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Abstract

In this paper, we study about the prime divisors of the values of cyclotomic poly-
nomials and some properties of cyclotomic polynomials. We also give an improved
version of a result given by Motose in 1995.

1. Introduction

Let a and m be two positive integers. The smallest positive integer d satisfying

ad ≡ 1(mod m)

is called order of a modulo m, denoted by |a|m.

Motose have extensively studied the values of cyclotomic polynomials. In a paper ap-

peared in 1993 [5], he proved that the cyclotomic polynomials Qn(x) are strictly increas-

ing for x ≥1. Later in 2004 [8] and 2005 [9], this result was subsequently corrected for

x ≥2 and x ≥3/2. He also studied about the characterization of prime divisors of values

of cyclotomic polynomials. In another paper [6], he gave new proof for the existence of
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primitive root modulo all primes, odd prime power using cyclotomic polynomials. He

also showed that for a ∈ N, Qn(a) of distinct degrees are almost relatively prime.

The result was extended in 2006 to the case of cyclotomic polynomials and obtained

that the greatest common divisor of two cyclotomic polynomials in Z[x] is either 1 or

a prime number [10]. In another paper [7] appeared in 2003, he gave new proof on

some fundamental results in finite fields and a new method for the factorization of a

number using the properties of cyclotomic polynomials. His works produced excellent

properties about cyclotomic polynomials realizing it as an important tool of proving

some well known results of finite fields, Ramanunjan’s sums and Fibbonacci polynomials.

Interestingly, the sequence of numbers generated by the cyclotomic polynomials Qn(2)

are observed to contain the Mersenne numbers 2p-1 and the Fermat numbers 22m
+1 [2].

In this paper, we try to study the divisor of Qn(xm) with some conditions on m and n.

Further, we study about the multiple prime divisor of the values of Qn(xm).

2. Preliminaries

We state below an important result given by Guerrier [3].

Theorem 2.1 : If p is any prime, p - n and |p|n = d, then Qn(x) factors modulo

p into product of ϕ(n)/d distinct irreducible factors each of degree d and Qprn(x) =

Qn(x)ϕ(pr)(mod p) for any positive integer r where φ is the Euler’s φ function.

Cheng et al. [1] gave a formula for the resultant of cyclotomic polynomials. In proving

the formula, they used an important lemma which is the factorization of Qn(xm) in Z[x]

and is given as follows:

Lemma 2.2 : For positive integers m and n.

Qn(xm) =
∏

[d,m]=mn

Qd(x)

From the above theorem, they deduced the following result:

Lemma 2.3 : Let (m,n)=1. Then

Qn(xm) =
∏
d|m

Qnd(x)

Motose [7] gave a result about the order of an element in a commutative ring R of

positive characteristic which is given as follows:
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Theorem 2.4 : Let R be a commutative ring of characteristic p >0, namely, containing

a prime ring Z/pZ. Assume Qn(a)=0 for a ∈ R. Then, n = pe|a|p where e ≥0.

McDaniel [4] proved the following theorem:

Theorem 2.5 : Let a, r and m be positive integers with (m,ϕ(m))=1. If |a|m = n and

aϕ(m) ≡ 1 (mod mr), then an ≡ 1 (mod mr).

Using this theorem, he gave a corollary that whenever |a|p = n and ap−1 ≡ 1 (mod pr)

for some odd prime p, and positive integer a and r, then pr divides Qn(a).

Motose [6] gave a corollary which is stated as:

Lemma 2.6 : Assume n, a ≥2 and (n,Qn(a))=1. Then, Qn(a) divides properly Qn(ak)

for k ≥2 and (k, n)=1.

3. Main results

First of all, we give a result on the multiple prime divisor of Qn(apk
).

Theorem 3.1 : Let p be a prime and m = npk, p - n and |a|p = n. Then, pk+1|Qn(apk
).

Proof : By definition, |a|p = n implies

⇒ p - ad − 1 for d < n

⇒ p - Qd(a) for d < n

Also an ≡ 1 (mod p). And

an − 1 =
∏
d|n

Qd(a)

Therefore, p|Qn(a). Using Theorem 2.1, we have

Qpkn(a) ≡ Qn(a)ϕ(pk)(mod p)

for any positive integer k which implies that p|Qpkn(a) for any positive integer k. Also

from theorem 2.3 we have

Qn(apk
) = Qn(a)Qnp(a)...Qnpk(a).

Hence, pk+1|Qn(apk
). 2

Motose [6] proved the following theorem in 1995.

Theorem 3.2 : Assume k ≥2. Then, pk|Qn(a) for some n iff ap−1 ≡ 1(mod pk).

It is evident from the following examples that the above theorem is not always true.
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Example 3.3 : Let a=7, and n=2. Then, Q2(7)=8. So, in this case k=3 and p=2.

But 7 6≡ 1(mod 23).

Example 3.4 : Let a=11, and n=2. Then, Q2(11)=12. For this case k=2 and p=2.

But 11 6≡ 1(mod 22).

For any two positive integers a and n greater than 1, a Zsigmondy prime for the pair

a and n is a prime p such that p - a and |a|p = n. Roitman [11] proved that if a, n are

integers greater than 1, and p be a prime factor of Qn(a), then p is a non Zsigmondy

prime for the pair a and n iff p|n. And, in this case p is the largest prime factor of n,

and n = pfm, where m is a positive integer dividing p− 1. Moreover, p2 - Qn(a) unless

p = n =2. So, it clarifies that the above Theorem 3.2 does not hold for p = n =2.

However, if we assume p to be an odd prime and n to be |a|p, then the result is true.

Now, we give an improved version of the above Theorem 3.2 which is given as follows:

Theorem 3.5 : Let p be an odd prime and |a|p = n. Then, pk|Qn(a) iff ap−1 ≡ 1(mod

pk).

Proof : Let pk|Qn(a). Then pk|an-1. So, by definition of |a|p, n|p-1. Hence, ap−1 ≡
1(mod pk).

Conversely, let ap−1 ≡ 1(mod pk). Then, using Theorem 2.5 we have an ≡ 1(mod pk).

Also, we have an − 1 =
∏

d|nQd(a). Since |a|p=n, p|Qn(a) but p - Qd(a) for d < n

because, if p|Qd(a) for d < n, then p|xd − 1 for d < n which is a contradiction to the

definition of order. So, pk|Qn(a). 2

Proposition 3.6 : If a is an odd positive integer and n ≥ 2, then Q2n(a) is twice an

odd number.

Proof : Let a=2k+1 for some k. Then,

Q2n(a) = a2n−1
+ 1

= (2k + 1)2
n−1

+ 1

= (2k)2
n−1

+ ...+ 2n−1.2k + 1 + 1

= 2(2k1 + 1), for some k1.

2

Example 3.7 : Let a=5, and n=2. Then Q4(5)=26=2×13.

Theorem 3.8 : Let (m,n)=1, where m and n are positive integers. Then, Qn(xd)

divides Qn(xm) iff d|m.
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Proof : Let d|m, then (d, n)=1. So, from lemma 2.3 we have

Qn(xd) =
∏
e|d

Qne(x)

and

Qn(xm) =
∏
f |m

Qnf (x)

Since d|m, e|m. Hence, Qn(xd)|Qn(xm).

Conversely, let Qn(xd)|Qn(xm). Since the roots of Qn(xd) are the dth roots of the nth

roots of unity, the roots of Qn(xd) are ndth roots of unity including all the primitive

ndth roots of unity. This implies that Qnd(x)|Qn(xd). Also

Qn(xm) =
∏
s|m

Qns(x)

implies that

Qnd(x) divides
∏
s|m

Qns(x).

Since Qn(x) is irreducible over Z,

Qnd(x) = Qns(x) for some s

⇒ nd = ns

⇒ d = s

which implies d|m. 2

Example 3.9 : Q3(24)=13× 21 and Q3(22)=21 i.e. Q3(22) divides Q3(24).

The corollary given below generalizes the Lemma 2.6 of Motose [6].

Corollary 3.10 : Let n, a ≥2 and (m,n)=1, where m, a and n are positive integers.

Then, Qn(ad)|Qn(am) iff d|m.

Motose [7] have shown the following theorem 3.11 in 2003.

Theorem 3.11 : For a natural number n, let a and m be natural numbers such

that (am, n)=1 and am ≡ 1(mod n). Then, n=
∏

d|n(n,Qd(a)), where (s, t) means the

greatest common divisor of two numbers s and t.

We now give two different forms of the Theorem 3.11.

Theorem 3.12 : For a natural number n, let a and m be natural numbers such that

(am, n)=1, am ≡ 1(mod n) and m=m1m2. Then,
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(i) n =
∏

d|m1
(n,Qd(am2))

(ii) if (m1,m2) = 1, n =
∏

d|m1

∏
e|m2

(n,Qde(a))

such that (n,Qd(am2)) and (n,Qd′(am2)) are relatively prime for distinct d and d′.

Proof : (i) We have

n = (n, am1m2 − 1)

= (n, (am2)m1 − 1)

= (n,
∏
d|m1

Qd(am2))

Suppose p is a common prime divisor of (n,Qd(am2)) and (n,Qd′(am2)), where d, d′

are distinct divisors of m1. Then, p divides n, Qd(am2) and Qd′(am2). This implies

d = pf |am2 |p and d′ = pf ′ |am2 |p for some f and f ′. But we have (n,m1)=1. So,

d = |am2 |p and d′ = |am2 |p. Hence, for distinct d and d′, (n,Qd(am2)) and (n,Qd′(am2))

are relatively prime. Therefore,

n =
∏
d|m1

(n,Qd(am2))

(ii) If (m1,m2) = 1, then applying lemma 2.3 to (i) we get

n =
∏
d|m1

(n,
∏
e|m2

Qde(a))

Proceeding the same line of proof as in (i) one can show that (n,Qde(a)) and (n,Qd′e′(a))

are relatively prime for distinct de and d′e′. So,

n =
∏
d|m1

∏
e|m2

(n,Qde(a))

2
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