International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 251-260

FIXED POINT THEOREMS IN COMPLETE G-METRIC SPACE

N. SURENDER ${ }^{1}$ AND B. KRISHNA REDDY ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, University College of Science, Osmania University, Hyderabad, India
E-mail: ${ }^{1}$ surender_sri2002@yahoo.co.in, ${ }^{2}$ bkrbkr_07@yahoo.com

Abstract

In this paper, we prove some fixed point theorems in compLete G-Metric Space for self mapping satisfying various contractive conditions. We also discuss that these mapping are G continuous on such a fixed point.

1. Introduction

Some generalizations of the notion of a metric space have been proposed by some authors. Gahler $[1,2]$ coined the term of 2-metric spaces. This is extended to D-metric space by Dhage (1992) [3, 4]. Dhage proved many fixed point theorems in D-metric space. Recently, Mustafa and Sims [7] showed that most of the results concerning Dhage's G-metric spaces are invalid. Therefore, in 2006 they introduced a new notion of generalized metric space called G-metric space [5]. In fact, Mustafa et al. studied many fixed point results for a self mapping in G-metric spaces under certain conditions; see $[5,6,7,8$ and 9$]$.
Now, we give preliminaries and basic definitions which are used through-out the paper.

Key Words : G-Metric Spaces, Fixed Point, G convergent.
(c) http: //www.ascent-journals.com

2. Definitions and Preliminaries

Definition 2.1 [5] : Let X be a non empty set, and Let $G: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying the following axioms
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $G(x, x, y)>0$ for all $x, y \in X$, with $x \neq y$.
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$.
(G4) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$, (symmetry in all three variables)
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \in X$ (rectangular inequality)
Then the function G is called a generalized metric, or more specially a G-metric on X, and the pair (X, G) is called a G-metric space.

Example : Let (X, d) be a usual metric space. Then $\left(X, G_{s}\right)$ and $\left(X, G_{m}\right)$ are G-metric spaces, where

$$
G_{s}(x, y, z)=d(x, y)+d(y, z)+d(x, z) \text { for all } x, y, z \in X
$$

and

$$
G_{m}(x, y, z)=\max \{d(x, y), d(y, z), d(z, x)\} \text { for all } x, y, z \in X
$$

Definition 2.2 [5] : Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be G-metric spaces and let $f:(X, G) \rightarrow$ (X^{\prime}, G^{\prime}) be a function, then f is said to be G-continuous at a point $a \in X$ if given $\epsilon>0$ there exist $\delta>0$ such that $x, y \in X, G(a, x, y)<\delta$ implies that $G^{\prime}(f a, f x, f y)<\epsilon$. A function f is G-continuous on X if and only if it is G-continuous at all $a \in X$.
Definition 2.3 [5]: Let (X, G) be a G-metric space, and let $\left\{x_{n}\right\}$ be a sequence of points of X, therefore; we say that $\left\{x_{n}\right\}$ is G-convergent to x if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$; that is, for any $\epsilon>0$, there exist $N \in N$ such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$ for all $n, m \geq N$. We call x is the limit of the sequence $\left\{x_{n}\right\}$ and we write $x_{n} \rightarrow N$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} x_{n}=x$. Proposition 2.4 [5] : Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be G-metric spaces, then a function $f: X \rightarrow X$ is said to be G-continuous at a point $x \in X$ if and only if it is G-sequentially continuous, that is, whenever $\left\{x_{n}\right\}$ is G-convergent to $x,\left\{f x_{n}\right\}$ is G-convergent to $f(x)$. Proposition 2.5 [5] : Let (X, G) be a G-metric space. Then the following statements are equivalent.
(a) $\left\{x_{n}\right\}$ is G-convergent to x.
(b) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(c) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(d) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proposition 2.6 [5] : Let (X, G) be a G-metric space. A sequence $\left\{x_{n}\right\}$ is called G-cauchy sequence if given $\epsilon>0$, there is $N \in N$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\epsilon$) for all $n, m, l \geq N$; that is if $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$.
Proposition 2.7 [5] : In a G-metric space (X, G), the following two statements are equivalent.
(1) The sequence $\left\{x_{n}\right\}$ is G-cauchy.
(2) For every $\epsilon>0$, there exist $N \in N$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\epsilon$ for all $n, m \geq N$.

Definition 2.8 [5] : A G-metric space (X, G) is said to be G-complete (or a compLete G-metric pace) if every G-cauchy sequence in (X, G) is G-convergent in (X, G).
Proposition 2.9 [5] : Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.
Definition 2.10 [5] : A G-metric space (X, G) is called a symmetric G-metric space if

$$
G(x, y, y)=G(y, x, x) \text { for all } x, y \in X
$$

Proposition 2.11 [5] : Every G-metric space (X, G) defines a metric space $\left(X, d_{G}\right)$ by

$$
d_{G}(x, y)=G(x, y, y)+G(y, x, x) \text { for all } x, y \in X
$$

Note that, if (X, G is a symmetric space G-metric space, the

$$
d_{G}(x, y)=2 G(x, y, y) \quad \text { for all } x, y \in X
$$

However, if (X, G) is not asymmetric space, then it holds by the G-metric properties that

$$
\frac{3}{2} G(x, y, y) \leq d_{G}(x, y) \leq 3 G(x, y, y) \text { for all } x, y \in X
$$

In general, these inequalities cannot be improved.
Proposition 2.12 [5] : A G-metric space (X, G) is G-complete if and only if $\left(X, d_{G}\right)$ is a complete metric space.
Proposition 2.13 [5] : Let (X, G) be a G-metric space. Then for any , $y, z, a \in X$, it follows that
(1) If $G(x, y, z)=0$ then $x=y=z$
(2) $G(x, y, z) \leq G(x, x, y)+G(x, x, z)$.
(3) $G(x, y, y) \leq 2 G(y, x, x)$.
(4) $G(x, y, z) \leq G(x, a, z)+G(a, y, z)$.
(5) $G(x, y, z) \leq \frac{2}{3}\{G(x, a, a)+G(y, a, a)+G(z, a, a)\}$.

3. Main Result

Theorem 3.1: Let (X, G) be a complete G-metric space and $T: X \rightarrow X$ be a mapping which satisfies the following condition for all $x, y, z \in X$,

$$
\begin{aligned}
G(T x, T y, T z) \leq & k \max \{G(x, T x, T x)+G(y, T y, T y)+G(z, T z, T z), \\
& G(x, T x, T x)+G(y, T x, T x)+G(z, T x, T x), \\
& G(x, T y, T y)+G(z, T y, T y), G(x, T z, T z)+G(y, T z, T z)\} .
\end{aligned}
$$

where $0 \leq k<\frac{1}{3}$, then T has a unique fixed point (say u), and T is G-continuous at u. Proof: Suppose that T satisfies the condition (3.1). Let $x_{0} \in X$ be an ordinary point, and define the sequence $\left\{x_{n}\right\}$ by $x_{n}=T^{n} x_{0}$, that is

$$
\begin{gathered}
x_{1}=T^{1} x_{0}=T x_{0}, \\
x_{2}=T^{2} x_{0}=T\left(T x_{0}\right)=T x_{1}, \\
x_{3}= \\
T^{3} x_{0}=T\left(T^{2} x_{0}\right)=T x_{2}, \\
\\
\vdots \\
x_{n}=T x_{n-1}, x_{n+1}=T x_{n} . \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right)=G\left(T x_{n-1}, T x_{n}, T x_{n}\right),
\end{gathered}
$$

then by (3.1), we have,

$$
\begin{aligned}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq & k \max \left\{G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right)+G\left(x_{n}, T x_{n}, T x_{n}\right)\right. \\
& +G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right) \\
& +G\left(x_{n}, T x_{n-1}, T x_{n-1}\right)+G\left(x_{n}, T x_{n-1}, T x_{n-1}\right) \\
& \left.G\left(x_{n-1}, T x_{n}, T x_{n}\right)+G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n-1}, T x_{n}, T x_{n}\right)+G\left(x_{n}, T x_{n}, T x_{n}\right)\right\} .
\end{aligned}
$$

$$
\begin{gathered}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k \max \left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n}, x_{n}\right) \\
G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right) \\
\left.G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \quad k \max \left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n}, x_{n}\right)\right. \\
\left.G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \quad k \max \left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
\left.\quad G\left(x_{n-1}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} .
\end{gathered}
$$

By (G5) in Definition 2.1, we have

$$
\begin{gather*}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k \max \left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
\left.G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \quad k \max \left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
\left.\quad G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k\left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G\left(x_{n-1}, x_{n}, x_{n}\right)+2 k G\left(x_{n}, x_{n+1}, x_{n+1}\right) \\
(1-2 k) G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G\left(x_{n-1}, x_{n}, x_{n}\right) \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \frac{k}{1-2 k} G\left(x_{n-1}, x_{n}, x_{n}\right) \\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq q G\left(x_{n-1}, x_{n}, x_{n}\right) \tag{3.2}
\end{gather*}
$$

where $q=\frac{k}{1-2 k}<1$, since $0 \leq k<\frac{1}{3}$.
Repeated application of inequality (3.2), we obtain

$$
\begin{equation*}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq q^{n} G\left(x_{0}, x_{1}, x_{1}\right) \tag{3.3}
\end{equation*}
$$

Then, for all $m, n \in N, m>n$, we have by repeated use of rectangular inequality ($G 5$),

$$
G\left(x_{n}, x_{m}, x_{m}\right) \leq G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+\cdots+G\left(x_{m-1}, x_{m}, x_{m}\right)
$$

By (3), we get,

$$
\begin{gather*}
G\left(x_{n}, x_{m}, x_{m}\right) \leq q^{n} G\left(x_{0}, x_{1}, x_{1}\right)+q^{n+1} G\left(x_{0}, x_{1}, x_{1}\right)+\cdots+q^{m-1} G\left(x_{0}, x_{1}, x_{1}\right) \\
G\left(x_{n}, x_{m}, x_{m}\right) \leq\left(q^{n}+q^{n+1}+\cdots+q^{m-1}\right) G\left(x_{0}, x_{1}, x_{1}\right) . \\
G\left(x_{n}, x_{m}, x_{m}\right) \leq q^{n}\left(1+q+q^{2}+\cdots\right) G\left(x_{0}, x_{1}, x_{1}\right) \\
G\left(x_{n}, x_{m}, x_{m}\right) \leq \frac{q^{n}}{1-q} G\left(x_{0}, x_{1}, x_{1}\right) . \tag{3.4}
\end{gather*}
$$

Then $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
For $n, m, l \in N$, by rectangular inequality of G-metric space implies that

$$
G\left(x_{n}, x_{m}, x_{l}\right) \leq G\left(x_{n}, x_{m}, x_{m}\right)+G\left(x_{m}, x_{m}, x_{l}\right)
$$

Taking limit as $n, m, l \rightarrow \infty$, we get $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$.
So $\left\{x_{n}\right\}$ is G-cauchy sequence. By completeness of (X, G), there exist $u \in X$ such that $\left\{x_{n}\right\}$ is G-converges to u.
Suppose that $T u \neq u, \quad G\left(x_{n}, T u, T u\right)=G\left(T x_{n-1}, T u, T u\right)$.
Then by (3.1), we have,

$$
\begin{aligned}
G\left(x_{n}, T u, T u\right) \leq & k \max \left\{G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right)+G(u, T u, T u)+G(u, T u, T u),\right. \\
& G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right)+G\left(u, T x_{n-1}, T x_{n-1}\right)+G\left(u, T x_{n-1}, T x_{n-1}\right), \\
& \left.G\left(x_{n-1}, T u, T u\right)+G(u, T u, T u), G\left(x_{n-1}, T u, T u\right)+G(u, T u, T u)\right\} .
\end{aligned}
$$

$$
G\left(x_{n}, T u, T u\right) \leq k \max \left\{G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G(u, T u, T u),\right.
$$

$$
G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(u, x_{n}, x_{n}\right)
$$

$$
\begin{equation*}
\left.G\left(x_{n-1}, T u, T u\right)+G(u, T u, T u)\right\} . \tag{3.5}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$ in (3.5), and using the fact that G is continuous in its variables, we get

$$
\begin{gathered}
G(u, T u, T u) \leq k \max \{G(u, u, u)+2 G(u, T u, T u), G(u, u, u)+2 G(u, u, u), \\
G(u, T u, T u)+G(u, T u, T u)\} \\
G(u, T u, T u) \leq k \max \{2 G(u, T u, T u), 2 G(u, T u, T u)\}
\end{gathered}
$$

This implies that

$$
\begin{equation*}
G(u, T u, T u) \leq 2 k G(u, T u, T u) \tag{3.6}
\end{equation*}
$$

The inequality (3.6) is contradiction since $2 k<1$.
This implies that $T u=u$.
Therefore u is a fixed point of T.
To prove the uniqueness of the fixed point, suppose that $v \neq u$ such that $T v=v$, then,

$$
G(u, v, v)=G(T u, T v, T v)
$$

then by (3.1), we have,

$$
\begin{align*}
& G(u, v, v) \leq k \max \{G(u, T u, T u)+G(v, T v, T v)+G(v, T v, T v), \\
& G(u, T u, T u)+G(v, T u, T u)+G(v, T u, T u), G(u, T v, T v)+G(v, T v, T v), \\
& G(u, T v, T v)+G(v, T v, T v)\} . \\
& G(u, v, v) \leq k \max \{G(u, u, u)+G(v, v, v)+G(v, v, v), \\
& G(u,, u, u)+G(v, u, u)+G(v, u, u), \\
& G(u, v, v)+G(v, v, v), G(u, v, v)+G(v, v, v)\} . \\
& G(u, v, v) \leq k \max \{0,2 G(v, u, u), G(u, v, v), G(u, v, v)\} . \\
& G(u, v, v) \leq k \max \{2 G(v, u, u), G(u, v, v)\}, \\
& G(u, v, v) \leq k \max \{2 G(v, u, u), 2 G(v, u, u)\} \\
& \text { (Since } G(x, y, y) \leq 2 G(y, x, x)) \text {. } \\
& G(u, v, v) \leq 2 k G(v, u, u) . \tag{3.7}
\end{align*}
$$

By repeated use of same argument in right side of (3.7), we obtain

$$
\begin{gather*}
G(u, v, v) \leq(2 k)(2 k) G(u, v, v) \\
G(u, v, v) \leq 4 k^{2} G(u, v, v) \tag{3.8}
\end{gather*}
$$

which is a contradiction since $0 \leq k<\frac{1}{3} \Rightarrow 0 \leq k^{2}<\frac{1}{9} \Rightarrow 0 \leq 4 k^{2}<\frac{4}{9}<1 \Rightarrow 4 k^{2}<1$.
Therefore u is a unique fixed point of T.

Now, we show that, T is G-continuous at u. Let $\left\{y_{n}\right\}$ be a sequence in X, by completeness of X, the sequence $\left\{y_{n}\right\}$ converges to u in X. That is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=u \tag{3.9}
\end{equation*}
$$

then by (3.1), we have,

$$
\begin{gathered}
G\left(T u, T y_{n}, T y_{n}\right) \leq k \max \left\{G(u, T u, T u)+G\left(y_{n}, T y_{n}, T y_{n}\right)+G\left(y_{n}, T y_{n}, T y_{n}\right),\right. \\
G(u, T u, T u)+G\left(y_{n}, T u, T u\right)+G\left(y_{n}, T u, T u\right), \\
G\left(u, T y_{n}, T y_{n}\right)+G\left(y_{n}, T y_{n}, T y_{n}\right), \\
\left.G\left(u, T y_{n}, T y_{n}\right)_{+} G\left(y_{n}, T y_{n}, T y_{n}\right)\right\} \\
G\left(u, T y_{n}, T y_{n}\right) \leq \quad k \max \left\{G(u, u, u)+G\left(y_{n}, T y_{n}, T y_{n}\right)+G\left(y_{n}, T y_{n}, T y_{n}\right)\right. \\
\left.G(u, u, u)+G\left(y_{n}, u, u\right)+G\left(y_{n}, u, . u\right), G\left(u, T y_{n}, T y_{n}\right)+G\left(y_{n}, T y_{n}, T y_{n}\right)\right\} .
\end{gathered}
$$

$G\left(u, T y_{n}, T y_{n}\right) \leq k \max \left\{2 G\left(y_{n}, T y_{n}, T y_{n}\right), 2 G\left(y_{n}, u, u\right), G\left(u, T y_{n}, T y_{n}\right)+G\left(y_{n}, T y_{n}, T y_{n}\right)\right\}$.
By (G5) of Definition 2.1, we have,

$$
\begin{gather*}
G\left(u, T y_{n}, T y_{n}\right) \leq \quad k \max \left\{2\left(G\left(y_{n}, u, u\right)+G\left(u, T y_{n}, T y_{n}\right)\right), 2 G\left(y_{n}, u, u\right),\right. \\
\\
G\left(u, T y_{n}, T y_{n}\right)+\left(G\left(y_{n}, u, u\right)+G\left(u, T y_{n}, T y_{n}\right)\right\} . \\
G\left(u, T y_{n}, T y_{n}\right) \leq \quad k \max \left\{2 G\left(y_{n}, u, u\right)+2 G\left(u, T y_{n}, T y_{n}\right), 2 G\left(y_{n}, u, u\right),\right. \\
\\
\left.G\left(y_{n}, u, u\right)+2 G\left(u, T y_{n}, T y_{n}\right)\right\} . \\
G\left(u, T y_{n}, T y_{n}\right) \leq k\left\{2 G\left(y_{n}, u, u\right)+2 G\left(u, T y_{n}, T y_{n}\right)\right\} . \\
G\left(u, T y_{n}, T y_{n}\right) \leq 2 k G\left(y_{n}, u, u\right)+2 k G\left(u, T y_{n}, T y_{n}\right), \tag{3.10}\\
(1-2 k) G\left(u, T y_{n}, T y_{n}\right) \leq 2 k G\left(y_{n}, u, u\right), \\
G\left(u, T y_{n}, T y_{n}\right) \leq \frac{2 k}{1-2 k} G\left(y_{n}, u, u\right) .
\end{gather*}
$$

Taking the limit as $n \rightarrow \infty$ in (3.10), we obtain that

$$
G\left(u, T y_{n}, T y_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Therefore $T y_{n} \rightarrow T u=u$ as $n \rightarrow \infty$.

This implies that T is G-continuous at u.
Corollary 3.2 : Let (X, G) be a complete G-metric space and let $T: X \rightarrow X$ be a self mapping which satisfies the following condition for some $m \in N$ and for all $x, y, z \in X$,

$$
\begin{align*}
G\left(T^{m} x, T^{m} y, T^{m} z\right) \leq & k \max \left\{G\left(x, T^{m} x, T^{m} x\right)+G\left(y, T^{m} y, T^{m} y\right)\right. \\
& +G\left(z, T^{m} z, T^{m} z\right), G\left(x, T^{m} x, T^{m} x\right)+G\left(y, T^{m} x, T^{m} x\right) \\
& +G\left(z, T^{m} x, T^{m} x\right), G\left(x, T^{m} y, T^{m} y\right)+G\left(z, T^{m} y, T^{m} y\right) \\
& \left.G\left(x, T^{m} z, T^{m} z\right)+G\left(y, T^{m} z, T^{m} z\right)\right\} \tag{3.11}
\end{align*}
$$

where $0 \leq k<\frac{1}{3}$, then T has a unique fixed point (say u), and T is G-continuous at u. Proof : Given that $T: X \rightarrow X$ is self mapping, then for all $m \in N, T^{m}: X \rightarrow X$.

Therefore (X, G) be a complete G-metric space and $T^{m}: X \rightarrow X$ be a mapping which satisfies the given condition (3.11), then by Theorem $3.1, T^{m}$ has a unique fixed point (say u), and T^{m} is G-continuous.
Now we shall prove that u is a unique fixed point T^{m}.
Consider $T u=T\left(T^{m} u\right)=T^{m+1} u=T^{m}(T u)$.
Therefore $T^{m}(T u)=T u$. $T u$ is a fixed point of T^{m}.
Since T^{m} has a unique fixed point $u, T u=u$.
Therefore u is a unique fixed point of T^{m}.
Theorem 3.3 : Let (X, G) be a complete G-metric space and $T: X \rightarrow X$ be a mapping which satisfies the following condition for all $x, y, z \in X$,

$$
\begin{gather*}
G(T x, T y, T y) \leq k \max \{G(x, T x, T x)+2 G(y, T y, T y), G(x, T x, T x)+2 G(y, T x, T x) \\
G(x, T y, T y)+G(y, T y, T y)\} \tag{3.12}
\end{gather*}
$$

where $0 \leq k<\frac{1}{3}$, then T has a unique fixed point (say u), and T is G-continuous at u. Proof : Setting $z=y$ in condition (3.1), then it reduced to condition (3.12), and the proof follows the theorem (3.1).

References

[1] Gahler S., 2-metriche raume und ihre topologische strukture, Math. Nachr., 26 (1963), 115-148.
[2] Gahler S., Zur geometric 2-metriche raume, Revue Roumaine de Math. Pures et Appl., 11 (1996), 664-669.
[3] Dhage B. C., Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84 (1992), 329-336.
[4] Dhage B. C., Generalized metric space and topological structure I, An. Stint. Univ. Al. I. Cuza Iasi. Math (N.S), 46 (2000), 3-24.
[5] Mustafa Z. and Sims B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7(2) (2006), 289-297.
[6] Mustafa Z., Obiedat H. and Awawdeh F., Some fixed point theorem for mapping on compLete G-metric spaces, Fixed Point Theory Appl. Volume 2008, Article ID 189870, 12 pages, (2008).
[7] Mustafa Z. and Sims B., some remarks concerning D-metric spaces, in proceedings of the International Conference on Fixed Point Theory and Applications, (2004), 189-198, Yokahama, Japan.
[8] Mustafa Z. and Sims B., Fixed Point Theorems for Contractive Mappings in compLete G metric Spaces, Fixed Point Theory Appl., Vol. 2009, Article ID 917175, (2009).
[9] Mustafa Z., Shatanawi W. and Bataineh M., Existence of fixed point results in G-metric Spaces, International J. Math. Math. Sciences, vol. 2009, Article ID 283028, (2009).
[10] Mustafa Z. and Sims B., Fixed Point Theorems for Contractive Mappings in CompLete G-metric spaces, volume 2009, Article ID 917175, 10 pages.

