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Abstract

Duffing-Van der Pol equation with fifth nonlinear-restoring force and two external
periodic forcing terms is investigated. By applying numerical simulations, includ-
ing phase portraits, potential diagram, Poin ´care maps, bifurcation diagrams and
maximal Lyapunov exponents, the nonlinear behavior and the complex dynamics of
the system with two external periodic excitations are analyzed. At last, two kinds
of methods are applied to control the chaotic behaviors of the system, effectively to
a steady periodic orbit (or quasi-periodic orbit).

1. Introduction

Chaos is a modern subject with rich academic background of deep non-linear physics

and mathematics content, and a large number of non-linear systems may appear chaotic

phenomena and chaos control is a hot topic in control science.
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In this paper we consider the Duffing-Van der Pol equation with fifth nonlinear-restoring

force and two external periodic forcing terms

ẍ− µ(1− x2)ẋ+ ω2
0x+ λx3 + βx5 = f1 cosω1t+ f2 cosω2t. (1)

The equivalent system of the system (1) can be written as{
ẋ = y,
ẏ = µ(1− x2)y − ω2

0x− λx3 − βx5 + f1 cosω1t+ f2 cosω2t,
(2)

where µ, ω0, λ, β, fj and ωj (j = 1, 2) are real parameters; µ(1−x2)ẋ can be regarded as

dissipation or damping term, µ is damping coefficient; fj cosωjt (j = 1, 2) are periodic

forcings, fj and ωj (j = 1, 2) can be regarded as the amplitudes and the frequencies of

the forcings respectively. It is taken as µ = 0.1, ω2
0 = 1, λ = −3 and β = 2 in the system

(2).

The system (2) is equivalent to the combination of the Duffing oscillator and the Van

der Pol oscillator, and both are non-linear oscillator with wide range of applications.

The system (2) can be used to describe the structure of flow-induced vibration of a sim-

ple model [10], and to simulate the optical bistability in one type of dispersive media

[4]. Duffing oscillator
(
µ = 0 in the system (1) or (2)

)
and the Van der Pol oscillator(

λ = 0 and β = 0 in the system (1) or (2)
)

have an important application background

in nonlinear systems. In [3, 7, 9, 13, 16, 19− 22], the interesting structure of bifurcation

sets, bifurcation roads, the chaotic dynamics and the phenomenon of phase-locked are

found. The study of stochastic Duffing-Van der pol system without external forcing

terms can be found in [11, 17] and the bifurcation behavior, the function of probability

distribution and the stochastic behavior are discussed. Periodically excited Duffing-Van

der Pol oscillator is a typical nonlinear vibration system and has rich dynamic behavior.

The bifurcation structure, chaos behavior and chaos control of the system (2) when

β = 0 are found in [1, 14, 15, 18]. Jing Z.J. etc. studied the complex dynamic behavior

of the system (2) in [8]: the criterion of existence of chaos under the periodic pertur-

bation is given by using Melnikov’s method; By using second-order averaging method

and Melnikov method, the authors gave the criterion of existence of chaos in averaged

systems under quasi-periodic perturbation. They also gave numerical simulations to

support the theoretical results obtained in the precious section and to find other new

dynamics. Furthermore, the study of chaos control (from chaotic to periodic) and chaos
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anti-control (from periodic to chaotic) are interesting. More importantly within the

biological and electronic context, chaos control and chaos anti-control show great po-

tential for future applications. Chaos control of chaotic pendulum system is shown in

[12]. Ge Z.M. and Leu W.Y. studied the chaos anti-control and synchronization of a

two-degrees-of-freedom loudspeaker system in [5]. The chaos control for Duffing-Van

der Pol system with one external periodical forcing term and cubic nonlinear-restoring

force is studied in [2, 6]. However, there are few works on the chaos control of the sys-

tem (2) in the current domestic and international literature, it is necessary to research

further in this area.

Motivated by the findings in [2, 6, 8], in this paper, the system (2) is analyzed and sim-

ulated in detail by numerical simulations. By using phase portraits, potential diagram,

Poin ´care maps, bifurcation diagrams and maximal Lyapunov exponents, the dynamical

characteristics of the system (2) with the changes of the bifurcation parameters are re-

flected intuitively, then the effect of bifurcation parameters on dynamical characteristics

is obtained and it is proved that the system (2) exists chaos indeed. Finally, the chaos

of the system (2) is controlled to stable periodic orbits (or quasi-periodic orbits) by two

kinds of control methods.

The paper is organized as follows. In Section 2, we briefly describe the fixed points and

phase portrait for the unperturbed system of Eq. (2). Furthermore, the chaos of the

system (2) is given, corresponding to amplitude f1 and frequency ω1. The chaos of the

system (2) in Section 2 is controlled by two kinds of chaos control methods in Section

3: variable feedback control and coupled feedback control. Conclusions are made in

Section 4.

2. The Dynamical Behaviors of the System (2)

2.1 Fixed Points and Phase Portrait for the Unperturbed System

If µ = fj = 0 (j = 1, 2), the system (2) is considered as an unperturbed system and can

be written as {
ẋ = y,
ẏ = −ω2

0x− λx3 − βx5.
(3)

The system (3) is a Hamiltonian system with Hamiltonian function

H(x, y) =
1
2
y2 +

1
2
ω2

0x
2 +

1
4
λx4 +

1
6
βx6,
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and the function

V (x) =
1
2
ω2

0x
2 +

1
4
λx4 +

1
6
βx6

is called the potential function. The systems (3) is a three-well system as the pa-

rameter values are taken as ω2
0 = 1, λ = −3 and β = 2. There are five fixed points:

(0, 0), (xj , 0) (j = 1, 2, 3, 4), x1,2 = ±√z1, x3,4 = ±√z2, where z1,2 =
−λ±

√
λ2 − 4βω2

0

2β
.

C2(0, 0), C3(x1, 0) and C1(x2, 0) are centers, S2(x3, 0) and S1(x4, 0) are saddles.

The phase portrait and potential diagram are shown in Fig. 1(a) and (b), respectively.

In Fig. 1(a) the saddle S1(x4, 0) is connected itself by homoclinic orbits Γ−hom, the other

saddle S2(x3, 0) is connected itself by homoclinic orbits Γ+
hom, S1 and S2 are connected

by two heteroclinic orbits Γ±het.

2.2 Chaos of the System (2)

The system (2) is a multi-parameter dynamical system and the stability and global

structure will change as parameters change. The qualitative state (for example, a state

of equilibrium, or the number of periodic motion and stability, etc.) will be sudden

changed and appear bifurcation as the parameters are taken as certain critical values.

The dynamical characteristics, complexity and nonlinear characteristics of the system

(2) with external periodic excitation, corresponding to f1 and ω1 are considered respec-

tively.

Case I : f1 is bifurcation parameter, and ω1 is not rational relative to ω2.

The Poin ´care map of the system (2) is shown in Fig. 2 for f1 = 6.1, ω1 = 1, f2 = 0.75

and ω2 =
√

5. It can be seen that the system is in chaotic motion from Fig. 2. We
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plot the bifurcation diagram of the system (2) in (f1, x) plane for ω1 = 1, f2 = 0.75

and ω2 =
√

5 in Fig. 3(a), and the maximal Lyapunov exponents corresponding to Fig.

3(a) are plotted in Fig. 3(b) for confirming the chaotic dynamics. It can be found that

there are three different chaotic regions with quasi-periodic windows in Fig. 3.

Case II : ω1 is bifurcation parameter. Here are two sets of parameter values.

1. The Poin ´care map of the system (2) is shown in Fig. 4 for f1 = 30, ω1 = 2.2, f2 =

2, ω2 = 2 and it is chaotic attractor. The bifurcation diagram of the system (2) in (ω1, x)

plane for f1 = 30, f2 = 2, ω2 = 2, and the maximal Lyapunov exponents corresponding

to the bifurcation diagram are shown in Fig. 5(a) and (b) respectively. We observe that

quasi-periodic orbits and chaotic motion appear for ω1 ∈ (0, 0.3) and chaotic behaviors

and periodic motion appear alternately for ω1 ∈ (0.3, 6).

2. The Poin ´care map of the system (2) is shown in Fig. 6 for f1 = 2, ω1 = 1.45, f2 =

0.1, ω2 =
√

5 and the system is in a chaotic state. The bifurcation diagram of the system

(2) in (ω1, x) plane for f1 = 2, f2 = 0.1, ω2 =
√

5 is shown in Fig. 7(a) and the maximal

Lyapunov exponents corresponding to Fig. 7(a) are shown in Fig. 7(b). We show that

quasi-periodic orbits and chaotic behaviors appear alternately.
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3. Chaos Control of the System (2)

The above numerical results show that the system is in chaotic state for some parame-

ters. In order to suppress and eliminate the chaotic behavior, it is necessary to control

the chaos of the system (2). Here are two ways to solve this problem.

3.1 Variable Feedback Control

By using variable feedback control, the chaos of the system (2) is controlled. The original

system’s dynamical behaviors persist due to the change of small parameter has no effect
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on the system. This method not only can stabilize the unstable periodic orbit in the

original system, but also can create a new cycle of orbits.

By adding a feedback variable K (K is the adjustable feedback factor) to the first

equation, the system (2) can be rewritten as

{
ẋ = y −Kx,
ẏ = µ(1− x2)y − ω2

0x− λx3 − βx5 + f1 cosω1t+ f2 cosω2t.
(4)

Even if the feedback coefficient is small, it can also significantly weaken the chaotic

behavior, so the chaotic behavior of the system (2) can be inhibited by selecting the

appropriate K.

For Case I, when f1 = 6.1, ω1 = 1, f2 = 0.75 and ω2 =
√

5, the system (2) is chaotic.

Fixed the above data, the bifurcation diagram of the system (4) forK ∈ (0, 1) is shown in

Fig. 8(a). From Fig. 8(a) we can see the chaotic behavior has been effectively controlled

by the feedback variable K. At the beginning of K = 0, the system (4) is in a very small

chaotic region, namely, the chaotic motion of the system is in a narrow region, with K

continuously increasing, near K = 0.036036 the chaotic state disappears, the system

enter the quasi-periodic orbit, then the system is in wide area of quasi-periodic orbits.

For clarity, the chaotic attractor for K = 0.01 and quasi-periodic orbits for K = 0.2

and K = 0.9 in phase portraits are shown in Fig. 8(b), (c) and (d) respectively. The

chaotic attractor and invariant torus for K = 0.01 and K = 0.2 in Poin ´care map are

given in Fig. 8(e) and (f), respectively.

For 1 of Case II, when f1 = 30, ω1 = 2.2, f2 = 2 and ω2 = 2, the system (2) is chaotic.

The bifurcation diagram of system (4) for K ∈ (0, 2) is shown in Fig. 9(a). We can

see the chaotic area with quasi-periodic windows from Fig. 9(a). With K increasing

from K = 0, the system (4) is in a wide chaotic region. When 0.66466 < K < 2, the

system (4) is in stable periodic orbits. The chaotic attractor for K = 0.4 and periodic

orbits for K = 0.7 and K = 1.8 in phase portraits are shown in Fig. 9(b), (c) and (d)

respectively. For clarity, the chaotic attractor for K = 0.4 and the periodic orbit for

K = 1.8 in Poin ´care map are shown in Fig. 9(e) and (f), respectively.
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Figure 8 : (a) Bifurcation diagram of the system (4) in (K,x) plane for f1 = 6.1, ω1 =

1, f2 = 0.75, ω2 =
√

5. (b)(c)(d) Phase portraits for three values of K: (b) K = 0.01;

(c) K = 0.2; (d) K = 0.9. (e) Poin ´care map of Fig. 8(b). (f) Poin ´care map of Fig. 8(c).

For 2 of Case II, system (2) is chaotic for f1 = 2, ω1 = 1.45, f2 = 0.1 and ω2 =
√

5.

The bifurcation diagram of system (4) for K ∈ (0, 1) is shown in Fig. 10(a). Near

K = 0.075075, the system (4) is from the chaotic state into stable quasi-periodic orbits,

and quasi-periodic orbits account for wide area. The Fig. 10(a) shows two different

kinds of quasi-periodic orbits: one is in 0.075075 < K < 0.67768 and the another is in

0.67768 < K < 1. The very clear show of the chaos into quasi-periodic invariant circle

can be seen from Fig. 10(a). The chaotic attractor for K = 0.01 and quasi-periodic
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orbit for K = 0.1 and K = 0.8 in phase portraits are shown in Fig. 10(b), (c) and (d)

respectively. For clarity, the chaotic attractor for K = 0.01, quasi-periodic orbits for

K = 0.1 and K = 0.4, and the non-attracting chaotic set for K = 0.8 are given in Fig.

10(e)-(h).

Figure 9 : (a) Bifurcation diagram of the system (4) in (K,x) plane for f1 = 30, ω1 =

2.2, f2 = 2, ω2 = 2. (b)(c)(d) Phase portraits for three values of K: (b) K = 0.4; (c)

K = 0.7; (d) K = 1.8. (e) Poin ´care map of Fig. 9(b). (f) Poin ´care map of Fig. 9(d).

By numerical simulations
(
bifurcation diagrams, phase portraits and Poin ´care map of

the system (4) under feedback variable K (K > 0)
)
, chaos, generated by three sets of

data in Section 2.2, is controlled respectively. By numerical simulations, it can be found
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that variable feedback control method has good control effect, and the method is simple

and easy to implement, without too much of the knowledge of the controlled system,

and it control chaos stably and reliably.

Figure 10 : (a) Bifurcation diagram of the system (4) in (K,x) plane for f1 = 2, ω1 =

1.45, f2 = 0.1, ω2 =
√

5. (b)(c)(d) Phase portraits for three values of K: (b) K = 0.01;

(c) K = 0.1; (d) K = 0.8. (e) Poin ´care map of Fig. 10(b). (f) Poin ´care map of Fig.

10(c). (g) Poin ´care map of the system (4) for K = 0.4. (h) Poin ´care map of Fig. 10(d).
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3.2 Coupled Feedback Control

With the control signal f(t) = L[x(t)− y(t)] coupled with the periodic signal y(t) and

the output x(t) of the system (1), where L is the weight for the control signal to adjust

the intensity, so we can get the system (5){
ẋ = y,
ẏ = µ(1− x2)y − ω2

0x− λx3 − βx5 + f1 cosω1t+ f2 cosω2t+ L[x− y].
(5)

Figure 11 : (a) Bifurcation diagram of the system (5) in (L, x) plane for f1 = 6.1, ω1 =

1, f2 = 0.75, ω2 =
√

5. (b)(c)(d) Phase portraits for three values of L: (b) L = 0.001;
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(c) L = 0.5; (d) L = 2. (e) Poin ´care map of Fig. 11(b). (f) Poin ´care map of Fig. 11(c).

(g) Poin ´care map of Fig. 11(d). (h) Poin ´care map of the system (5) for L = 3.

The case as an example to Case I, the bifurcation diagram of the system (5) for L ∈ (0, 3)

is shown in Fig. 11(a). From Fig. 11(a) we can see the behaviors of the system (5)

remain chaotic as L increases from zero. When L arrives at and pass through a crit-

ical value L ≈ 0.03003, the behavior changes from chaotic to quasi-periodic, namely

L suppresses chaos in the system (5). The phase portraits of different L (L > 0) in

the system (5) are shown in Fig. 11(b), (c) and (d): (b) L = 0.001; (c) L = 0.5; (d)

L = 2. For clarity, we give the chaotic attractor, the strange non-chaotic attractor and

two invariant torus in Poin ´care map at L = 0.001, L = 0.5, L = 2 and L = 3 in Fig.

11(e)-(h) respectively.

4. Conclusion

By applying phase portraits, potential diagram, Poin ´care maps, bifurcation diagrams,

maximal Lyapunov exponents, the chaotic behavior of the system (2) is studied qualita-

tively and quantitatively. By numerical simulations, the impact of excitation amplitude

f1 and the vibration frequency ω1 on the system (2) is analyzed respectively. Using two

kinds of control methods on the system (2), the chaotic state is controlled effectively.

Different control methods have different advantages and can be required to choose.
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