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Abstract
In this paper, we consider a system of extended general variational inequality prob-
lems (in short, SEGVIP) in real Hilbert spaces. Using fixed point theorem and
projection operator technique, it is observed that the SEGVIP is equivalent to the
system of projection equations. This alternative equivalence formulation is used
to prove the existence of a unique solution of SGEVIP. The approach used in this
paper may be treated as an extension and unification of approaches for studying
existence results for various important classes of system of variational inequality
problems given by many authors, see for example [1, 3, 5-9, 11].

1. Introduction

Variational inequality theory introduced by Stampacchia [10] and Fichera [2], has be-

come a rich source of inspiration and motivation for the study of a large number of
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problems arising in mechanics, elasticity and optimization etc., see [1-12]. In the last four

decades, considerable interest has been shown in developing numerical methods which

provide an efficient and implementable algorithm for solving variational inequalities

and its generalization. This theory provides a simple, natural and unified framework

for a general treatment of unrelated problems, which have motivated a large number

of mathematicians to generalize and extend the variational inequalities and related

optimization problems in several directions using novel techniques, see for example [1,

3, 5-9, 11].

By using the projection technique, Noor [5,6], Noor et al. [8] and Verma [11] studied

the existence of solutions for some classes of extended general variational inequalities

in Hilbert and Banach spaces. Very recently, by using the projection technique, Cho et

al. [1], Huang et al. [3], Noor et al. [7] and Saleh et al. [9] studied the existence of

solutions for some classes of system of general extended variational inequality problems

in Hilbert and Banach spaces.

Inspired by recent research going on in this area, in this paper, we consider a system

of extended general variational inequality problems (SEGVIP) in real Hilbert spaces.

Using fixed point theorm and projection operator technique, it is observed that the

SEGVIP is equivalent to the system of projection equations. This alternative equiva-

lence formulation is used to prove the existence of a unique solution of SGEVIP.

2. Preliminaries

From now onwards, unless or otherwise stated, let I = {1, 2} be an index set and for

each i ∈ I, let Hi be a real Hilbert space whose inner product and norm are denoted

by 〈·, ·〉i and ‖.‖i, respectively. Let Ni : H1 × H2 → hi gi, Hi : Hi → hi be nonlinear

mappings. We consider the following system of extended general variational inequality

problems (in short, SEGVIP):

Find (x, y) ∈ H1 ×H2 : h1(x) ∈ K1, h2(y) ∈ K2 such that

〈N1(x, y) + h1(x)− g1(x), g1(v1)− h1(x)〉1 ≥ 0, ∀v1 ∈ H1 : g1(v1) ∈ K1, (2.1)

〈N2(x, y) + h2(y)− g2(y), g2(v2)− h2(y)〉2 ≥ 0, ∀v2 ∈ H2 : g2(v2) ∈ K2. (2.2)

Similar type problems have been studied by many authors, see for example [5-9].

Now, we give the following known concepts and results which are needed in the sequel:
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Lemma 2.1 [2,8-10] : Let K be a closed and convex set in H. Then for a given z ∈ H,
u ∈ K satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K,

if and only if u = PK(z), where PK is the projection of H onto the closed convex set K

in H.

It is well known that the projection operator PK is nonexpansive i.e.,

‖PK(x)− PK(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H.

Definition 2.1 [7-9] : A mapping g : H → H is said to be:

(a) σ-strongly monotone if there exists a constant σ > 0 such that

〈g(x)− g(y), x− y〉 ≥ σ‖x− y‖2;

(b) δ-Lipschitz continuous if there exists a constant δ > 0 such that

‖g(x)− g(y)‖ ≤ δ‖x− y‖.

Definition 2.2 [6-9] : A mapping N1 : H1 ×H2 → H1 is said to be:

(a) α1-strongly monotone in the first argument if there exists a constant α1 > 0 such

that

〈N1(x1, y)−N1(x2, y), x1 − x2〉1 ≥ α1‖x1 − x2‖12, ∀x1, x2 ∈ H1, y ∈ H2;

(b) (β1, γ1)-mixed Lipschitz continuous if there exist constants β1, γ1 > 0 such that

‖N1(x1, y1)−N1(x2, y2)‖1 ≤ β1‖x1−x2‖1+γ1‖y1−y2‖2, ∀x1, x2 ∈ H1, y1, y2 ∈ H2.

Lemma 2.2 [9,11] : Let H be a Hilbert space. Then for any x, y ∈ H, we have

‖x+ y‖2 ≤ ‖x‖2 + 〈y, x+ y〉.
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3. Fixed Point and Fixed Point Theorem

In this section, we present fixed point and contraction mapping which are needed in the

sequel.

Definition 3.1 [9,12] : Let (X, d) be a metric space and let T : X → X be a mapping.

A point x ∈ X is said to be fixed point of T if Tx = x.

Definition 3.2 [9,12] : A mapping T : X → X is said to be contraction if

d(T (x), T (y)) ≤ α d(x, y), ∀x, y ∈ X,

for some α, 0 ≤ α < 1. If α = 1, then the mapping T is non-expansive.

Now, we state a fixed point theorem, which is a natural generalization of Banach con-

traction theorem, see [4, 8, 9, 12].

Theorem 3.1 (Fixed Point Theorem) : Let X be a Banach space. If T is contrac-

tion mapping on X into itself. Then T has a unique fixed point.

4. Main Result

First we establish an equivalence between the SEGVIP (2.1)-(2.2) and the system of

projection equations and then using this equivalence to prove the existence of a unique

solution of SEGVIP (2.1)-(2.2).

Lemma 4.1 : For any given (x, y) ∈ H1×H2, (x, y) is a solution of SEGVIP (2.1)-(2.2)

if and only if (x, y) satisfies the system of projection equations

h1(x) = PK1 [g1(x)− ρ1N1(x, y)], (4.1)

h2(y) = PK2 [g2(y)− ρ2N2(x, y)], (4.2)

where ρ1, ρ2 > 0 are constants.

Theorem 4.1 : For each i = 1, 2, let Ni : H1 × H2 → Hi, gi, Hi : Hi → Hi be

nonlinear mappings. Let the mapping N1 is α1-strongly monotone in the first argument

and (β1, γ1)-mixed Lipschitz continuous and N2 is α2-strongly monotone in the second

argument and (β2, γ2)-mixed Lipschitz continuous. Let the mappings hi is µi-strongly

monotone and ηi-Lipschitz continuous and gi is σi-strongly monotone and δi-Lipschitz

continuous. Suppose that ρ1, ρ2 > 0 satisfy the following condition:

U1 + V1 +W1 + ρ2β2 ≤ 1 ; U2 + V2 +W2 + ρ1γ1 ≤ 1, (4.3)



A FIXED POINT APPROACH FOR SOLVING A SYSTEM OF... 227

where U1 :=
√

1− 2σ1 + δ21 ; V1 :=
√

1− 2µ1 + η2
1 ; W1 :=

√
1− 2α1ρ1 + β2

1ρ
2
1 ;

U2 :=
√

1− 2σ2 + δ22 ; V2 :=
√

1− 2µ2 + η2
2 ; W2 :=

√
1− 2α2ρ2 + γ2

2ρ
2
2 .

Then SEGVIP (2.1)-(2.2) has a unique solution.

Proof : For given ρi > 0 (i = 1, 2) and for all (x, y) ∈ H1 ×H2, define the mappings

R : H1 ×H2 → H1 and S : H1 ×H2 → H2 by

R(x, y) = x− h1(x) + PK1 [g1(x)− ρ1N1(x, y)], (4.4)

S(x, y) = y − h2(y) + PK2 [g2(y)− ρ2N2(x, y)]. (4.5)

For given (i = 1, 2) and for all (xi, yi) ∈ H1 ×H2, it follows from (4.4) that

‖R(x1, y1)−R(x2, y2)‖1 ≤ ‖x1−x2−(h1(x1)−h1(x2))‖1

+‖PK1(g1(x1)− ρ1N1(x1, y1))− PK2(g1(x2)− ρ1N1(x2, y2))‖1

≤ ‖x1 − x2 − (h1(x1)− h2(x2))‖1 + ‖x1 − x2 − (g1(x1)− g2(x2))‖1

+‖x1 − x2 − ρ1(N1(x1, y1)−N1(x2, y1))‖1

+ρ1‖N1(x2, y1)−N1(x2, y2))‖1. (4.6)

Since N1 is α1-strongly monotone in the first argument and (β1, γ1)-mixed Lipschitz

continuous, it follows that

‖x1−x2−ρ1(N1(x1, y1)−N1(x2, y1))‖21 ≤ ‖x1−x2‖21−2ρ1〈N1(x1, y1)−N1(x2, y1), x1−x2〉1

+ρ2
1‖N1(x1, y1)−N1(x2, y1)‖2

≤ (1− 2ρ1α1 + ρ2
1β

2
1)‖x1 − x2‖21. (4.7)

Similarly, we estimate:

‖x1 − x2 − (g1(x1)− g1(x2))‖21 ≤ (1− 2σ1 + δ21)‖x1 − x2‖21, (4.8)

‖x1 − x2 − (h1(x1)− h1(x2))‖21 ≤ (1− 2µ1 + η2
1)‖x1 − x2‖21, (4.9)

where g1 is σ1-strongly monotone and δ1-Lipschitz continuous and h1 is µ1-strongly

monotone and η1-Lipschitz continuous.
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From (4.4)-(4.9), we have

‖R(x1, y1)−R(x2, y2)‖1 ≤
(√

1− 2σ1 + δ21 +
√

1− 2µ1 + η2
1

+
√

1− 2α1ρ1 + β2
1ρ

2
1

)
‖x1 − x2‖1 + ρ1γ1‖y1 − y2‖2.(4.10)

Also, it follows from (4.5) that

‖S(x1, y1)−S(x2, y2)‖2 ≤ ‖y1−y2−(h2(y1)−h2(y2))‖2 +‖y1−y2−(g2(y1)−g2(y2))‖2+

+‖y1 − y2 − ρ2(N2(x1, y1)−N2(x1, y2))‖2

+ρ2‖(N2(x1, y2)−N2(x2, y2))‖2. (4.11)

Since N2 is α2-strongly monotone in the second argument and (β2, γ2)-mixed Lipschitz

continuous, it follows that

‖y1− y2− ρ2(N2(x1, y1)−N2(x1, y2))‖2 ≤ (1− 2α2ρ2 + γ2
2ρ

2
2) ‖y1− y2‖22.

(4.12)

Similarly, we estimate:

‖y1 − y2 − (g2(y1)− g2(y2))‖2 ≤ (1− 2σ2 + δ22) ‖y1 − y2‖22, (4.13)

‖y1 − y2 − (h2(y1)− h2(y2))‖2 ≤ (1− 2µ2 + η2
2) ‖y1 − y2‖22, (4.14)

where g2 is σ2-strongly monotone and δ2-Lipschitz continuous and h2 is µ2-strongly

monotone and η2-Lipschitz continuous.

From (4.11)-(4.14), we have

‖S(x1, y1)− S(x2, y2)‖2 ≤
(√

1− 2σ2 + δ22 +
√

1− 2µ2 + η2
2

+
√

1− 2α2ρ2 + γ2
2ρ

2
2

)
‖y1 − y2‖2 + ρ2β2‖x1 − x2‖1.(4.15)

Also from (4.10) and (4.15), we have

‖R(x1, y1)−R(x2, y2)‖1+‖S(x1, y1)−S(x2, y2)‖2

≤ (U1 + V1 +W1 + ρ2β2)‖x1 − x2‖1 + (U2 + V2 +W2 + ρ1γ1)‖y1 − y2‖2

≤ k1‖x1 − x2‖1 + k2‖y1 − y2‖2
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≤ k(‖x1 − x2‖1 + ‖y1 − y2‖2), (4.16)

where k := max{k1, k2}; k1 := U1 + V1 +W1 + ρ2β2 ; k2 := U2 + V2 +W2 + ρ1γ1;

U1 :=
√

1− 2σ1 + δ21 ; V1 :=
√

1− 2µ1 + η2
1 ; W1 :=

√
1− 2α1ρ1 + β2

1ρ
2
1 ;

U2 :=
√

1− 2σ2 + δ22 ; V2 :=
√

1− 2µ2 + η2
2 ; W2 :=

√
1− 2α2ρ2 + γ2

2ρ
2
2 .

Now, define the norm ‖ · ‖∗ on H1 ×H2 by

‖(x, y)‖∗ = ‖x‖1 + ‖y‖2, ∀(x, y) ∈ H1 ×H2. (4.17)

It is easy to observe that (H1 ×H2, ‖ · ‖∗) is a Banach space. Define a mapping

Q(x, y) : H1×H2 → H1×H2 by

Q(x, y) = (R(x, y), S(x, y)) , ∀(x, y) ∈ H1 ×H2. (4.18)

Since k = max{k1, k2} < 1 by (4.3). Hence, it follows from (4.16)-(4.18) that

‖Q(x1, y1)−Q(x2, y2)‖∗ ≤ k‖(x1, y1)− (x2, y2)‖∗. (4.19)

This proves that the mappingQ is a contraction mapping. Hence, by Banach contraction

principle, there exists a unique (x, y) ∈ H1×H2 such that Q(x, y) = (x, y), which implies

that

h1(x) = PK1 [g1(x)− ρ1N1(x, y)],

h2(y) = PK2 [g2(y)− ρ2N2(x, y)].

It follows from Lemma 4.1 that (x, y) is the unique solution of SEGVIP (2.1)-(2.2). This

completes the proof.

Remark 4.1 : For i = 1, 2, it is clear that σi ≤ δi, µi ≤ ηi and ρ1, ρ2 > 0. Further,

θ < 1 and condition (4.3) of Theorem 4.1 holds for some suitable set values of constants,

for example,

• α1 = .3, β1 = .4, γ1 = .1, σ1 = .1, δ1 = .2, µ1 = .1, η1 = .2, ρ1 = .2.

• α2 = .2, β2 = .3, γ2 = .2, σ2 = .2, δ2 = .3, µ2 = .2, η2 = .3, ρ2 = .1.
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