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Abstract
In this paper, we prove some fixed point theorems in compLete G-Metric Space for
self mapping satisfying various contractive conditions. We also discuss that these
mapping are G continuous on such a fixed point.

1. Introduction

Some generalizations of the notion of a metric space have been proposed by some au-
thors. Gahler [1, 2] coined the term of 2-metric spaces. This is extended to D-metric
space by Dhage (1992) [3, 4]. Dhage proved many fixed point theorems in D-metric
space. Recently, Mustafa and Sims [7] showed that most of the results concerning
Dhage’s G-metric spaces are invalid. Therefore, in 2006 they introduced a new notion
of generalized metric space called G-metric space [5]. In fact, Mustafa et al. studied
many fixed point results for a self mapping in G-metric spaces under certain conditions;
see [5, 6, 7, 8 and 9.

Now, we give preliminaries and basic definitions which are used through-out the paper.
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2. Definitions and Preliminaries

Definition 2.1 [5] : Let X be a non empty set, and Let G : X x X x X — [0,00) be
a function satisfying the following axioms

(G1) G(z,y,2) =0ifz =y =z,

(G2) G(x,z,y) > 0 for all z,y € X, with = # y.

(G3) G(z,z,y) < G(z,y, z) for all z,y,z € X, with y # 2.

(G4) G(z,y,2) = G(z,z,y) = G(y, z,x) = - - -, (symmetry in all three variables)

(G5) G(z,y,2) < G(x,a,a) + G(a,y, 2), for all z,y,2,a € X (rectangular inequality)
Then the function G is called a generalized metric, or more specially a G-metric on X,
and the pair (X, G) is called a G-metric space.

Example : Let (X, d) be a usual metric space. Then (X, Gy) and (X, G),) are G-metric

spaces, where
Gs(z,y,2) =d(z,y) +d(y, z) + d(x, z) forall z,y,z€ X

and
Gm(x,y, z) = max{d(z,y),d(y, z),d(z,x)} forall z,y,ze€ X.

Definition 2.2 [5] : Let (X,G) and (X', G’) be G-metric spaces and let f: (X,G) —
(X', @) be a function, then f is said to be G-continuous at a point a € X if given € > 0
there exist 6 > 0 such that z,y € X,G(a,z,y) < ¢ implies that G'(fa, fz, fy) <e. A
function f is G-continuous on X if and only if it is G-continuous at all a € X.

Definition 2.3 [5] : Let (X,G) be a G—metric space, and let {z,,} be a sequence of
points of X, therefore; we say that {z,} is G-convergent to = if lim G(x,zy,zy) =0;
that is, for any € > 0, there exist N € N such that G(z, xy, ) ZTZ?SE alln,m > N. We
call z is the limit of the sequence {x,} and we write z,, — N asn — oo or lim z, = z.
Proposition 2.4 [5] : Let (X,G) and (X',G’) be G-metric spaces, the;_)aoofunction
f X — X is said to be G-continuous at a point € X if and only if it is G-sequentially
continuous, that is, whenever {x,,} is G—convergent to z, { fx,,} is G-convergent to f(z).
Proposition 2.5 [5] : Let (X, G) be a G-metric space. Then the following statements

are equivalent.
(a) {zp} is G-convergent to .

(b) G(zp, xpn,x) — 0 as n — oo.
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(¢) G(zp,x,z) — 0 as n — oo.
(d) G(zpn, Tm,x) — 0 as n — oo.

Proposition 2.6 [5] : Let (X,G) be a G-metric space. A sequence {x,} is called
G-cauchy sequence if given € > 0, there is N € N such that G(zp, xm,x;) < €) for all
n,m,l > N; that is if G(xy, zm,x;) — 0 as n,m,l — oc.

Proposition 2.7 [5] : In a G-metric space (X, G), the following two statements are

equivalent.
(1) The sequence {x,} is G-cauchy.
(2) For every € > 0, there exist N € N such that G(zp, Tm, Tm) < € for all n,m > N.

Definition 2.8 [5] : A G-metric space (X, G) is said to be G-complete (or a compLete
G-metric pace) if every G-cauchy sequence in (X, G) is G-convergent in (X, G).
Proposition 2.9 [5] : Let (X, G) be a G-metric space. Then the function G(z,y, z) is
jointly continuous in all three of its variables.

Definition 2.10 [5] : A G-metric space (X, G) is called a symmetric G-metric space if
G(z,y,y) = G(y,z,x) forall z,y e X.
Proposition 2.11 [5] : Every G-metric space (X, G) defines a metric space (X, dg) by
da(z,y) = G(z,y,y) + G(y,z,z) forall z,y € X.
Note that, if (X, G is a symmetric space G-metric space, the
da(z,y) = 2G(z,y,y) forall z,y e X.

However, if (X, @) is not asymmetric space, then it holds by the G-metric properties
that

3

5G@yy) < da(r,y) < 3G(z,y,y) forall z.y e X.

In general, these inequalities cannot be improved.

Proposition 2.12 [5] : A G-metric space (X, @) is G-complete if and only if (X, dq)
is a complete metric space.

Proposition 2.13 [5] : Let (X, G) be a G-metric space. Then for any ,y, z,a € X, it
follows that
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(1) f G(x,y,2z) =0thenz =y =z
(2) G(z,y,2) < G(z,z,y) + Gz, x, 2).
(3) G(z,y,y) < 2G(y, z, ).

(4) G(z,y, 2) < G(z,a,2) + G(a,y, z).

(5) G(z,y,2) < 2{G(z,a,a) + G(y,a,a) + G(z,a,a)}.

3. Main Result
Theorem 3.1 : Let (X, G) be a complete G-metric space and T': X — X be a mapping

which satisfies the following condition for all x,y, z € X,

GTx,Ty,Tz) < kmax{G(z,Tz,Tx)+G(y,Ty,Ty)+ G(2,T2,Tz),
Gz, Tx,Tx)+ Gy, Tz, Tz) + G(z, Tz, Tx),
where 0 < k < %, then 7" has a unique fixed point (say u), and 7" is G-continuous at u.

Proof : Suppose that T satisfies the condition (3.1). Let 29 € X be an ordinary point,
and define the sequence {x,} by =, = T"zy, that is

T, = Tlsco = Txg,
Tro9 = T2SU0 = T(Tl‘o) = T:El,
r3 = T3:L‘0 == T(TQI‘()) == T:L‘Q,

ITn = Txn—lvxn-i-l =Twy.

G($n, Tn+41, xn«H) = G(T-Tnfla TZEnv T$n>,

then by (3.1), we have,

G(xn, Tni1, Tnt1) < kmax{G(zp—1,Trn-1,TTn-1) + G(xpn, Ty, Txy)
+G(xn, Txpn, Try), G(xn-1,TTH—1,TTH_1)
+G(xn, Txp-1,TrH-1) + G(TH, TxH-1,TTPH_1),
G(zp-1,Trn, Txy) + G(xn, Txn, Txy), G(xn-1,TTn, Txy) + G(xn, Txn, Txy)}.
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G(l'ny Tn+1, $n+1) < k max{G(xn,l, Tn, xn) + G(l‘ny Tn+1, $n+1) + G(-'Ena Tn+1, anrl)a
G(Tn—1,%n, Tn) + G(Tp, Tn, Tn) + G(Tn, Tn, Tn),
G(Tp-1,Tni1, $n+1) + G(Tn, Tnt1, Tnyl),

G(Tp-1,Tnt1, xn—i—l) + G<xn7 Tn+1, xn—&-l)}'

G($n7xn+laxn+1) S k‘max{G(xn_l,xn,xn) + QG(xn,xn+1,l'n+1), G(xn—lyxmxn)7

G(xn—la Tn+1, xn—l—l) + G<wn7 Tn+1, xn-&-l)}'

G(wnyxn—&—laxn—l-l) < k‘maX{G(.’L'n_l,l'n,iL'n)+2G($n,$n+1,l‘n+1),

G<xn—17 Tn41, xn+1) + G(.%'n, Tn+1, xn—l—l)}-
By (G5) in Definition 2.1, we have

G($na$n+1axn+l) < kmaX{G(xnflaxna:En)+2G($n7xn+1amn+l)a

G(n—1,Tn, Tn) + G(Tn, Tni1, Tnt1) + G(Xn, Tng1, Tni1) }-

G(l‘na Tn+1, :L'nJrl) < k maX{G(l'nfla Tn, 1371) + QG(LL‘ny Tn+1, xn+1)a
G(Tn-1,Tn, Tn) + 2G(Tn, Tnt1, Tnt1)}-
G(l’n, Tn+1, xn—l—l) S k{G(xn—lv Tn, mn) + 2G(.Z‘n, Tn+1, xn—l—l)}-
G(:Eny Tn+1, xn+1) < k’G(l‘nflv Tn, xn) + QkG(fL‘n, Tn+1, $n+1)7
(1 - Qk)G(:Ena xn-i—lvxn-l-l) < kG($n—17 Tn, l’n),
G(xna Tn+1, xn—f—l) < ﬁG(wn—h Tn,s xn)7
G($na$n+1,$n+l) < qG(:Unfbxnaxn)- (32)
Whelreq:ﬁ<17 since0§k<%.
Repeated application of inequality (3.2), we obtain
G(xn,$n+1,$n+1) S qnG($07$1,x1)~ (33)

Then, for all m,n € N,m > n, we have by repeated use of rectangular inequality (G5),

G(l'na Tm, xm) < G(xna Tn+1, -rn—l—l) + G(xn—l—ly Tn+2, xn+2) 4+ + G(xm—la T, xm)
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By (3), we get.
G(xn,xm,xm) < qnG($0,$1,$1) + q"+1G(:U0,:C1,x1) +o At qm_lG(x07$17x1)

G(Tn, Ty Tm) < (" + ¢+ -+ ¢ G (w0, 21, 71).

G(.’L’n,xm,ﬂfm) S qn(l + q + q2 + - )G(.’L'O,.Tl,xl)

n

G(Xn, T, Ty) < 1q

G(:Eo,l’l,l‘l). (3.4)

Then G(xy, Tm, Tm) — 0 as n,m — oo.

For n,m,l € N, by rectangular inequality of G-metric space implies that
G(xm Tm, xl) < G(«Tm T, xm) + G(xmy Tm, xl)-

Taking limit as n,m,l — oo, we get G(xp, Tm,x;) — 0.

So {z,} is G-cauchy sequence. By completeness of (X, G), there exist u € X such that
{zyn} is G-converges to u.

Suppose that Tu # u, G(zp,Tu,Tu) = G(Txp_1,Tu,Tu).

Then by (3.1), we have,

G(zn, Tu,Tu) < kmax{G(zp-1,Txn-1,TTn-1)~+ G(u,Tu,Tu) + G(u,Tu,Tu),
G(xn—la Txn—la Txn—l) + G(u7 Txn—la Txn—l) + G(“y Tajn—la Txn—1)7
G(zp—1,Tu,Tu) + G(u, Tu, Tu), G(xp—1,Tu, Tu) + G(u, Tu, Tu)}.

G(zn, Tu,Tu) < kmax{G(zp_1,Tn,zn) + 2G(u,Tu, Tu),
G(xn—lv ‘Q:TM x’n) + 2G(u7 $n7 xn)7
G(rp-1,Tu,Tu) + G(u,Tu, Tu)}. (3.5)

Taking the limit as n — oo in (3.5), and using the fact that G is continuous in its

variables, we get

Gu,Tu,Tu) < kmax{G(u,u,u)~+ 2G(u,Tu,Tu), G(u,u,u) + 2G(u, u, u),
G(u,Tu,Tu) + G(u, Tu, Tu)}.

G(u,Tu,Tu) < kmax{2G(u, Tu, Tu),2G(u, Tu,Tu)}.
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This implies that
G(u,Tu,Tu) < 2kG(u, Tu, Tu). (3.6)

The inequality (3.6) is contradiction since 2k < 1.

This implies that Tu = u.

Therefore u is a fixed point of T.

To prove the uniqueness of the fixed point, suppose that v # u such that T'v = v, then,

G(u,v,v) = G(Tu, Tv, Tv),
then by (3.1), we have,

G(u,v,v) < kmax{G(u,Tu,Tu)+ G(v,Tv,Tv) + G(v,Tv,Tv),
G(u,Tu,Tu) + G(v,Tu, Tu) + G(v, Tu, Tu), G(u, Tv,Tv) + G(v,Tv, Tv),
G(u,Tv,Tv) + G(v,Tv,Tv)}.

G(u,v,v) < kmax{G(u,u,u)+ G(v,v,v) + G(v,v,v),
G(u,,u,u) + G(v,u,u) + G(v,u,u),
G(u,v,v) + G(v,v,v),G(u,v,v) + G(v,v,v)}.

Q
=
E
=
AN

k max{0, 2G (v, u, ), G(u, v, v), G(u, v, v)}.
< kmax{2G(v,u, u), G(u,v,v)},

Glu,v,v) < kmax{2G(v,u,u),2G (v, u,u)}

(Since G(z,y,y) < 2G(y, z,)).

Q
S
=
=
AN

G(u,v,v) < 2kG(v,u,u). (3.7)
By repeated use of same argument in right side of (3.7), we obtain
Glu,v,v) < (2k)(2K)G(u, v, v)

G(u,v,v) < 4k*G(u,v,v) (3.8)

which is a contradiction since 0 < k < % =0<k’< % = 0<4k? < % <1=4k% < 1.

Therefore u is a unique fixed point of 7.
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Now, we show that, T" is G-continuous at u. Let {y,} be a sequence in X, by complete-

ness of X, the sequence {y,} converges to u in X. That is

lim y, = u, (3.9)

n—oo

then by (3.1), we have,
G(TU7 TYn, Tyn) < k maX{G(Ua Tu, TU) + G(yna TYn, Tyn) + G(ym TYn, Tyn)a
G(u, Tu,Tu) + G(ypn, Tu, Tu) + G(ypn, Tu, Tu),
Gty Ty Tyn) + G(Yns TYn, Tyn),
G(U, Tyn7 Tyn)-l—G(yna Ty'rl7 Tyn)}

G(u, Tyn, Tyn) < k maX{G(Ua u, u) + G(yna Tyn, Tyn) + G(yna Tyn, Tyn)7

G(u,u,u) + G(yn, u,w) + G(Yn, uy 1), Gt TYn, Tyn) + G(Yn, TYn, Tyn) }-
G(u, Tyn, Tyn) < kmax{2G(Yn, Tyn, Tyn), 2G (Yn, u, w), Gt TYn, TYn)+G Yn, TYn, Tyn) }-
By (G5) of Definition 2.1, we have,

G, Tyn, Tyn) < kmax{2(G(yn,u,u) + G(u, Tyn,Tyn)), 2G(yn, u, u),
G(u, TYn, Tyn) + (G(Yn, u,w) + G, Ty, Tyn)}-

G(u, Tyn, Tyn) < kmax{2G(yn,u,u) + 2G(u,Tyn,TYn),2G(Yn, u, u),
G(Yn,u,u) + 2G(u, Tyn, Tyn) }-
G(u, Tyn, Tyn) < k{2G(yn, u,u) + 2G(u, Tyn, Tyn) }
G(u, TYn, Tyn) < 2kG(yn,u,u) + 2kG(u, TYn, Tyn),
(1 —=2k)G(u, Tyn, Tyyn) < 2kG(yp, u,u),
G(u, Tyn, Typn) < 2k

—1-2k
Taking the limit as n — oo in (3.10), we obtain that

G (Yn, u, u). (3.10)

G(u,Tyn, Ty,) — 0 as n — oc.

Therefore Ty, — Tu = u as n — oo.
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This implies that T" is G-continuous at u.
Corollary 3.2 : Let (X, G) be a complete G-metric space and let T : X — X be a self

mapping which satisfies the following condition for some m € N and for all z,y,z € X,

GT"z, Ty, T™z) < kmax{G(z,T"z,T"z)+ G(y,T™y,T"y)
+G(z, T2, T"2),G(x, T"x, T"x) + G(y, T"x, T"x)
+G(Z7 mea me)v G(I‘, Tmy7 Tmy) + G(Z7 Tmy7 Tmy)7
Gz, T"z,T™z) + G(y, Tz, T"z)}. (3.11)

where 0 < k < %, then 7" has a unique fixed point (say u), and 7" is G-continuous at u.
Proof : Given that T': X — X is self mapping, then for all m € N, 7™ : X — X.
Therefore (X, G) be a complete G-metric space and T : X — X be a mapping which
satisfies the given condition (3.11), then by Theorem 3.1, 7" has a unique fixed point
(say u), and T™ is G-continuous.

Now we shall prove that u is a unique fixed point 7"".

Consider Tu = T(T™u) = T™u = T™(Twu).

Therefore T (Tu) = Tu. Tu is a fixed point of T".

Since T™ has a unique fixed point u, Tu = u.

Therefore u is a unique fixed point of T™.

Theorem 3.3 : Let (X, G) be a complete G-metric space and T': X — X be a mapping

which satisfies the following condition for all z,y,z € X,

GTx, Ty, Ty) < kmax{G(x,Tz,Tx)+2G(y,Ty,Ty),G(x,Tz,Tx)+ 2G(y, Tx,Tx),
G(z, Ty, Ty) + Gy, Ty, Ty)}.  (3.12)
where 0 < k < %, then 7" has a unique fixed point (say u), and 7" is G-continuous at u.

Proof : Setting z = y in condition (3.1), then it reduced to condition (3.12), and the
proof follows the theorem (3.1).
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