International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 19-35

CONSTRUCTION OF INFINITE SEQUENCES OF IRREDUCIBLE POLYNOMIALS OVER F_{2}

P. L. SHARMA ${ }^{1}$, SHABNAM SHARMA ${ }^{2}$ AND MANSI REHAN ${ }^{3}$
1,2,3 Department of Mathematics and Statistics, Himachal Pradesh University, Shimla - 171005, India
E-mail: ${ }^{1}$ plsharma1964@gmail.com

Abstract

We construct infinite sequences of irreducible polynomials over F_{2} with three coefficients prescribed. We also show the structures of graphs related to the roots of sequenced irreducible polynomials over finite fields with characteristic 2 .

1. Introduction

Irreducible polynomials have various applications in many areas such as design theory $[9$, 10], combinatorics[7], quantum information theory and cryptography, see [8, 11, 12, 13,14]. Irreducible polynomials are also used to form the generator polynomials which are important in the construction of cyclic codes and BCH codes in coding theory over binary and non-binary finite field, see [1, 3, 4, 6]. The construction of infinite sequences of irreducible polynomials by using different transformations over finite field has been studied by various researchers. The description of the Q-transform that is

Key Words : Irreducible polynomial, Reciprocal polynomial, Q-transform, Finite field. AMS Subject Classification : 11T06, 12E05.
$g^{Q}(x)=x^{m} g\left(x+\frac{1}{x}\right)$ of an irreducible polynomial is given by R. R. Varshamov et al. in [20]. Ugolini [18, 19] gives the sequences of irreducible polynomials without prescribed coefficients over prime fields and sequences of irreducible polynomials via elliptic curve endomorphisms respectively. Ugolini [16] also describes the structures of graphs associated with the iteration of the map(2.6) over finite field F_{2}. Sequences of binary irreducible polynomials with two coefficients prescribed are given in [17]. Cohen [2] gives a transformation called R-operator and Sharma et al. [15] give the construction of infinite sequences of irreducible polynomials using Kloosterman sums. In this paper, we construct the sequences of irreducible polynomials over F_{2} by prescribing three coefficients.

2. Basic Notations and Backgorund

We use the following notations in the present paper:

- m : positive integer
- F_{q} : finite field with $q=p^{m}$ elements
- $\operatorname{Tr}(\gamma)$: trace of an element γ
- $g^{Q}(x): Q$-transform of the polynomial
- $P^{1}\left(F_{2^{m}}\right)$: projective line over $F_{2^{m}}$.

Let F_{q} be the finite field having $q=2^{m}$ elements, where m is a positive integer. If $g(x) \in F_{2}[x]$ is an irreducible polynomial of degree m, then its Q-transform is given in [5] as

$$
\begin{equation*}
g^{Q}(x)=x^{m} g\left(x+\frac{1}{x}\right)=x^{m} \sum_{i=0}^{m} a_{m}\left(x+\frac{1}{x}\right)^{m} \tag{2.1}
\end{equation*}
$$

and has degree $2 m$. The polynomials $g(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g^{*}(x)=\sum_{i=0}^{m} c_{i} x^{i}$ are reciprocal of each other, which is defined in [8] as

$$
\begin{equation*}
g^{*}(x)=x^{m} g\left(\frac{1}{x}\right) . \tag{2.2}
\end{equation*}
$$

In other words, $a_{i}=c_{m-i}$. A polynomial $g(x)$ is self reciprocal if

$$
\begin{equation*}
g(x)=g\left(\frac{1}{x}\right) \tag{2.3}
\end{equation*}
$$

and it clearly holds for all $g^{Q}(x)$. The absolute trace of element $\gamma \in F_{2^{m}}$ is defined in [8] as

$$
\begin{equation*}
\operatorname{Tr}_{m}(\gamma)=\sum_{i=0}^{m-1} \gamma^{2^{i}} \tag{2.4}
\end{equation*}
$$

For a positive integer m, the projective line over $F_{2^{m}}$ is

$$
\begin{equation*}
P^{1}\left(F_{2^{m}}\right)=F_{2^{m}} \cup\{\infty\} \tag{2.5}
\end{equation*}
$$

which contains $q+1$ elements. The map v over $P^{1}\left(F_{2^{m}}\right)$ is defined in [17] as

$$
v(\gamma)= \begin{cases}\infty & \text { if } \gamma=0 \text { or } \infty \tag{2.6}\\ \gamma+\frac{1}{\gamma} & \text { otherwise }\end{cases}
$$

The elements of projective line $P^{1}\left(F_{2^{m}}\right)$ act as the vertices of the graph and two elements $\gamma, \delta \in P^{1}\left(F_{2^{m}}\right)$ are connected by a directed edge if $\gamma=v(\delta)$. The points on the projective line $P^{1}\left(F_{2^{m}}\right)$ can be partitioned into two sets as:

$$
\begin{aligned}
& A_{n}=\left\{\gamma \in F_{2^{m}}^{*}: \operatorname{Tr}_{m}(\gamma)=\operatorname{Tr}_{m}\left(\gamma^{-1}\right)\right\} \cup\{0, \infty\}, \\
& B_{n}=\left\{\gamma \in F_{2^{m}}^{*}: \operatorname{Tr}_{m}(\gamma) \neq \operatorname{Tr}_{m}\left(\gamma^{-1}\right)\right\} .
\end{aligned}
$$

If $\gamma \in P^{1}\left(F_{2^{m}}\right)$ and $v^{k}(\gamma)=\gamma$ for some positive integer k, then γ is said to be v-periodic otherwise pre-periodic.
In this paper, we classify any irreducible polynomial $g(x)$ as follows:
(1) $g(x)$ is of type (A, m) if $a_{m-1}=a_{m-2}=a_{1}=0$.
(2) $g(x)$ is of type (B, m) if $a_{m-1}=0, a_{m-2}=0, a_{1}=1$.
(3) $g(x)$ is of type (C, m) if $a_{m-1}=0, a_{m-2}=1, a_{1}=0$.
(4) $g(x)$ is of type (D, m) if $a_{m-1}=1, a_{m-2}=0, a_{1}=0$.
(5) $g(x)$ is of type (E, m) if $a_{m-1}=1, a_{m-2}=1, a_{1}=1$.
(6) $g(x)$ is of type (F, m) if $a_{m-1}=1, a_{m-2}=1, a_{1}=0$.
(7) $g(x)$ is of type (G, m) if $a_{m-1}=1, a_{m-2}=0, a_{1}=1$.
(8) $g(x)$ is of type (H, m) if $a_{m-1}=0, a_{m-2}=1, a_{1}=1$.

Theorem 2.1 [5] : If $g(x)$ is irreducible over F_{2}, then either $g^{Q}(x)$ is self-reciprocal irreducible monic polynomial of degree $2 m$ or $g^{Q}(x)$ factors into irreducible reciprocal factors $l(x)$ and $l^{*}(x)$ of degree m which are not self reciprocal.
Theorem 2.2 [20]: Let $g(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+1$ be an irreducible polynomial of $F_{2}[x]$. Then $g^{Q}(x)$ is irreducible if and only if $a_{1}=1$.
Lemma 2.3 [17] : If $g(x)$ is a binary irreducible polynomial of degree m with a root $\alpha \in F_{2^{m}}$ and $v(\beta)=\alpha$ for some $\beta \in F_{2^{2 m}}$, then β is a root of $g^{Q}(x)$.

3. Main Results

Lemma 3.1: Let $g^{Q}(x)=x^{m} \sum_{i=0}^{m} b_{l}\left(x+\frac{1}{x}\right)^{i}$ be the Q - transform having degree $2 m$ of a polynomial $g(x)=\sum_{i=0}^{m} a_{i} x^{i}$ with degree m such that $g^{Q}(x)=l(x) \cdot l^{*}(x)$, where $l(x)=\sum_{i=0}^{m} c_{i} x^{i}, l^{*}(x)=\sum_{i=0}^{m} c_{m-i} x^{i}$ are irreducible over F_{2}. Then the coefficients
$\left(c_{m-1}, c_{m-2}, c_{1}, c_{2}\right)=\left(c_{m-1}, c_{m-2}, c_{m-1}+a_{m-1}, a_{m-2}+c_{m-2}+c_{m-1}\left(c_{m-1}+a_{m-1}\right)+b\right)$.
Proof: On expanding the product of the polynomials $l(x)$ and $l^{*}(x)$ and comparing the coefficients of the terms having degrees $2 m-1$ and $2 m-2$ with the coefficients of the terms of $g^{Q}(x)$ having the same degrees. So on comparing the coefficients, we obtained that

$$
\begin{equation*}
b_{m-1}=c_{m-1}+c_{1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
m b_{m}+b_{m-2}=c_{2}+c_{m-1}+c_{m-2} \tag{3.2}
\end{equation*}
$$

Solving equations (3.1) and (3.2) for ($c_{m-1}, c_{m-2}, c_{1}, c_{2}$) for given values of b_{m-1}, b_{m-2}, we get
$\left(c_{m-1}, c_{m-2}, c_{1}, c_{2}\right)=\left(c_{m-1}, c_{m-2}, c_{m-1}+b_{m-1}, b_{m-2}+c_{m-2}+c_{m-1}\left(c_{m-1}+b_{m-1}\right)+d\right)$,
where d is 0 if m is even and 1 if m is odd.
Lemma 3.2: Let $h(x)=g^{Q}(x)=x^{m} \sum_{i=0}^{m} b_{i}\left(x+\frac{1}{x}\right)^{i}$ be the Q transform of an irreducible polynomial $g(x)=\sum_{i=0}^{m} a_{i} x^{i}$, then the following conditions holds:
(a) If $a_{m-1}=1, a_{m-2}=1$ the $b_{2 m-1}=1, b_{2 m-2}=0$ or $1, b_{1}=1$.
(b) If $a_{m-1}=1, a_{m-2}=0$ the $b_{2 m-1}=1, b_{2 m-2}=0$ or $1, b_{1}=1$.
(c) If $a_{m-1}=0, a_{m-2}=1$ the $b_{2 m-1}=0, b_{2 m-2}=0$ or $1, b_{1}=0$.
(d) If $a_{m-1}=0, a_{m-2}=0$ the $b_{2 m-1}=0, b_{2 m-2}=0$ or $1, b_{1}=0$.

Proof : In the expansion of the term $\left(x+\frac{1}{x}\right)^{m}$, only terms x^{g}, with $-m \leq g \leq m$ exists. The coefficients $b_{2 m-1}$ and b_{1} are affected by the expansion of the terms $\left(x+\frac{1}{x}\right)^{m-1}$ and $\left(x+\frac{1}{x}\right)^{m}$. Also, the coefficient $b_{2 m-2}$ are affected by two factors that is by the expansion of the term $\left(x+\frac{1}{x}\right)^{m-2}$ and by the odd or even values of m.
(a) If $a_{m-1}=1, a_{m-2}=1$.

Case 1: Let m be an odd positive integer, then

$$
\begin{aligned}
& =x^{m}\left[x^{m}+\frac{1}{x^{m}}+x^{m-2}+\frac{1}{x^{m-2}}+\cdots+x^{m-1}+\frac{1}{x_{m-1}}+\cdots+x^{m-2}\right. \\
& \left.+\frac{1}{x^{m-2}}+\cdots+1\right] \\
= & {\left[x^{2 m}+1+x^{2 m-1}+x+\cdots+x^{m}\right] } \\
= & {\left[x^{2 m}+x^{2 m-1}+0 . x^{2 m-2}+\cdots+x+1\right] }
\end{aligned}
$$

which gives

$$
b_{2 m-1}=1, \quad b_{2 m-2}=0, \quad b_{1}=1
$$

Case 2: Let m be an even positive integer, then

$$
\begin{aligned}
h(x)= & x^{m}\left[\left(x+/ x^{-1}\right)^{m}+1 .\left(x+x^{-1}\right)^{m-1}+1 .\left(x+x^{-1}\right)^{m-2}+\cdots+1\right] \\
& =x^{m}\left[x^{m}+\frac{1}{x^{m}}+\cdots+x^{m-1}+\frac{1}{x^{m-1}}+x^{m-3}+\frac{1}{x_{m-3}}+\cdots+x^{m-2}\right. \\
& \left.+\frac{1}{x^{m-2}}+\cdots+1\right] \\
= & {\left[x^{2 m}+1+x^{2 m-1}+x+x^{2 m-2}+x^{2}+\cdots+x^{m}\right] } \\
= & {\left[x^{2 m}+x^{2 m-1}+x^{2 m-2}+\cdots+x+1\right] }
\end{aligned}
$$

This gives,

$$
b_{2 m-1}=1, \quad b_{2 m-2}=1, \quad b_{1}=1
$$

Similarly, we can prove the parts (b), (c) and (d).
Theorem 3.3 : If $g(x)$ is a polynomial of the type (A, m), then $g^{Q}(x)$ can be factored into the product of a reciprocal pair of irreducible polynomials $l(x)$ and $l^{*}(x)$ of degree
m, where $l(x)$ is of type (A, m) and $l^{*}(x)$ is of type (C, m) or $l(x)$ is of type (G, m) and $l^{*}(x)$ is of type (E, m) or both are of same type (C, m) or (A, m) or (E, m) or (G, m).
Proof: Let $g(x)=\sum_{i=0}^{m} a_{i} x^{i}$ be a polynomial of type (A, m) i.e,

$$
a_{m-1}=a_{m-2}=a_{1}=0,
$$

where $m>4$. Since $a_{1}=0$, therefore $g^{Q}(x)$ is reducible over F_{2} by Theorem 2.1. Thus, it can be factored into a reciprocal pair of irreducible polynomials say $l(x)$ and $l^{*}(x)$. The Q-transform of $g(x)$ is

$$
h(x)=g^{Q}(x)=x^{m} \sum_{i=0}^{m} a_{m}\left(x+\frac{1}{x}\right)^{m}
$$

Since $a_{m-1}=0, a_{m-2}=0$, therefore by Lemma 3.2,

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=0 \quad \text { or } \quad b_{2 m-1}=0, b_{2 m-2}=1, \quad b_{1}=0
$$

If

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=0,
$$

then from Lemma 3.1, l(x) and $l^{*}(x)$ are of type (A, m) or $(C, m) ; l(x)$ is of type (G, m) and $l^{*}(x)$ is of type (E, m). If

$$
b_{2 m-1}=0, b_{2 m-2}=1, b_{1}=0,
$$

then $l(x)$ is of type (C, m) and $l^{*}(x)$ is of type (A, m) or both are of type (G, m) or (E, m), which proves the result.
Theorem 3.4: Let $g(x)$ be a polynomial of type (C, m), then $g^{Q}(x)$ can be factored into a reciprocal pair of irreducible polynomials $l(x)$ and $l^{*}(x)$ of degree m, which are of type (G, m) or (E, m) or (A, m) or $(C, m) ; l(x)$ is of type (G, m) and $l^{*}(x)$ is of type (E, m) or $l(x)$ is of type (A, m) and $l^{*}(x)$ is of type (C, m).
Proof : The polynomial $g(x)$ is of type (C, m) with degree $m>4$. In polynomial of type (C, m), coefficient of $x=0$, therefore By Theorem 2.1, $g^{Q}(x)$ is reducible. Thus By Theorem 2.2, it can be factored into reciprocal pair of irreducible polynomials.
Since $a_{m-1}=0, a_{m-2}=1$, therefore by Lemma 3.2,

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=0 \quad \text { or } \quad b_{2 m-1}=0, b_{2 m-2}=1, b_{1}=0 .
$$

If

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=0
$$

then by Lemma $3.1, l(x)$ and $l^{*}(x)$ are of type (A, m) or $(C, m) ; l^{*}(x)$ is of type (G, m) and $l^{*}(x)$ is of type (E, m). If

$$
b_{2 m-1}=0, \quad b_{2 m-2}=1, b_{1}=0
$$

then $l(x)$ and $l^{*}(x)$ are of type (G, m) or $(E, m) ; l(x)$ is of type (A, m) and $l^{*}(x)$ is of type (C, m). This proves the theorem.
Theorem 3.5 : Let $g(x)$ be a polynomial of type (D, m), then $g^{Q}(x)$ can be factored into reciprocal pair of distinct irreducible polynomials $l(x)$ and $l^{*}(x)$ of degree $m ; l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (H, m) and $l^{*}(x)$ is of type (F, m) or $l(x)$ is of type (H, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (F, m).
Proof : The polynomial $g(x)$ is of type (D, m) with degree $m \geq 4$. In polynomial of type $(D, m), a_{1}=0$, therefore $g^{Q}(x)$ is reducible. Thus, it can be written into the product of two irreducible polynomials. Since $a_{m-1}=1, a_{m-2}=0$, therefore by Lemma 3.2 ,

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=1 \quad \text { or } \quad b_{2 m-1}=1, \quad b_{2 m-2}=0, \quad b_{1}=1
$$

If

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=1
$$

then by Lemma $3.1, l(x)$ is of type (H, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (F, m). If

$$
b_{2 m-1}=1, \quad b_{2 m-2}=0, b_{1}=1
$$

then by Lemma $3.1, l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (H, m) and $l^{*}(x)$ is of type (F, m) which completes the proof of the theorem.
Theorem 3.6 : Let $g(x)$ be a polynomial of type (F, m), then $g^{Q}(x)$ can be factored into a reciprocal pair of distinct irreducible polynomials $l(x)$ and $l^{*}(x)$ of degree m, where $l(x)$ is of type (H, m) and $l^{*}(x)$ is of type (F, m) or $l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (H, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (F, m).

Proof : Let $g(x)$ be a polynomial of type (F, m), where $m>4$, since $a_{1}=0$, therefore $g^{Q}(x)$ is reducible over F_{2}. Since, $a_{m-1}=1, a_{m-2}=1$, therefore, by Lemma 3.2,

$$
b_{2 m-1}=b_{2 m-2}=b_{1}=1 \quad \text { or } \quad b_{2 m-1}=1, b_{2 m-2}, b_{1}=1 .
$$

So by Lemma 3.1, l(x) is of type (H, m) and $l^{*}(x)$ is of type (F, m) or $l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (D, m) or (l, x) is of type (H, m) and $l^{*}(x)$ is of type (D, m) or $l(x)$ is of type (B, m) and $l^{*}(x)$ is of type (F, m).
Theorem 3.7: Let $g(x)$ be a polynomial of type (B, m) or (H, m) then Q transform of this polynomial is either of the type $(A, 2 m)$ or $(C, 2 m)$.
Proof : If $g(x)$ is a polynomial of type (B, m) or (H, m) then $g^{Q}(x)$ is irreducible. Since $a_{m-1}=0, a_{m-2}=0$ or 1 , therefore by Lemma $3.2, g^{Q}(x)$ is either of type $(A, 2 m)$ or ($C, 2 m$).

4. Procedure to Construct an Infinite Sequence of Irreducible Polynomials

Let $g_{0}(x)$ be an irreducible polynomial over F_{2} of degree $m=2^{q} \cdot p$, where p is odd and q is a non negative integer, then the following cases arise:
4.1 (a) If $g_{0}(x)$ is of type (A, m) or (C, m) then $g_{0}^{Q}(x)$ splits into two irreducible factors, say $l(x)$ and $l^{*}(x)$ that is, $g_{0}^{Q}(x)=l(x) \cdot l^{*}(x)$ which are of the type (G, m) or (E, m); $l(x)$ is of type (G, m) and $l^{*}(x)$ is of type (E, m). We set

$$
h_{0}=l(x) \quad \text { or } \quad h_{0}=l^{*}(x),
$$

and construct a finite sequence $h_{0}, h_{1}, h_{2}, \cdots, h_{s}$ for $s \leq q+1$. Let

$$
g_{i}=h_{i-1} \quad \text { for } \quad 1 \leq i \leq s+1 \leq q+1
$$

then an infinite sequence of irreducible polynomials can be formed by setting

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq s
$$

(b) If $l(x)$ and $l^{*}(x)$ are not of the type (G, m) or (E, m) as discussed in 4.1 (a), then set $h_{0}=l(x)$ and its Q-transform factored into two factors say $l_{1}(x)$ and $l_{2}(x)$ that is, $l(x)=l_{1}(x) \cdot l_{2}(x)$. If $l_{1}(x)$ and $l_{2}(x)$ are of type (G, m) or (E, m) then repeat as in part 4.1(a) but if not then we set $h_{0}(x)=l^{*}(x)$ and repeat the same process. Let

$$
g_{i}=h_{i-1} \quad \text { for } \quad 1 \leq i \leq s+1 \leq q+3
$$

then an infinite sequence of irreducible polynomials can be formed by setting

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq s
$$

4.2 If $g_{0}(x)$ is of type (B, m) then by Theorem 3.7, $g_{0}^{Q}(x)$ is of type $(A, 2 m)$ or $(C, 2 m)$. Let $m^{\prime}=2 m$ and $q^{\prime}=q+1, h_{0}=g_{0}^{Q}(x)$, then a finite sequence $h_{0}, h_{1}, h_{2}, \cdots, h_{s^{\prime}}$ can be constructed where $s^{\prime} \leq q=q+1$ and $h_{s^{\prime}}$ is either of type $(G, 2 m)$ or $(E, 2 m)$. Let

$$
g_{i}=h_{i-1} \quad \text { for } \quad 1 \leq i \leq s^{\prime}+1 \leq q+2,
$$

then an infinite sequence of irreducible polynomials can be formed by setting

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq s^{\prime}
$$

4.3 If $g_{0}(x)$ is of type (D, m) and (F, m) then it is possible to construct a polynomial $g_{1}(x)$ of type (B, m) or (H, m). According to Theorem 3.7, $g_{1}^{Q}(x)$ is either of type $(C, 2 m)$ or $(A, 2 m)$. We set

$$
h_{0}(x)=g_{1}^{Q}(x), \quad m^{\prime}=2 m \quad \text { and } \quad q^{\prime}=q+1,
$$

so it is possible to construct a finite sequence $h_{0}, h_{1}, h_{2}, \cdots, h_{s^{\prime}}$, where $s^{\prime} \leq q^{\prime}=q+1$. Let

$$
g_{i}=h_{i-2} \text { for } 2 \leq i \leq s^{\prime}+1 \leq q+3,
$$

then an infinite sequence of irreducible polynomials can be formed by setting

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq s^{\prime}
$$

4.4 If $g_{0}(x)$ is a polynomial of type (H, m) then it is possible to construct a polynomial $g_{1}(x)=g_{0}^{Q}(x)$ of type $(A, 2 m)$ or $(C, 2 m)$. We set

$$
h_{0}=g_{0}^{Q}, \quad m^{\prime}=2 m, \quad q^{\prime}=q+1
$$

Let

$$
g_{i}=h_{i-1} \text { for } \quad 1 \leq i \leq s^{\prime}+1 \leq q+2 \text {, }
$$

then an infinite sequence of irreducible polynomials can be formed by setting

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq s^{\prime} .
$$

4.5 If $g_{0}(x)$ is a polynomial of type (G, m) or (E, m), then $g_{0}^{Q}(x)$ is irreducible, see [5]. Therefore, an infinite sequence of binary irreducible polynomials can be formed by setting

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq 0
$$

Remark: Let $g_{0}(x)$ be an irreducible polynomial of any one of the type from (A, m) to (H, m). If $g_{0}^{Q}(x)$ is reducible, then it can be factored into the product of two irreducible polynomials $l(x)$ and $l^{*}(x)$.

5. Examples

5.1 We construct a sequence of irreducible polynomials starting from an irreducible polynomial of degree 4 . Let α be a root of the Conway polynomial

$$
x^{4}+x+1
$$

which is primitive polynomial in $F_{2}[x]$. The illustration of the construction of binary irreducible polynomials is as follows:
We take a binary polynomial of type $(D, 4)$ as

$$
g_{0}(x)=x^{4}+x^{3}+1
$$

and notice that α^{13} is one of the roots of this polynomial, which is v-periodic. By Lemma 3.1, the Q-transform $g_{0}^{Q}(x)$ splits into the product of two irreducible factors say $l(x)$ and $l^{*}(x)$ of degree 4 , where $l(x)$ is of type $(B, 4)$ and $l^{*}(x)$ is of type $(D, 4)$. Therefore,

$$
g_{0}^{Q}(x)=\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right) .
$$

One of the factor $l(x)$ and $l^{*}(x)$ has a root α which is not v-periodic and rooted in α^{13}. Therefore, We set

$$
g_{1}(x)=x^{4}+x+1 .
$$

The polynomial $g_{1}(x)$ is of type $(B, 4)$ and α^{4} is the root of this polynomial which is rooted in α^{13}. Also there is no element γ such that $v(\gamma)=\alpha^{4}$. Such an element γ exists in $F_{2^{s}}$ and $g_{1}^{Q}(\gamma)=0$. Let

$$
h_{0}(x)=g_{2}(x)=g_{1}^{Q}(x)=x^{8}+x^{5}+x^{4}+x^{3}+1,
$$

which is of type $(A, 2 m)$.
Again, taking Q transform of the polynomial $h_{0}(x)$ and factoring, we get

$$
h_{0}^{Q}(x)=\left(x^{8}+x^{6}+x^{3}+x^{2}+1\right)\left(x^{8}+x^{6}+x^{5}+x^{2}+1\right) .
$$

We set

$$
h_{1}(x)=x^{8}+x^{6}+x^{3}+x^{2}+1,
$$

which is of type $(C, 8)$. We factor $h_{1}^{0}(x)$ and get

$$
h_{1}^{Q}(x)=\left(x^{8}+x^{5}+x^{3}+x^{2}+1\right)\left(x^{8}+x^{6}+x^{5}+x^{3}+1\right) .
$$

Again, the factors of $h_{1}^{Q}(x)$ are not of type $(G, 8)$ or $(E, 8)$, so further let

$$
h_{2}(x)=x^{8}+x^{5}+x^{3}+x^{2}+1,
$$

which is of type $(A, 8)$, we factor $h_{2}^{Q}(x)$ and get

$$
h_{2}^{Q}(x)=\left(x^{8}+x^{7}+x^{2}+x+1\right)\left(x^{8}+x^{7}+x^{6}+x+1\right) .
$$

We set

$$
h_{3}(x)=x^{8}+x^{7}+x^{2}+x+1,
$$

which is of type $(G, 8)$. Hence, we construct a finite sequence $h_{0}, h_{1}, h_{2}, h_{3}$ of irreducible polynomials.
Now, on setting

$$
h_{0}=g_{2}, \quad h_{1}=g_{3}, \quad h_{2}=g_{4}, \quad h_{3}=g_{5}
$$

and

$$
g_{i+1}=g_{i}^{Q}
$$

for any integer $i \geq 5$, we get an infinite sequence of irreducible polynomials. We also present a graph $G r_{4}$ having three connected components. The labels of the vertices are ∞, ' 0 ' (the zero of F_{2}) and the exponent j is the power of α for $0 \leq j \leq 14$.

Structure of the Graph Associated with the Map $v(x)=x+\frac{1}{x}$ over $F_{2^{4}}$
5.2 In this example, we construct an infinite sequence of irreducible polynomials starting from an irreducible polynomial of degree 7 over F_{2}. Let α be the root of the Conway polynomial

$$
x^{7}+x+1 .
$$

The explanation of the sequence of binary irreducible polynomials is as follows: Let us start with the polynomial of type $(A, 7)$

$$
g_{0}(x)=x^{7}+x^{3}+1
$$

and α^{11} is one the roots of $g_{0}(x)$. Now, $g_{0}^{Q}(x)$ factors as

$$
g^{Q}(x)=\left(x^{7}+x^{4}+x^{3}+x^{2}+1\right)\left(x^{7}+x^{5}+x^{4}+x^{3}+1\right) .
$$

Here, first irreducible factor is of type $(A, 7)$ and the second one is of type $(C, 7)$. One of the factor $l(x)$ and $l^{*}(x)$ has a root α which is not v-periodic and rooted in α^{11}. We set

$$
g_{1}(x)=\left(x^{7}+x^{4}+x^{3}+x^{2}+1\right)
$$

and α^{93} is the root of $g_{1}(x)$, which is rooted in α^{11}. These roots are connected by the map (2.6). Again, taking Q transform of $g_{1}(x)$ and split it into two irreducible factors, which are of type $(G, 7)$. Therefore,

$$
g_{1}^{Q}(x)=\left(x^{7}+x^{6}+x^{3}+x+1\right)\left(x^{7}+x^{6}+x^{4}+x+1\right)
$$

The first and second irreducible factors of $g_{1}^{Q}(x)$ has α^{21} and α^{106} respectively as one of their roots. These two roots are connected to α^{93} by the map (2.6), which is a root of $g_{1}(x)$. Also there is no element γ such that $v(\gamma)=\alpha^{21}$ or α^{106}. Such an element γ exists in $F_{2^{14}}$ and $g_{2}^{Q}(\gamma)=0$. We Set

$$
g_{i+1}=g_{i}^{Q} \quad \text { for } \quad i \geq 2
$$

and obtain an infinite sequence of irreducible polynomials. We present the graph $G r_{7}$, having 3 connected components. The exponents j are the powers of α, where $0 \leq j \leq$ 126.

Structure of the Graph Associated with the Map $v(x)=x+\frac{1}{x}$ over $F_{2^{7}}$

6. Conclusion

We classified the irreducible polynomials of degree m over F_{2} on the basis of their coefficients and constructed an infinite sequence of irreducible polynomials by using the Q-transform repeatedly starting from an irreducible polynomial of degree m. We also shown the structure of graphs by using the map $x \rightarrow x+\frac{1}{x}$ over finite fields $F_{2^{4}}$ and $F_{2^{7}}$.

Acknowledgement

Authors acknowledge the support of UGC-SAP.

References

[1] Ashikhmin A. E. and Litsyn S. N., Fast decoding of non-binary first order ReedMullar codes, AAECC, 7 (1996), 299-308.
[2] Cohen S. D., The explicit construction of irreducible polynomials over finite field, 2 (1992), 169-174.
[3] Charpin P., Tietäväinen A. and Zinoviev V., On binary cyclic codes with minimum distance three, Problems of Information Transmission, 33 (1997), 314.
[4] Geer G. V. D., Schoof R. and Vlugt M. V. D., Weight formulas for ternary Melas codes, Mathematics of Computation, 58(198) (1992), 781-792.
[5] Meyn H., On the construction of irreducible self-reciprocal polynomials over finite fields, Appl. Algebra Eng. Comm. Comput., 1(1) (1990), 43-53.
[6] MacWilliams F. J. and Sloane N. J. A., The Theory of Error-Correcting Codes, North-Holland, New York, (1986).
[7] Mullen G. L. and Panario D., Handbook of Finite Fields, CRC Press, (2013).
[8] Lidl R. and Niederreiter H., Finite Fields, Cambridge University Press, (1983).
[9] Sharma P. L. and Kumar S., Balanced incomplete block design (BIBD) using Hadamard Rhotrices, International Journal of Technology, 4(1) (2014), 62-66.
[10] Sharma P. L. and Kumar S., Some applications of Hadamard Rhotrices to design balanced incomplete block, International J. of Math Sci. and Engg Appls, 8(II) (2014), 389-404.
[11] Sharma P. L. and Kumar S., On construction of MDS Rhotrices from companion Rhotrices over finite field, International Journal of Mathematical Sciences, 12(34) (2013), 271-286.
[12] Sharma P. L. and Rehan M., On security of Hill Cipher using finite fields, International Journal of Computer Applications, 71(4) (2013), 30-33.
[13] Sharma P. L. and Rehan M., Modified Hill Cipher using Vandermonde matrix and finite field, International Journal of Technology, 4(1) (2014), 252-256.
[14] Sharma P. L., Kumar S. and Rehan M., On Hadamard Rhotrix over finite field, Bulletin of Pure and Applied Sciences, 32E(2) (2013), 181-190.
[15] Sharma P. L., Sharma Shabnam and Dhiman Neetu, Construction of infinite sequences of irreducible polynomials using Kloosterman sums, Bulletin of Pure and Applied Sciences, 33E(2)P. (Math. and Stat.), (2014), 161-168.
[16] Ugolini S., Graphs associated with the map $x \rightarrow x+x^{-1}$ in finite fields of characteristic two, in: Theory and Applications of Finite Fields, in: Contemp. Math., Amer. Math. Soc., Providence, RI, 579 (2012).
[17] Ugolini S., Sequences of binary irreducible polynomials, Discrete Mathematics, 313 (2013), 2656-2662.
[18] Ugolini S., Sequences of irreducible polynomials without prescribed coefficients over odd prime fields, arxiv: 1207. 6959v5 (2013).
[19] Ugolini S., Sequences of irreducible polynomials over odd prime fields via elliptic curve endomorphisms, arxiv: 1308.6723v3 (2014).
[20] Varshamov R. R. and Garakov G. A., On the theory of self-dual polynomials over a Galois field, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 13 (1969), 403-415 (in Russian).

