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Abstract
The object of the present paper is to study the properties of M -projective curvature
tensor on Kenmotsu manifolds. It has been shown that globally φ- M -projectively
symmetric Kenmotsu manifold is an Einstein manifold.

1. Introduction

The study of odd dimensional manifolds with contact and almost contact structures

was initiated by Boothby and Wong [5] in 1958 rather from topological point of view.

Sasaki and Hatakeyama [7] re-investigated them using tensor calculus in 1961. In

[8], Tanno classified connected almost contact metric manifolds whose automorphism

groups possesses the maximum dimension. For such a manifold Mn, the sectional
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curvature of plane sections containing ξ is a constant, say c. If c > 0, Mn is homogeneous

Sasakian manifold of constant sectional curvature. If c = 0, Mn is the product of a

line or a circle with a Kaehler manifold of constant holomorphic sectional curvature.

If c < 0, Mn is a warped product space R ×f Cn. In 1971, Kenmotsu studied a

class of contact Riemannian manifolds satisfying some special conditions [4]. We call it

Kenmotsu manifold.

The M -projective curvature tensor is defined by [3]

W ∗(X,Y )Z = R(X,Y )Z − 1
2(n−1){S(Y, Z)X

− S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY },
(1.1)

where R,S and Q are the Riemannian curvature tensor of type (1,3), the Ricci tensor

of type (0,2) and the Ricci operator defined by g(QX,Y ) = S(X,Y ) respectively.

Definition 1.1 : An n-dimensional Kenmotsu manifold is said to be ξ-M -projectively

flat if W ∗(X,Y )ξ = 0, where X,Y ∈ TMn.

Definition 1.2 : An n-dimensional Kenmotsu manifold is said to be φ-M -projectively

flat if W ∗(φX, φY, φZ, φU) = 0 , where X,Y, Z, U ∈ TMn.

The paper is organized as follows. After preliminaries in section 2, in section 3 we con-

sider globally φ-M -projectively symmetric Kenmotsu manifolds. Section 4 deals with

3-dimensional locally φ-M -projectively symmetric Kenmotsu manifolds. In section 5, we

prove that an n-dimensional Kenmotsu manifold is ξ-M -projectively flat if and only if it

is an Einstein manifold. In section 6, we show that an n-dimensional φ-M -projectively

flat Kenmotsu manifold is an η-Einstein manifold. In section 7, we prove that a Ken-

motsu manifold of harmonic M -projective curvature tensor with killing vector ξ is an

η-Einstein manifold. Finally, an example of 3-dimensional Kenmotsu manifold is given.

2. Preliminaries

Let (Mn, φ, ξ, η, g) be an n-dimensional (where n=2m+1) almost contact metric mani-

fold, where φ is a (1,1)- tensor field, ξ is the structure vector field , η is a 1-form and

g is the Riemannian metric. It is well known that the (φ, ξ, η, g) structure satisfies the

conditions [2]

φ2(X) = −X + η(X)ξ, (2.1)

g(X, ξ) = η(X), (2.2)
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φξ = 0, ηφ = 0, η(ξ) = 1, (2.3)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.4)

for any vector fields X and Y on Mn.

If moreover

(DXφ)(Y ) = −g(X,φY )ξ − η(Y )φX, (2.5)

DXξ = X − η(X)ξ, (2.6)

where D is the Riemannian connection, then (Mn, φ, ξ, η, g) is called a Kenmotsu man-

ifold. It is well known [4] that

R(X,Y )ξ = η(X)Y − η(Y )X, (2.7)

S(X, ξ) = −(n− 1)η(X), (2.8)

(DXη)Y = g(X,Y )− η(X)η(Y ), (2.9)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ). (2.10)

A Kenmotsu manifold Mn is said to be η-Einstein if the Ricci tensor S is of the form

[1]

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ),

for any vetor fields X and Y , where λ1 and λ2 are functions on Mn. If λ2 = 0, then

η-Einstein manifold becomes Einstein manifold.

From [10], we know that for a 3-dimensional Kenmotsu manifold

R(X,Y )Z = (r+4)
2 [g(Y,Z)X − g(X,Z)Y ]

− (r+6)
2 [g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ],

(2.11)

S(X,Y ) =
1
2

[(r + 2)g(X,Y )− (r + 6)η(X)η(Y )], (2.12)

where r is the scalar curvature of the manifold.
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3. Globally φ-M-Projectively Symmetric Kenmotsu Manifolds

Definition 3.1 : A Kenmotsu manifold Mn is said to be globally φ-M -projectively

symmetric if M -projective curvature tensor W ∗ satisfies

φ2((DUW
∗)(X,Y )Z) = 0, (3.1)

for all vector fields X,Y, Z, U ∈ TMn.

Let us suppose that Mn is a globally φ-M -projectively symmetric Kenmotsu manifold.

Then the equation (3.1) is satisfied.

Now using (2.1) in the equation (3.1), we get

−(DUW
∗)(X,Y )Z + η((DUW

∗)(X,Y )Z)ξ = 0. (3.2)

From (1.1) it follows that

0 = −g((DUR)(X,Y )Z, V ) +
1

2(n− 1)
{(DUS)(Y,Z)g(X,V )

− (DUS)(X,Z)g(Y, V ) + (DUS)(X,V )g(Y,Z)

− (DUS)(Y, V )g(X,Z)}+ η((DUR)(X,Y )Z)η(V )

− 1
2(n− 1)

{(DUS)(Y,Z)η(X)− (DUS)(X,Z)η(Y )

+ g(Y,Z)(DUS)(X, ξ)− g(X,Z)(DUS)(Y, ξ)}η(V ). (3.3)

Putting X = V = ei in the equation (3.3), where {ei}, (i = 1, 2, .....n) is an orthonormal

basis of the tangent space at each point of the manifold, and taking summation over i,

we get

0 = −(DUS)(Y, Z) +
1

2(n− 1)
n(DUS)(Y,Z)

− 1
2(n− 1)

(DUS)(Y,Z) +
1

2(n− 1)
dr(U)g(Y,Z)

− 1
2(n− 1)

(DUS)(Y,Z) + η((DUR)(ei, Y )Z)η(ei)

− 1
2(n− 1)

{(DUS)(Y, Z)− (DUS)(Z, ξ)η(Y )

+ g(Y, Z)(DUS)(ξ, ξ)− (DUS)(Y, ξ)η(Z)}.

Putting Z = ξ in the above expression we obtain,

− n
2(n−1)(DUS)(Y, ξ) + dr(U)

2(n−1)η(Y )

+ η((DUR)(ei, Y )ξ)η(ei) = 0.
(3.4)
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We know that

g((DUR)(ei, Y )ξ, ξ) = g(DUR(ei, Y )ξ, ξ)− g(R(DUei, Y )ξ, ξ)

− g(R(ei, DUY )ξ, ξ)− g(R(ei, Y )DUξ, ξ)
(3.5)

at p ∈Mn. Since {ei} is an orthonormal basis, DXei = 0 at p. Using (2.7) we find

g(R(ei, DUY )ξ, ξ) = g(η(ei)DUY − η(DUY )ei, ξ)

= η(ei)g(DUY, ξ)− η(DUY )g(ei, ξ)

= 0.

(3.6)

Using (3.6) in (3.5) we have

g((DUR)(ei, Y )ξ, ξ) = g(DUR(ei, Y )ξ, ξ)− g(R(ei, Y )DUξ, ξ). (3.7)

Since

g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0,

we get

g(DUR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,DUξ) = 0. (3.8)

In consequence of (3.8), the equation (3.7) becomes

g((DUR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,DUξ)− g(R(ei, Y )DUξ, ξ).

Using (2.6) in the above equation, we find

g((DUR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ, U) + η(U)g(R(ei, Y )ξ, ξ)

− g(R(ei, Y )U, ξ) + η(U)g(R(ei, Y )ξ, ξ)

= 0,

i.e.,

g((DUR)(ei, Y )ξ, ξ) = 0. (3.9)

By using (3.9) in the equation (3.4) we get

(DUS)(Y, ξ) =
1
n
dr(U)η(Y ). (3.10)
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Putting Y = ξ in (3.10), we get dr(U) = 0.

This implies that r is constant.

So from (3.10), we obtain

(DUS)(Y, ξ) = 0,

which implies that

S(Y, U) = (1− n)g(Y,U). (3.11)

Hence we can state the following:

Theorem 3.1 : If a Kenmotsu manifold is globally φ-M -projectively symmetric, then

the manifold is an Einstein manifold.

Next suppose S(X,Y ) = λg(X,Y ),

that is, the manifold is an Einstein manifold.

Then from (1.1) we have

(DUW
∗)(X,Y )Z = (DUR)(X,Y )Z.

Applying φ2 on both sides of the above equation we have

φ2((DUW
∗)(X,Y )Z) = φ2((DUR)(X,Y )Z).

Hence we can state:

Theorem 3.2 : A globally φ-M -projectively symmetric Kenmotsu manifold is globally

φ-symmetric.

Remakr 3.1 : Since a globally φ -symmetric Kenmotsu manifold is always a glob-

ally φ-M -projectively symmetric manifold, from Theorem 3.2, we conclude that on a

Kenmotsu manifold, globally φ-symmetry and globally φ-M -projectively symmetry are

equivalent.

4. 3-Dimensional Locally φ-M-Projectively Symmetric Kenmotsu Man-

ifolds

Definition 4.1 : A Kenmotsu manifold Mn is said to be locally φ-M -projectively

symmetric if M -projective curvature tensor W ∗ satisfies

φ2((DUW
∗)(X,Y )Z) = 0, (4.1)
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where X,Y, Z and U are horizontal vectors.

Using (2.11) and (2.12) in (1.1), in a 3-dimensional Kenmotsu manifold the M -

projective curvature tensor is

W ∗(X,Y )Z = ( r+6
4 )[g(Y, Z)X − g(X,Z)Y ]

− (3r+18
8 )[g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ].

(4.2)

Taking the covariant differentiation to the both sides of the equation (4.2), we have

(DUW
∗)(X,Y )Z =

dr(U)
4

[g(Y, Z)X − g(X,Z)Y ]

− 3
8
dr(U)[g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ]

− (
3r + 18

8
)[g(Y, Z)(DUη)(X)ξ + g(Y,Z)η(X)DUξ

− g(X,Z)(DUη)(Y )ξ − g(X,Z)η(Y )DUξ + (DUη)(Y )η(Z)X

+ η(Y )(DUη)(Z)X − (DUη)(X)η(Z)Y

− η(X)(DUη)(Z)Y ]. (4.3)

Now assume that X,Y and Z are horizontal vector fields. So the equation (4.3) becomes

(DUW
∗)(X,Y )Z =

dr(U)
4

[g(Y,Z)X − g(X,Z)Y ]

− (
3r + 18

8
)[g(Y,Z)(DUη)(X)ξ

− g(X,Z)(DUη)(Y )ξ]. (4.4)

Applying φ2 on both sides of (4.4) and making use of (2.1), we obtain

φ2((DUW
∗)(X,Y )Z) = −dr(U)

4
[g(Y, Z)X − g(X,Z)Y ]. (4.5)

Hence we can state the following:

Theorem 4.1 : A 3-dimensional Kenmotsu manifold is locally φ-M -projectively sym-

metric if and only if the scalar curvature r is constant.
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5. ξ-M-Projectively Flat Kenmotsu Manifolds

From (1.1), we obtain

R(X,Y )ξ = 1
2(n−1){S(Y, ξ)X − S(X, ξ)Y

+ g(Y, ξ)QX − g(X, ξ)QY }.
(5.1)

Using (2.7), (2.8) in (5.1), we get

η(Y )QX − η(X)QY + (n− 1){η(Y )X − η(X)Y } = 0. (5.2)

Putting Y = ξ in (5.2) and using (2.3), we have

QX = −(n− 1)X. (5.3)

Taking inner product with U of (5.3) yields

S(X,U) = −(n− 1)g(X,U). (5.4)

From relation (5.4), we conclude that the manifold is an Einstein manifold.

Conversely , we assume that an n-dimensional Kenmotsu manifold satisfies (5.4). Then

we easily obtain from (1.1) that

W ∗(X,Y )ξ = 0.

In view of the above discussions we state the following:

Theorem 5.1 : An n-dimensional Kenmotsu manifold is ξ-M -projectively flat if and

only if it is an Einstein manifold.

6. φ-M-Projectively Flat Kenmotsu Manifolds

In an n-dimensional almost contact metric manifold, if {e1, .......en−1, ξ} is a local or-

thonormal basis of the tangent space of the manifold, then {φe1, .....φen−1, ξ} is also a

local orthonormal basis . It is easy to verify that

n−1∑
i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ) + g(φY, φZ), (6.1)

n−1∑
i=1

S(φei, φei) = r − n+ 1, (6.2)
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n−1∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ), (6.3)

n−1∑
i=1

g(φei, φei) = n− 1, (6.4)

and
n−1∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ). (6.5)

Then we have from (1.1) that

′R(φX, φY, φZ, φU) =
1

2(n− 1)
{S(φY, φZ)g(φX, φU)

− S(φX, φZ)g(φY, φU) + g(φY, φZ)S(φX, φU)

− g(φX, φZ)S(φY, φU)}. (6.6)

Let {e1, e2, ....., en−1, ξ} be a local orthonormal basis of the tangent space of the mani-

fold. Then {φe1, φe2, ...., φen−1, ξ} is also a local orthonormal basis of the tangent space.

Putting X = U = ei in (6.6) and summing up from 1 to (n-1) we have,

n−1∑
i=1

{′R(φei, φY, φZ, φei)} =
1

2(n− 1)

n−1∑
i=1

[S(φY, φZ)g(φei, φei)

− S(φei, φZ)g(φY, φei)

+ g(φY, φZ)S(φei, φei)

− g(φei, φZ)S(φY, φei)]. (6.7)

Using (6.1), (6.2), (6.3) and (6.4) in (6.7), we obtain

S(φY, φZ) = (
r − 3n+ 3
n+ 1

)g(φY, φZ). (6.8)

Replacing Y and Z by φY and φZ in (6.8) and using (2.1) we have

S(Y,Z) = (
r − 3n+ 3
n+ 1

)g(Y, Z) + (
−r − n2 + 3n− 2

n+ 1
)η(Y )η(Z). (6.9)

Putting Y = Z = ei in (6.9) and taking summation over i, 1 ≤ i ≤ n we get by using

(6.4) that

r = −(2n2 − 3n+ 1). (6.10)

In view of the above discussions we have the following:
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Proposition 6.1 : An n-dimensional φ-M -projectively flat Kenmotsu manifold is an

η- Einstein manifold with constant curvature.

7. Harmonic M-Projective Curvature Tensor on Kenmotsu Manifolds

Let us assume that ξ is a killing vector, then S and r remain invariant under it,

i.e.,

LξS = 0 (7.1)

and

Lξr = 0, (7.2)

where L denotes Lie derivation.

Definition 7.1 : The Riemannian curvature tensor R is harmonic if

(divR)(X,Y, Z) = 0. (7.3)

Definition 7.2 : A Riemannian manifold Mn is of harmonic M -projective curvature

tensor if

(divW ∗)(X,Y, Z) = 0. (7.4)

In a Kenmotsu manifold it is known [6] that

(divW ∗)(X,Y, Z) = 1
2(n−1) [(2n− 3){(DXS)(Y,Z)− (DY S)(X,Z)}

− 1
2{dr(X)g(Y, Z)− dr(Y )g(X,Z)}].

(7.5)

Theorem 7.1 : If a Kenmotsu manifold is of harmonic M -projective curvature tensor

and ξ is killing vector, then the manifold is an η -Einstein manifold.

Proof : Let Mn be a Kenmotsu manifold that satisfies divW ∗ = 0 .

Then from the equation (7.5) we have

(DXS)(Y,Z)− (DY S)(X,Z) =
1

2(2n− 3)
[dr(X)g(Y,Z)− dr(Y )g(X,Z)]. (7.6)

From (7.1), it follows that

(DξS)(Y,Z) = −S(DY ξ, Z)− S(Y,DZξ) (7.7)

and from (7.2), we get dr(ξ) = 0. Putting X = ξ in (7.6), we obtain

(DξS)(Y, Z)− (DY S)(ξ, Z) = 1
2(2n−3) [g(Y, Z)dr(ξ)

− η(Z)dr(Y )].
(7.8)
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Making use of (7.7) in (7.8), we have

−S(DY ξ, Z)− S(Y,DZξ)− (DY S)(ξ, Z) = 1
2(2n−3) [g(Y,Z)dr(ξ)

− η(Z)dr(Y )].
(7.9)

In consequence of dr(ξ) = 0 , the above equation assume the form

−S(Y,DZξ)−DY S(ξ, Z) + S(ξ,DY Z) = − 1
2(2n− 3)

η(Z)dr(Y ). (7.10)

Using (2.6) and (2.9) in the above, we have

−S(Y, Z) + (n− 1)g(Y,Z)− 2(n− 1)η(Y )η(Z)

= − 1
2(2n−3)η(Z)dr(Y ).

(7.11)

Replacing Z by φZ in the above equation, we get

S(Y, φZ) = (n− 1)g(Y, φZ). (7.12)

Again replacing Y by φY and using (2.4) and (2.10) the above equation gives

S(Y,Z) = (n− 1)g(Y,Z)− 2(n− 1)η(Y )η(Z),

i.e., the manifold is an η-Einstein manifold.

8. Example of a Locally φ-M-Projectively Symmetric Kenmotsu Man-

ifold in 3-Dimension

Example 8.1 : We consider the 3-dimensional manifold M3 = {(x, y, z) ∈ R3, z 6= 0},
where (x, y, z) are standard co-ordinate of R3 .

The vector fields

e1 = z ∂
∂x , e2 = z ∂

∂y , e3 = −z ∂
∂z

are linearly independent at each point of M3.

Let g be the Riemannian meric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ TMn .

Let φ be the (1,1) tensor field defined by
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φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0 .

Then using the linearity of φ and g , we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ TMn. Then for e3 = ξ , the structure (φ, ξ, η, g) defines an almost

contact metric structure on M3.

Let D be the Levi-Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂

∂x
(−z ∂

∂z
)− (−z ∂

∂z
)(z

∂

∂x
)

= −z2 ∂2

∂x∂z
+ z2 ∂2

∂z∂x
+ z

∂

∂x
= e1. (8.1)

Similarly, [e1, e2] = 0 and [e2, e3] = e2 .

The Riemannian connection D of the metric g is given by

2g(DXY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),
(8.2)

which is known as Koszul’s formula. Using (7.2) we have

2g(De1e3, e1) = −2g(e1,−e1)

= 2g(e1, e1).
(8.3)

Again by (8.2), we have

2g(De1e3, e2) = 0 = 2g(e1, e2) (8.4)

and

2g(De1e3, e3) = 0 = 2g(e1, e3). (8.5)
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From (8.3), (8.4) and (8.5), we obtain

2g(De1e3, X) = 2g(e1, X), (8.6)

for all X ∈ TMn. Thus De1e3 = e1. Therefore, (8.2) further yields

De1e3 = e1, De1e2 = 0, De1e1 = −e3,

De2e3 = e2, De2e2 = e3, De2e1 = 0,

De3e3 = 0, De3e2 = 0, De3e1 = 0. (8.7)

From the above it follows that the manifold satisfies

DXξ = X − η(X)ξ, for ξ = e3 .

Hence the manifold is a Kenmotsu manifold.

Remark 8.1 : In [9] the authors have shown that the above example shows that a 3-

dimensional Kenmotsu manifold is locally φ-concircularly symmetric iff the scalar curva-

ture r is constant. Similarly we can show that the above example supports Theorem 4.1.
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