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Abstract
In meshless methods the enforcement of essential boundary conditions is an im-
portant step for solving the partial differential equations successfully due to the
loss of Kronecker property in meshless shape functions. The purpose of this paper
is to study the imposition of essential boundary conditions by introducing several
techniques to the meshless local Petrov-Galerkin (MPLG) method, which is a kind
of truly meshless method. Detail comparison investigation is given for an overview
about these techniques. All the methods are applied for the electromagnetic field
computation and numerical results verify the effectiveness of the proposed methods.

1. Introduction

Meshless methods have been developed as a powerful alternative to the well established

mesh-based methods for a wide range of engineering applications, such as mechanics
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problems [1], electromagnetic field computations [2]. Meshless methods only use nodal

points instead of element meshes for the approximation of unknown quantities. Meshless

methods are also characterized by their wide adaptability and the low cost of preparing

input and output data for numerical analysis. Among meshless methods, the meshless

local Petrov-Galerkin (MLPG) method developed by Atluri and Zhu [3,4] is a truly

meshless method, which requires neither nodal connectivity nor background cells, for

either the interpolation or the integration purposes. The most significant difference be-

tween the MLPG and other meshless methods is that the local weak forms are generated

on a set of overlapping local subdomains with simple geometrical shapes, instead of the

global weak form. Based on the local weak forms, the MLPG method avoids background

integral cells besides employing meshless interpolation. When a local weak form is used

for a field node, the numerical integrations are performed over a local quadrature do-

main defined for the node, which can also be the local domain where the test function

is defined. The local domain usually is regular and simple shape for an internal node

such as a circular and square, and the integration is performed numerically within the

local domain. Hence the domain and boundary integrals in the weak form can be easily

evaluated over regularly shaped sub-domains and their boundaries. However, because

the MLPG method has the drawback that the meshless shape functions are not inter-

polation functions in general, it is difficult to impose essential boundary conditions for

solving partial differential equations by using the MLPG method.

In this paper, we investigate some useful techniques for the imposition of essential

boundary conditions in detail, which can be easily extend to other meshless methods.

The penalty method [3] is applicable to a number of problems conveniently. But the

essential boundary condition is weakly imposed since the penalty parameter controls

how well the essential boundary conditions are set. In addition, the coefficient matrix

is often poorly conditioned because the condition number increases with the penalty

parameter. Nevertheless, the symmetric weak formulation can be obtained by using the

penalty approach to enforce boundary conditions. The coupling with finite elements [4]

employs a string of elements along essential boundaries and combines the finite element

shape function defined on this string with the meshless one by a ramp function. Usually

the approximation itself is continuous, but its derivative undergoes a jump across the

interface. In this work, a transformation method (TM) and a boundary singular weight
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function method (BSW) are introduced for the MLPG method to solve the PDEs. Both

the techniques can be directly to enforce the essential boundary conditions, as well as be

further extended to other meshless methods such as the element free Galerkin method,

the partition of unity method and diffuse element method. Finally, all the methods

are used to solve the electromagnetic filed computations. From the detailed compari-

son investigation, it can be demonstrated that the transformation method is accurate

and robust, and the singular weight function method can save computational time to a

grate extent. Numerical examples for some electromagnetic field models are presented

to validate the efficiency of the proposed approaches.

2. The MLPG Method

2.1 Moving Least Square (MLS) Approximation

In general, a meshless method represents the trial function with the values of the un-

known variable at some randomly located nodes by using the local approximation. The

MLS approximation is one of the most popular method. Consider a function u(x) in Ω.

The MLS approximation uh(x) is defined by

uh(x) =
m∑

j=1

pj(x)aj(x) = pT (x)a(x). (1)

where pT (x) = (p1(x)p2(x) · · · pm(x)) is a complete monomial basis of order m, and a(x)

is a vector with the components aj(x), j = 1, 2, · · · ,m. Here m is the number of basis

functions. The coefficient vector a(x) can be determined by minimizing the weighted

discrete L2 norm with the least square theorem, which is defined as follows,

J(x) =
n∑

i=1

w(x− xi)(pT (xi)a(x)− ûi)2 = (Pa(x)− û)T W (Pa(x)− û). (2)

where w(x − xi) is the weight function associated with the node i. n is the number of

nodes in the sub-domain where the weight function w(x−xi) > 0, P = (p(x1), p(x2), · · · ,

p(xn))T , W = diag(w(x− x1), w(x− x2), · · · , w(x− xn)) and û = (û1, û2, · · · , ûn)T . ûi

is the fictitious nodal value associated with xi. The stationary of J in (2) with respect

to a(x) leads to the following linear relation between a(x) and û.

A(x)a(x) = B(x), (3)
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where the matrices A(x)and B(x) are defined by A(x) = P T WP = B(x)P =
n∑

i=1
wi(x)p(xi)pT (xi), B(x) = P T W = (w1(x)p(x1), w2(x)p(x2), · · · , wn(x)p(xn)). The

MLS approximation is well defined once the matrix A(x) is not singular. Obviously, this

is the case if and only if the rank of P equals m. Hence it is necessary that at least m

weight functions are non-zero (i.e. n > m) for each sample node x ∈ Ω. The Gaussian

weight function is used in this work,

wi(x) =


exp[−(di/ci)

2]−exp[−(ri/ci)
2]

1−exp[−(ri/ci)2]
0 ≤ di ≤ ri,

0 di > ri,

(4)

where di = ‖x−xi‖. ci is a constant controlling the shape of the weight function wi and

ri is the size of the support domain. The size of support domain should be large enough

to have sufficient number of nodes to ensure the regularity of the matrix A. a(x) can

be given from (3), and the following relation can be written by substituting a(x) into

(1). Then we have

uh(x) = ΦT (x)û =
N∑

I=1

ΦI(x)u∗(xI), (5)

where

ΦI(x) =
m∑

j=1

pj(x)(A−1(x)B(x))jI . (6)

Here ΦI(x) is usually called the shape function of the MLS approximation correspond-

ing to the nodal point xI . It can be seen that the MLS shape functions do not possess

Kronecker delta property, i.e. ΦI(xJ) 6= δIJ , which leads to the difficulty of the impo-

sition of essential boundary conditions. In this work we focus on the enforcement of

essential boundary conditions.

2.2 Local Petrov-Galerkin Integral Equation

For a two dimensional electrostatic problem on the domain Ω, which is bounded by the

boundary Γ. The governing equation is given by
−∆u = f in Ω

u = u on Γu

∂u
∂n = q = q on Γq,

(7)
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where u and q are the prescribed potential and normal flux, respectively,and n is the

outward normal direction to the boundary Γ. A generalized local weak formulation over

a local subdomain Ωs can be written as∫
Ωs

(∆u + f)vdΩ = 0. (8)

We denote ∂Ωs as the boundary of the local sub-domain Ωs. ∂Ωs = Γs ∪ Ls. Γsu and

Γsq are the parts of ∂Ωs, over which the essential and natural boundary condition are

specified separately. We choose v(x, xI) as the test function in every sub-domain, and

v(x, xI) can be the weight function, Dirac’s Delta function, Heaviside step function and

so on [4]. Using the divergence theorem, we can obtain the linear system

K • u∗ = f (9)

and

KIJ =
∫

Ωs

(ΦJ,x(x)v,x(x, xI) + ΦJ,y(x)v,y(x, xI))dΩ−
∫

Γsu

∂ΦJ(x)
∂n

v(x, xI)ds, (10)

fI =
∫

Γsq

qv(x, xI)ds +
∫

Ωs

fv(x, xI)dΩ, (11)

where I = 1, 2, · · · , N, J = 1, 2, · · · ,M . N denotes the total number of nodes of Ω and

M is the number of test function centered at xI , which do not vanish at xJ .

3. The Enforcement of Essential Boundary Conditions

Like other meshless methods, the shape function in the MLPG method does not satisfy

the Kronecker-δ property, which causes that the essential boundary conditions need to

be treated with additional efforts. Many methods have been proposed to deal with

the difficulty. The penalty method is widely used for imposition of essential boundary

conditions in the MLPG method with the penalty term of α
∫
Γu

(u − u)vds. However,

if the penalty parameter α is too small, it cannot effectively impose essential boundary

conditions. On the other hand, if α is too large, it will lead to the ill conditioning of

the coefficient matrix. A suitable value for the penalty parameter is not easy to choose

in advance. Another technique is motivated by the coupled element free Galerkin and

finite element method presented by Belystchko [5]. In this approach, the computational

domain is divided into two regions where the finite element method and the meshless
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method are used separately. A transition domain between the two regions is defined,

where a ramp function is chosen to combine the shape functions of the two methods.

In this approach, the continuity condition of potential variables is ensured. But their

derivatives may undergo a jump across the interface. Although the coupled MLPG and

finite element method presented in [6] has avoided the discontinuity, the complexity

of the modified shape function in the transition domain still needs to be improved.We

introduce the following techniques to impose the essential boundary condition in the

MLPG method.

3.1 The Transformation Method

The potential viable for static fields is written as following

uh(xJ) =
N∑

I=1

ΦI(xJ)uI = AT
J u, (12)

where AJ = [Φ1(xJ) Φ2(xJ) · · ·ΦN (xJ)]T and u = [u1 u2 · · ·uN ]T . Here assume

û = ΛTu, (13)

where we call u the general potential vector. û = [uh(x1) uh(x2) · · ·uh(xN )]T is the

nodal potential vector, and Λ = [A1 A2 · · ·AN ] is a transformation matrix,

Λ =



Φ1(x1) Φ1(x2) · · · Φ1(xN )

φ2(x1) Φ2(x2) · · · Φ2(xN )

...
...

. . .
...

ΦN (x1) ΦN (x2) · · · ΦN (xN )


. (14)

Further we can obtain u = Λ−T û, i.e. uI =
N∑

K=1

Λ−T
IK ûK . Λ−T is the transpose of inverse

of the matrix Λ. Then we have

uh(x) =
N∑

I=1

N∑
K=1

ΦI(x)Λ−T
IK ûK =

N∑
K=1

Ψk(x)ûK , (15)

where Ψk(x) =
N∑

I=1

ΦI(x)Λ−T
IK is the modified shape function, and it satisfies Kronecker-δ

condition, i.e.

ΨI(xJ) =
N∑

K=1

ΦK(xJ)Λ−T
KI =

N∑
K=1

Λ−1
IKΦK(xJ) = δIJ . (16)
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Thus ΦI(x) is replaced by ΨI(x) in (16), and the essential boundary condition can be

imposed exactly. During the numerical implementation, the construction of resulting

stiffness matrix will involve the inversion of the matrix Λ and it will not increase too

much computational cost.

3.2 The Boundary Singular Weight Method

Lancaster and Salkauskas [7] first suggested that the MLS approximation would lead to

the interpolation by introducing a singularity into the weight function. Then this idea

was introduced by Kaljevic and Saigal [8] to the element free Galerkin method. In their

approach, singular weight functions are employed all discrete nodes, and Kronecker-δ

properties are recovered in the MLS shape functions. In this paper, the MLPG shape

functions constructed with singularities introduced only to the constrained boundary

nodes. As such, this method does not generate interpolation functions at the interior

nodes, but it is sufficient to obtain nodal values at the restrained boundary nodes for

direct imposition of essential boundary conditions.

A singularity is introduced to the weight functions with a designated node I located at

(x̃I , ỹI) on the essential boundary,

w̃(x− x̃I , y − ỹI) =
w(x− x̃I , y − ỹi)
f(x− x̃I , y − ỹI)

, (17)

where f(0, 0) = 0 and the superposed ∼ on the nodal coordinate denotes a node with

singularity imposed in the associated shape function. The function f is chosen to have

the following form [9]

f(x− x̃I , y − ỹI) =

[(
x− x̃I

ax

)2

+
(

y − ỹI

ay

)2
]p

, p > 0 (18)

where 2p reflects the order of singularity, and ax, ay are the parameters to adjusting

the size of influence domain. Using (17), we get the shape function associated with the

weight w̃(x− x̃I , y − ỹI) as following

Φ̃I(x) = pT (x)Ã−1(x)p(x̃I)w̃(x− x̃I), (19)

where

Ã(x) =
∑

J 6∈Γu

p(xJ)pT (xJ)w(x− xJ)

+
∑

K∈Γu,K 6∈I

p(x̃K)pT (x̃K)w(x− x̃K) + p(x̃I)pT (x̃I)w̃(x− x̃I).
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Other shape functions are

ΦJ(x) = pT (x)Ã−1(x)p(xJ)w(x− xJ), J 6∈ Γu, (20)

ΦK(x) = pT (x)Ã−1(x)p(x̃K)w̃(x− x̃K), K ∈ Γu, K 6= I. (21)

The singular weight shape functions Φ̃I(x) have the following property Φ̃I(x → x̃I) =

1. Other shape functions have the following property ΦJ(x → x̃I) = 0, J 6∈ Γu,

Φ̃K(x → x̃I) = 0,K ∈ Γu,K 6= I. Recall the approximation of the potential vari-

able uh(x̃I) =
N∑

J=1,J 6=I

ΦJ(x̃I)uJ + φ̃I(x̃I)uI = uI . Comparing the approach by Kaljevic

[8], the proposed boundary singular weight method provides exact nodal values at the

constraint boundary nodes.

3. Numerical Example

3.1 Comparison Analysis

A simple electrostatic model shown in Fig.2 is used for the comparison analysis of the

accuracy and CPU time of the proposed and existing methods. 441 nodes are used to

discrete the whole domain. The following relative error is defined as:

Re =

√√√√√√√√
N∑

i=1
(φi − φi)2

N∑
i=1

φ2
i

, (22)

where φ and φ are the numerical solution by the numerical method and the analytic

method separately, and N is the number of nodes in the computational domain.

The comparison of the normalized error and the CPU time using these techniques sep-

arately are listed in Table 1. In the table, the computational error and CPU time are

normalized by those in the case of the penalty method. The results indicate that the

boundary singular weight (BSW) method has saved computational effort in a degree,

and the transformation method (TM) has given good solution although it needs the

cost of coordinate transformation.
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Table 1 : Comparison of the normalized error and CPU time

Comparison parameter Penalty MLPG-FE TM BSW
Normalized error 1.000 0.984 0.975 1.107
Normalized CPU time 1.000 1.002 1.105 0.783

3.2 The Axisymmetric Coaxial Waveguides

We consider the axisymmetric coaxial waveguides [10] illustrated in Fig. 2, where

two coaxial waveguides having different inner radii are joined. This geometry is rota-

tionally symmetric with respect to the z-axis, so in the ρz-plane the electric potential

satisfies the following equation

−1
ρ

∂

∂ρ

(
ε, ρ

∂φ

∂ρ

)
− ∂

∂z

(
ε, ρ

∂φ

∂z

)
=

ρc

ε0
. (23)

where ρc is the charge density, εr is the relative permittivity, and ε0 is the vacuum

permittivity. Further, since the perturbation is confined near the join, the potential

at some distance away from the join should be the same as in the unperturbed case.

Therefore, the potential far enough away from the join is independent of z, or in other

words, it satisfies the condition
∂φ

∂z
= 0. (24)

This can be used the boundary condition to terminate the computational domain. The

finite element method, the MLPG with the penalty method and the transformation
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method are separately used to solve the axisymmetric coaxial waveguides. 821 nodes

are set in the computational domain uniformly. The equipotential contours are plotted

in Fig. 3. The numerical solutions of the electric potential of the nodes on Line AA’

are listed in Table 2. It can be seen that the presented transformation method is more

efficient for the imposition of the essential boundary condition than the penalty method.
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Table 2 : The electric potential solution of the nodes on Line AA’

Node FEM MLPG with penalty MLPG with MTM
26 1.00000 0.99103 1.00000
78 1.00000 1.00016 1.00000
130 1.00000 1.00052 1.00000
182 1.00000 1.00043 1.00000
234 1.00000 1.00028 1.00000
286 1.00000 0.98841 1.00000
388 0.73827 0.73278 0.73229
490 0.54347 0.53495 0.53464
592 0.35922 0.35151 0.35168
694 0.17888 0.17327 0.17462
796 0.00000 0.00043 0.00000

3.3 The Transformer Model

Consider the electromagnetic model of the end region of a transformer [11]. The trans-

formation method is recommended to compute the end fields of a power transformer in

Fig.4. The corresponding boundary value problem is described as

ε∂2φ
∂x2 + ε∂2φ

∂y2 = 0

φ|Γ1 = 0, φ|Γ3 = 1, ∂φ
∂n

∣∣∣
Γ2

= 0.

(23)

The reliability of the proposed TM method is implicated in Fig.5, which shows the

accurate comparison of the numerical results for the traditional finite element method

and the transformation method, respectively. It can be seen the transformation method

is a good alternative to enforce essential boundary conditions in the MLPG method.
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4. Conclusion

The transformation method and the boundary singular weight method in the MLPG

method are developed to impose the essential boundary condition. Comparison research

with existing approaches has been performed to compute electromagnetic models. Com-

pared with the existing techniques, the proposed approaches can directly enforce essen-

tial boundary conditions exactly. In addition, the transformation method is accurate

and robust, and the boundary singular weight method has saved computational time

to a great extent. Furthermore, the development of the techniques for the enforcement



ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS IN THE... 249

of the essential boundary condition is hopeful to be extended to solve a wide range

of electromagnetic problems, especially such as models where the geometrical shape or

disposition changes with time, inverse shape optimizations and so on.
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