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Abstract

Finite element methods (FEM) are widely employed in Damage Tolerance (DT)
assessment of structural components. It has become very important concept in pre-
dicting strength and life of cracked structures. For assessing the strength of flawed
structures, the evaluation of the stress intensity factor is essential. This paper de-
scribes the finite element procedure to determine the stress intensity factor using
J integral approach. A comparative study is made on the stress intensity factor of
cracked configurations utilizing a plane82 element of ANSYS. The computed values
of strain energy release rate (GI), J-integral (JI) and stress intensity factor (KI)
for tensile cracked configurations are found to be in good agreement with those
of handbook solutions. A plane 82 element is proved to be well suited to model
curved boundaries. Finite element formulation and fracture analysis procedures are
explained briefly.

1. Introduction

Fracture mechanics has developed into a useful discipline for predicting strength and
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life of cracked structures. The important aspect of linear elastic fracture mechanics is

the “Damage Tolerance”’ (DT) assessment. It is a procedure that defines whether a

crack can be sustained safely during the service life of the structure. DT assessment

is therefore required as a basis for any fracture control plan, generating the required

information about the allowable size of the crack that would withstand maximum ser-

vice loads without failure. In such DT assessment, the overall idea is to determine

the stress intensity factor (K1) for various cracked configurations using Finite Element

Methods and compares such FEM results with the analytical solutions. Finite element

methods are widely used to study the behavior of the cracks present in the structure

and provide better solution to the complex situations wherever experiments become

impossible/costlier.

The finite element method has become one of the most popular and general numerical

methods of structural analysis. The method has the capability to deal with complex

loading conditions, material behavior and practical geometries. The three main aspects

of the FEM are (a) modeling the crack region, (b) calculating J integral and (c) calculat-

ing of stress intensity factor using J integral [1]. Stress intensity factors may correspond

to three basic modes of fracture and it measures the degree of resistance to fracture,

J integral, a path-independent line integral that measures the strength of the singular

stresses and strains near a crack tip and the energy release rate represents the amount

of work associated with a crack opening.

This paper addresses the FEM procedure to model the stress intensity factor for three

cracked configurations viz., single edge crack, double edge crack and centre crack spec-

imens and the results obtained from FEM are compared with the results of analytical

methods.

2. Element Formulation and Fracture Analysis

Plane 82 is a higher order of the 2-D four node element The plane 82 element is well

suited to model curved boundaries. The 8-node element is defined by eight nodes having

two degrees of freedom at each node, translation in the modal x and y direction. The

elements may be used as a plane element or as an axisymmetric element [1, 2]. In

fracture mechanics, the quadratic elements Plane 82 are common in use. After meshing

the crack tip, elements surrounding the crack tip are shown in the Figure- 1.0.
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The finite element formulation for plan 82 element is described below. The elements

displacement function can be written in the form


u

v

 =

 N1 0 N2 0 N3 0 · · · N8 0

0 N1 0 N2 · · · 0 N8




u1

v1
u2

v2
...
un
vn


(1.1)

i.e.
{
u
v

}
= [N ]{δ}e Where [N ] is the element shape function matrix and {δ}e is the

element nodal displacement vector. The shape functions N1, N2, · · · and N8 in element

natural coordinates (ξ, η) are given by

N1 = − (1−ξ)(1−η)(1+ξ+η)
4

N2 = − (1−ξ2)(1−η)(1−ξ+η)
4

N3 = − (1+ξ)(1+η)(1−ξ−η)
4

N4 = − (1−ξ)(1+η)(1+ξ−η)
4

N5 = (1−ξ2)(1−η)
2
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N6 = (1+ξ)(1−η2)
2

N7 = (1−ξ2)(1+η)
2

N8 = (1−ξ)(1−η2)
2

(1.2)

The shape functions N1 to N8 are quadratic polynomials. The element displacements

given by equation (1.1) have a quadratic variation and involve only the nodal displace-

ments as unknown. The same set of shape functions are used to describe the element

geometry as

x =
8∑
i=1

Nixi

y =
8∑
i=1

Niyi.

(1.3)

The strains {ε} and stress {σ} within an element are obtained as

{ε} =


εx

εy

γxy

 =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x




u

v


= [L][N ]{δ}e

= [B]{δ}e

(1.4)

where

[B] =


∂N1
∂x 0 ∂N2

∂x 0 · · · ∂N8
∂x 0

0 ∂N1
∂y 0 ∂N2

∂y · · · 0 ∂N8
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x · · · ∂N8

∂y
∂N8
∂x

 . (1.5)

Stress in the element is written as

{σ} = [D][B]{δ}e

{σ}T = {σx, σy, τxy}T
(1.6)
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The stress-strain matrix [D] is given by

[D] =
E

(1 + γ)(1− γ)


1− γ γ 0

γ 1− γ 0

0 0 0.5− γ

 . (1.7)

Now the potential energy π is obtained from

π =
1
2

∫
{δ}T [B]T [D][B]{δ}dv − {δ}T {fe} (1.8)

where {fe} = {F} is the externally applied elemental force vector.

According to the theorem of minimum potential energy, variation in π is zero.

∴
1
2

∫
∆{δ}T [B]T [D][B]{δ}+

1
2

∫
{δ}T [B]T [D][B]∆δ − {∆δ}T {F} = 0 (1.9)

=
∫

∆{δ}T [B][D][B]{δ}dv −∆{δ}T {F} = 0

= ∆{δ}[
∫
v[B]T [D][B]dv{δ} − {F}] = 0

(1.10)

i.e.
∫
v
[B]T [D][B]dv{δ} = {F}

∴ [K]{δ} = {F}

where ∫
v
[B]T [D][B]dv = [K]. (1.11)

The matrix [K] is obtained through a suitable numerical integration scheme, usually the

Gauss quadrature procedure. Relation (1.11) represents a set of simultaneous equations

involving the nodal displacement for the entire domain. These equations are infact, the

overall equilibrium equations. The overall stiffness matrix is a singular matrix. It is

made non-singular by incorporating the specified fixed boundary conditions. The solu-

tion of equations (1.11) constitutes a major part of the required computer time.

3. Evaluation of Stress Intensity Factor

Finite element method has been extensively used for the determination of stress intensity

factor (K) [3, 4]. There are numerous special elements which can be discretised to

simulate the singular stress field around a crack-tip [5]. The quarterpoint singularity
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elements [5], which meet all the convergence requirements, have the advantage that

they can be most easily included in a computer program of 8-noded quadrilaterals [5].

Rice J.R. and Neale, B. K. [7, 6] has derived the J-integral expression in a systematic

procedure.

The J-integral is found to be equal to the strain energy release rate G, in the linear

elastic range and there exists a relation between K and G. the stress intensity factor

K can be obtained utilizing the J- integral value [7].

J =
∫
r

[
Udy − t∂u

∂x
ds

]
(1.12)

where U is strain energy, t is outward traction vector along the normal nj to the contour

Γ and ∂u
∂x is the strain vector. The J integral coordinate system is shown in Figure-2.

Theoretically J-integral is path-independent. But the finite element solution is approx-

imate and the integral becomes path-dependent. It is recommended that the maximum

value of J should be used to evaluate K, like the method based on the strain energy

release rate, the J-integral method has an accuracy which is not very dependent on mesh

refinement and it permits elimination for the extrapolation step usually associated with

the displacement and stress methods.

The total J integral value is the summations of the contributions of all elements form-

ing the integral path and the stress intensity factors due to first, second and third modes.

4. Case Studies

Using ANSYS FEM software, finite element analysis was carried out using plane-82

element, for the following three cases to compute stress intensity factor KI Strain energy

release rate GI and J-integral JI .
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Case I : Tensile specimen with a single edge crack (Figure 3.0)

Case-II : Tensile specimen with a double edge crack (Figure 4.0)

Case-III : Tensile specimen with a centre crack (Figure 5.0)

Case - 1 : Single edge crack tensile specimens have the dimensions :

Length (L) = 0.08m; width (W ) = 0.01m; thickness (t)− 0.01m and crack length (a) =

0.002m. The number of elements considered for FEM analysis is 1316 elements. Finite

element analysis has been carried out and the stress intensity factor and the Strain

energy release rate have been obtained. The FEM mesh generated for single edge crack

is shown below.

Single edge crack specimen :
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Case - 2 : Double edge crack specimen.

Double edge crack tensile specimen has the dimensions: Length (L) = 0.08m; width

(W ) = 0.01m; thickness (t) = 0.01m and crack length (a) = 0.002m. The number of

elements considered for FEM analysis is 1316 elements. The FEM mesh generated for

double edge crack specimen is shown below.

Double edge crack.

Case - 3 : Centre crack specimen

Centre crack tensile specimen has the dimensions : Length (L) = 0.08m; width (W ) =

0.01m; thickness (t) − 0.01m and crack length (a) = 0.004m. The number of elements

considered for FEM analysis is 1260 elements. Finite element analysis has been carried

out to determine the stress intensity factor and the Strain energy release rate. The

FEM mesh generated for centre crack specimen is shown below.

M250 grade maraging steel material used for rocket motor case fabrication has been

considered in the present study. The mechanical property of the material is given in

Table-1.0. Analysis was carried out to evaluate stress intensity factor KI , strain energy

release rate and J-integral For the above three cracked configurations for an applied

stress value of 294 MPa, Stress intensity factor, strain energy release rate and J-integral

for these cases were also obtained using the following analytical expressions.
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Single edge cracked specimen (Figure 3.0)

K1 = σ
√
∂aY

a

W
(2.0)

Y (ξ) = 1, 12− 0231ξ + 10.55ξ2 − 21.71ξ2 + 30.39ξ4, ξ ≤ 0.6.

Double edge cracked specimen (Figure 4.0)

K1 = σ
√
πaY

2a
W

(3.0)

Y (ξ) = 1.12 + 0.203ξ − 1.197ξ2 + 1.930ξ2.

Centre cracked specimen (Figure 5.0)

K1 = σ
√
πaY

a

W
(4.0)

γ(ξ) =
√

sec(πξ). (4.0)

Table 1.0 : Mechanical properties of M250 maraging steel.

Material Young’s Poisson’s Rigidity Modulus
Modulus E(GPa) ratio v µ = E

2(1+v)(GPa)
M250 Steel 186.3 0.3 71.7
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Table -2.0 presents a good comparison of (K1), (G1) and J1), obtained from finite ele-

ment method and analytical methods for the three cases of cracked specimens.

From the Table-2, it is known that the (G1) and (J1), values are material dependent,

whereas (KI) values almost material independent and it is also seen that the J-integral

is equal to the strain energy release Rate (G) in the linear elastic range.

Table 2 : Comparisons of stress intensity facto, Strain energy release rate and

J-integral obtained from FEM and analytical methods.

Material Finite element solution Analytical solution
K1Mpa

√
m G1MPa m J1MPam K1MPa

√
m

single edge 31.844 0.0054 0.0049 31.944 (equ.2)
crack

Double edge 25.891 0.00359 0.003584 26.400 (equ.3)
crack

Centre crack 32.960 0.00721 0.00719 32.96 (equ.4)

5. Results and Discussion

The stress intensity factor evaluation is essential for assessing the strength of flawed

structures. A comparative study is made on the stress intensity factor of cracked con-

figurations utilizing a plane 82 element of ANSYS. The computed values of strain energy

release rate (GI), J-integral (JI) and stress intensity factor (KI) for tensile cracked con-

figurations are found to be in good agreement with those of handbook solutions. This

confirms the validation of finite element modelling of cracked configurations. For any

complex cracked configuration and complex loading conditions, it is possible to obtain

finite element solution utilizing the commercial software package ANSYS. To assess the

fracture strength of cracked bodies, the evaluated stress intensity factor should be com-

pared with the fracture toughness or the critical stress intensity factor of the material.
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