 1.8: The graph $H_{n} \odot S_{m}$ is obtained from H_{n} by identifying the centre vertex of the star S_{m} at each vertex of H_{n}.

Theorem 1.9: The graph $H_{n} \odot S_{m}$ is an arithmetic graph.
Proof: Let $G=H_{n} \odot S_{m}$.
The vertex set of G is

$$
V(G)=\left\{u_{i} / 1 \leq i \leq n, v_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i j}, v_{i j} / 1 \leq i \leq n, 1 \leq j \leq m\right\} .
$$

The edge set of G is $V(G)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right.$ (if n is even) or $u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}$ (if n is odd) $\} \cup\left\{u_{i} u_{i j}, v_{i} v_{i j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$.
Note that G has $2 n(m+1)$ vertices and $2 n(m+1)-1$ edges.
Let t be an integer such that $t \geq 0$.
Define $f: V(G) \rightarrow N$ as follows

$$
\begin{aligned}
& f\left(u_{i}\right)=i+t-1, \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=n+i+t-1, \quad 1 \leq i \leq n \\
& f\left(u_{11}\right)=(2 m+3) n+t+4 \\
& f\left(u_{i 1}\right)=(2 m+3) n+(i-1)+t+4, \quad 2 \leq i \leq n \\
& f\left(u_{i j}\right)=f\left(u_{i 1}\right)+(j-1) 2 n+t-1, \quad 1 \leq i \leq n, 2 \leq j \leq m \\
& f\left(v_{11}\right)=4 n+t+2 \\
& f\left(v_{i 1}\right)=f\left(v_{i-1,1}\right)+t-4, \quad 2 \leq i \leq n \\
& f\left(v_{i j}\right)=f\left(v_{i 1}\right)+(j-1) 2 n+t-1, \quad 1 \leq i \leq n, 2 \leq j \leq m .
\end{aligned}
$$

The vertex labels are distinct. Then the edges get labels

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =2 i+2 t-1,1 \leq i \leq n-1 \\
f\left(v_{i}, v_{i+1}\right) & =2 n+2(i+t)-1, \quad 1 \leq i \leq n-1 \\
f\left(v_{1} v_{11}\right) & =5 n+2 t+2 \\
f\left(v_{i} v_{i 1}\right) & =2 t+n+i+f\left(v_{i-1,1}\right)-3, \quad 2 \leq i \leq n \\
f\left(v_{i} v_{i j}\right) & =2 t+n(2 j-1)+f\left(v_{i 1}\right)-2, \quad 1 \leq i \leq n, \quad 2 \leq j \leq m \\
f\left(u_{1} u_{11}\right) & =2 t+(2 m+3) n+4 \\
f\left(u_{i} u_{i 1}\right) & =2 t+2(i-1)+(2 m+3) n+4, \quad 2 \leq i \leq n . \\
f\left(u_{i} u_{i j}\right) & =2 t+i+2 n(j-1)+f\left(u_{i 1}\right)-2, \quad 1 \leq i \leq n, 2 \leq j \leq m
\end{aligned}
$$

Then the values of the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$ are $2 t+1,2 t+3, \cdots, 2 t+2 n-5,2 t+$ $2 n-3$.
The values of the edges $v_{i} v_{i+1}, 1 \leq i \leq n-1$ are $2 t+2 n+1,2 t+2 n+3,2 t+2 n+$ $5, \cdots, 2 t+4 n-5,2 t+4 n-3$.

The value of the edge $u_{\frac{n}{2}+1} v_{\frac{n}{2}}$ (if n is even) or $u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}$ (if n is odd) is $2 t+2 n-1$.
The values of the edges $v_{i} v_{i j}, 1 \leq i \leq n, 1 \leq j \leq m$ are $2 t+4 n-1,2 t+4 n+1,2 t+4 n+$ $3,2 t+4 n+5, \cdots, 2 t+(2 m+3) n+2$.
The values of the edges $u_{i} u_{i j}, 1 \leq i \leq n, 1 \leq j \leq m$ are $2 t+(2 m+3) n+4,2 t+(2 m+$ $3) n+6,2 t+(2 m+3) n+8, \cdots, 2 t+4 n m+4 n-3$.
Therefore the set of values of the edge set of G is $\{2 t+1,2 t+3,2 t+5,2 t+7, \cdots, 2 t+2 n-$ $1,2 t+2 n+1,2 t+2 n+3, \cdots, 2 t+4 n+1, \cdots, 2 t+(2 m+3) n+4, \cdots, 2 t+4 n m+4 n-3\}$ (1)

Take $k=2 t+1, d=2$.
Now $k+(q-1) d=2 t+1+[2 n(m+1)-2] 2=2 t+1+4 n m+4 n-4=2 t+4 n m+4 n-3$.
Hence (1) is of the form $\{k, k+d, k+2 d, \cdots, k+(q-1) d\}$ where $k=2 t+1, d=2$.
Thus f is an arithmetic labeling. Therefore $H_{n} \odot S_{m}$ is a $(2 t+1,2), t \geq 0$ arithmetic graph.
Illustration 1.10 : $(23,1)$ Arithmetic labeling of $H_{4} \odot S_{3}$.

$(23,1)$ Arithmetic labeling of $H_{5} \odot S_{3}$

Construction 1.11: Let P_{m} and P_{n} be two paths. Let $u_{i}, 1 \leq i \leq m$ be the vertices of P_{m}. Take m copies of P_{n}. Let the vertices of m copies of P_{n} be $v_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$. Adjoining the end vertex $v_{i 1}$ of P_{n} to each w_{i} for $i=1,2, \cdots, m$. The resultant graph is denoted by $P_{m}\left(P_{n}\right)$. Number of vertices of $P_{m}\left(P_{n}\right)$ is $m n$ and the number of edges is $m n-1$.

Theorem 1.12: The graph $P_{m}\left(P_{n}\right)$ is a $(2 t+1,2), t \geq 0$ arithmetic graph.
Proof: Let $u_{1}, u_{2}, \cdots, u_{m}$ be the vertices of P_{m} and vertices of m copies of P_{n} are $v_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$, where $v_{i 1},(1 \leq i \leq m)$ are identified with the corresponding $u_{i}(1 \leq i \leq m)$.

Note that $P_{m}\left(P_{n}\right)$ has $m n$ vertices and $m n-1$ edges.
Let t be an integer such that $t \geq 0$.
Define $f: V\left(P_{m}\left(P_{n}\right)\right) \rightarrow N$ as follows.

$$
\begin{array}{ll}
f\left(v_{i j}\right)=(i-1) n+j+t-1, & 1 \leq i \leq m \text { and even } i, 1 \leq j \leq n \\
f\left(v_{i j}\right)=n i-j+t, & 1 \leq i \leq m \text { and odd } i, 1 \leq j \leq n .
\end{array}
$$

The vertex labels are distinct. Then the edges get labels

$$
\begin{array}{lll}
f\left(v_{i 1} v_{i+11}\right)=2 t+2 n i-1, & & 1 \leq i \leq m-1 \\
f\left(v_{i j} v_{i j+1}\right)=2 t+2 n i-2 j-1, & & 1 \leq i \leq m \text { and odd } i, 1 \leq j \leq n-1 \\
f\left(v_{i j} v_{i j+1}\right)=2 t+2 n(i-1)+2 j-1, & 1 \leq i \leq m \text { and even } i, 1 \leq j \leq n-1
\end{array}
$$

Thus the edge labels of the path P_{m} are $2 t+2 n-1,2 t+2(2 n)-1, \cdots, 2 t+(m-1) 2 n-1$. Labels of the edges in the m copies of P_{n} are given below

$$
\begin{aligned}
& 2 t+1,2 t+3,2 t+5, \cdots, 2 t+2 n-3 \\
& 2 t+2 n+1,2 t+2 n+3,2 t+2 n+5, \cdots, 2 t+2(2 n)-3 \\
& 2 t+2(2 n)+1,2 t+2(2 n)+3, \cdots, 2 t+3(2 n)-3 \\
& \vdots \\
& 2 t+(m-2) 2 n+1,2 t+(m-2) 2 n+3, \cdots, 2 t+(m-1) 2 n-3 \\
& 2 t+(m-1) 2 n+1,2 t+(m-1) 2 n+3, \cdots, 2 t+m 2 n-3
\end{aligned}
$$

Hence the values in the edge set of

$$
\begin{equation*}
P_{m}\left(P_{n}\right)=\{2 t+1,2 t+3,2 t+5, \cdots, 2 t+2 n-3,2 t+2 n-1, \cdots, 2 t+2(2 n)-3, \cdots, 2 t+2 m n-3\} \tag{1}
\end{equation*}
$$

Here $k=2 t+1$ and $d=2$.
Now $k+(q-1) d=2 t+1+(m n-1-1) 2=2 t+1+2 m n-4=2 t+2 m n-3$.
Hence (1) is of the form $\{k, k+d, \cdots, k+(q-1) d\}$ where $k=2 t+1$ and $d=2$.
Therefore f is an arithmetic labeling. Hence $P_{m}\left(P_{n}\right)$ is a $(2 t+1,2) \quad t \geq 0$ arithmetic graph.
Illustration 1.13 : (3,2)-Arithmetic labeling of $P_{6}\left(P_{5}\right)$.

References

[1] Acharya B. D. and Hedge S. M., Arithmetic graphs, Jour. Graph Theory, 14(3)(1989), 275-299.
[2] Harary F., Graph Theory, Narosa publishing House, (1969).
[3] Joseph A. Gallian, A dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, (2013).
[4] Gomathi Lakshmi Alias, Nagarajan and Nellai Murugan, On felicitious labelings of H_{n} and $H_{n} \odot S_{m}$ graphs, Ultra Scientist, 24(3A) (2012), 441-448.
[5] Suresh Singh G., A note on Labeling of Graphs, Graphs and Combinatorics, (1998), 201-207.

