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Abstract

The object of the present paper is to study the properties of M-projective curvature
tensor on Kenmotsu manifolds. It has been shown that globally ¢- M-projectively
symmetric Kenmotsu manifold is an Einstein manifold.

1. Introduction

The study of odd dimensional manifolds with contact and almost contact structures
was initiated by Boothby and Wong [5] in 1958 rather from topological point of view.
Sasaki and Hatakeyama [7] re-investigated them using tensor calculus in 1961. In
[8], Tanno classified connected almost contact metric manifolds whose automorphism

groups possesses the maximum dimension. For such a manifold M", the sectional
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curvature of plane sections containing £ is a constant, say c¢. If ¢ > 0, M" is homogeneous
Sasakian manifold of constant sectional curvature. If ¢ = 0, M" is the product of a
line or a circle with a Kaehler manifold of constant holomorphic sectional curvature.
If ¢ < 0, M" is a warped product space R x; C". In 1971, Kenmotsu studied a
class of contact Riemannian manifolds satisfying some special conditions [4]. We call it
Kenmotsu manifold.

The M-projective curvature tensor is defined by [3]

WH(X,Y)Z = R(X,Y)Z - m{S(Y, Z)X
(1.1)
- S(X,2)Y +9(Y, 2)QX — g(X, Z2)QY},

where R, S and @ are the Riemannian curvature tensor of type (1,3), the Ricci tensor
of type (0,2) and the Ricci operator defined by g(QX,Y) = S(X,Y) respectively.
Definition 1.1 : An n-dimensional Kenmotsu manifold is said to be &-M-projectively
flat if W*(X,Y)¢ =0, where X, Y € TM™.
Definition 1.2 : An n-dimensional Kenmotsu manifold is said to be ¢-M-projectively
flat if W*(¢pX, @Y, 0Z,9oU) =0 , where X, Y, Z, U € TM™".
The paper is organized as follows. After preliminaries in section 2, in section 3 we con-
sider globally ¢-M-projectively symmetric Kenmotsu manifolds. Section 4 deals with
3-dimensional locally ¢-M-projectively symmetric Kenmotsu manifolds. In section 5, we
prove that an n-dimensional Kenmotsu manifold is £&-M-projectively flat if and only if it
is an Kinstein manifold. In section 6, we show that an n-dimensional ¢-M-projectively
flat Kenmotsu manifold is an 7-Einstein manifold. In section 7, we prove that a Ken-
motsu manifold of harmonic M-projective curvature tensor with killing vector £ is an

n-Einstein manifold. Finally, an example of 3-dimensional Kenmotsu manifold is given.

2. Preliminaries
Let (M™, ¢,&,m,g) be an n-dimensional (where n=2m+1) almost contact metric mani-
fold, where ¢ is a (1,1)- tensor field, £ is the structure vector field , n is a 1-form and
g is the Riemannian metric. It is well known that the (¢, &, n, g) structure satisfies the
conditions [2]

$*(X) = =X +n(X)E, (2.1)

Q(X,f) = U(X), (2'2)
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=0, n¢=0, n(&) =1, (2.3)
9(6X,9Y) = g(X,Y) = n(X)n(Y), (2.4)

for any vector fields X and Y on M™.

If moreover

(Dx9)(Y) = —g(X, Y )§ = n(Y )X, (2.5)
Dx§ =X —n(X)g, (2.6)

where D is the Riemannian connection, then (M™, ¢, £, n, g) is called a Kenmotsu man-

ifold. It is well known [4] that

R(X,Y)§ =n(X)Y —n(Y)X, (2.7)
S(X,¢) = —(n - )n(X), (2.8)
(Dxn)Y = g(X,Y) = n(X)n(Y), (2.9)
S(eX,0Y)=S(X,Y)+ (n—1)n(X)n(Y). (2.10)

A Kenmotsu manifold M™ is said to be n-Einstein if the Ricci tensor S is of the form

[1]
S(X,Y) = Mg(X,Y) + Aan(X)n(Y),

for any vetor fields X and Y, where A; and Ay are functions on M". If Ay = 0, then
n-Einstein manifold becomes Einstein manifold.

From [10], we know that for a 3-dimensional Kenmotsu manifold

RIX.Y)Z = (v, 2)X — g(X,2)Y]
— WOy, Z)n(X)€ — g(X, Z)n(Y )¢ (2.11)
+ n(Y)n(Z2)X —n(X)n(2)Y],

SOXY) = 5[0+ 290X, Y) — (r + On(X)n(Y)], (212)

where 7 is the scalar curvature of the manifold.
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3. Globally ¢-M-Projectively Symmetric Kenmotsu Manifolds
Definition 3.1 : A Kenmotsu manifold M" is said to be globally ¢-M-projectively

symmetric if M-projective curvature tensor W* satisfies
¢*(DyW*)(X,Y)Z) =0, (3.1)

for all vector fields X,Y,Z,U € TM™.

Let us suppose that M™ is a globally ¢-M-projectively symmetric Kenmotsu manifold.
Then the equation (3.1) is satisfied.

Now using (2.1) in the equation (3.1), we get

—(DuW* X, Y)Z +n((DuyW*)(X,Y)Z)¢ = 0. (3.2)
From (1.1) it follows that

0 = _g((DUR)(X7 Y)Z7 V) +

s {(PUS) (Y. Z)g(X.V)

~ (DUS)(X, 2)g(Y,V) + (DyS)(X, V)g(¥, 2)
~ (DuS)(Y,V)g(X, 2)} + n((DuR)(X, V) Z)n(V)
~ S DY () — (DuS)(X. ()

+ g(Y, Z)(DuS)(X,€) — 9(X, Z)(DuS)(Y, &) in(V). (3.3)
Putting X =V = ¢; in the equation (3.3), where {e;}, (i = 1,2, .....n) is an orthonormal
basis of the tangent space at each point of the manifold, and taking summation over 1,
we get

1
2(n—1)

0 = —(DyS)(Y,2)+

1
2(n—1)
1
2(n—1)
sy (PUS)Y.2) = (DuS)HZ. ()

+ 9(Y,2)(DyS)(&,€) — (DuS)(Y,E)n(2)}-

n(DyS)(Y, Z)

(DuS)(Y,Z) + dr(U)g(Y, 2)

1
2(n—1)
(DuS)(Y, 2) +n(DuR)(ei, Y)Z)n(ei)

Putting Z = £ in the above expression we obtain,

s (DuS)(Y,6) + 5 (V)

(3.4)
+ n((DuR)(e;, Y)€)n(ei) = 0.
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‘We know that

9((DuR)(ei,Y)§,€) = g(DuR(e;,Y)E,€) — g(R(Dyei, Y)E,€) 55
3.5

— g(R(es, DuY)§, €) — g(R(ei, Y)Dug, €)
at p € M". Since {e;} is an orthonormal basis, Dxe; = 0 at p. Using (2.7) we find

g(R(ei, DuY)§, &) = g(n(e))DyY —n(DuY)e;, §)

= n(ei)g(DuY, &) —n(DuY)g(e;, §) (3.6)
= 0.
Using (3.6) in (3.5) we have
9g((DuR)(ei, Y)E, &) = g(DuR(e;, Y)E, §) — g(R(ei, Y)Dug, §). (3.7)
Since
g(R(e;, Y)E, &) = —g(R(§,§)Y, ei) =0,
we get

In consequence of (3.8), the equation (3.7) becomes
g((DUR)(e’H Y)fa 5) = _g(R(e’Lv Y)é-a DU&) - g(R(el) Y)DU&, 5)

Using (2.6) in the above equation, we find

9((DuR)(ei,Y)E,€) = —g(R(ei, Y)EU) +n(U)g(R(e; Y)E,€)
— 9(R(e;, Y)U, &) +n(U)g(R(ei, Y)§, §)
= 0,

9((DuR)(e:,Y)§,€) = 0. (3.9)

By using (3.9) in the equation (3.4) we get

(DuS)(Y,€) =~ dr(U)n(Y). (310)
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Putting Y = £ in (3.10), we get dr(U) = 0.
This implies that r is constant.

So from (3.10), we obtain
(DUS)(Y7§) =0,

which implies that
SY,U)=(1-n)g(Y,U). (3.11)

Hence we can state the following:

Theorem 3.1 : If a Kenmotsu manifold is globally ¢-M-projectively symmetric, then
the manifold is an Einstein manifold.

Next suppose S(X,Y) = A\g(X,Y),

that is, the manifold is an Einstein manifold.

Then from (1.1) we have
(DyW*)(X,Y)Z = (DyR)(X,Y)Z.
Applying ¢? on both sides of the above equation we have
¢*(DuW*)(X,Y)Z) = ¢*((DuR)(X,Y)Z).

Hence we can state:

Theorem 3.2 : A globally ¢-M-projectively symmetric Kenmotsu manifold is globally
¢-symmetric.

Remakr 3.1 : Since a globally ¢ -symmetric Kenmotsu manifold is always a glob-
ally ¢-M-projectively symmetric manifold, from Theorem 3.2, we conclude that on a
Kenmotsu manifold, globally ¢-symmetry and globally ¢-M-projectively symmetry are

equivalent.

4. 3-Dimensional Locally ¢-M-Projectively Symmetric Kenmotsu Man-
ifolds
Definition 4.1 : A Kenmotsu manifold M™ is said to be locally ¢-M-projectively

symmetric if M-projective curvature tensor W* satisfies

& (DUW*)(X,Y)Z) =0, (4.1)



ON A TYPE OF M-PROJECTIVE CURVATURE TENSOR ON... 43

where X,Y, Z and U are horizontal vectors.

Using (2.11) and (2.12) in (1.1), in a 3-dimensional Kenmotsu manifold the M-

projective curvature tensor is
WHX.Y)Z = ("5)9(Y.2)X - g(X, 2)Y]

(™) 9(Y, Z)n(X)€ — 9(X, Z)n(Y )€ (4.2)
+ n(Y)n(Z)X = n(X)n(Z)Y].

Taking the covariant differentiation to the both sides of the equation (4.2), we have

oowx )z = PO z)x - gx 2]

— LAY, 2n(X)E — g(X, 2)n(Y )¢
+ n(YV)n(Z2)X —n(X)n(2)Y]

— B gy, 2) (Do) (X)€ + o(Y, Z)n(X) Do

- 9(X, Z)(Dun)(Y)E — 9(X, Z)n(Y)Dué + (Dun)(Y)n(2)X
+ n(Y)(Dun)(Z2)X — (Dun)(X)n(Z2)Y
— n(X)(Dyn)(2)Y]. (4.3)

Now assume that X, Y and Z are horizontal vector fields. So the equation (4.3) becomes

owx vz = P z)x - gx. 2]
~ CER (v, 2)(Dun) (X

- 9(X, Z2)(Dyn)(Y)E]. (4.4)

Applying ¢? on both sides of (4.4) and making use of (2.1), we obtain

(e x,)2) =~ gy 7)x — gx, 2)7) (4.5

Hence we can state the following:
Theorem 4.1 : A 3-dimensional Kenmotsu manifold is locally ¢-M-projectively sym-

metric if and only if the scalar curvature r is constant.
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5. £&-M-Projectively Flat Kenmotsu Manifolds

From (1.1), we obtain

RX.Y)E = gip{S(nOX —S(X.&Y

(5.1)
+ 9 QX —g(X,§QY}.
Using (2.7), (2.8) in (5.1), we get
n(Y)QX —n(X)QY + (n— 1){n(Y)X —n(X)Y} =0. (5-2)
Putting Y = ¢ in (5.2) and using (2.3), we have
QX = —(n— 1)X. (5.3)
Taking inner product with U of (5.3) yields
S(X,U) = —(n — 1)g(X, U), (5.4)

From relation (5.4), we conclude that the manifold is an Einstein manifold.
Conversely , we assume that an n-dimensional Kenmotsu manifold satisfies (5.4). Then

we easily obtain from (1.1) that
W*(X,Y)¢ = 0.

In view of the above discussions we state the following:
Theorem 5.1 : An n-dimensional Kenmotsu manifold is &-M-projectively flat if and

only if it is an Einstein manifold.

6. ¢-M-Projectively Flat Kenmotsu Manifolds

In an n-dimensional almost contact metric manifold, if {ey,....... en—1,&} is a local or-
thonormal basis of the tangent space of the manifold, then {¢e1, .....¢e,—1,&} is also a
local orthonormal basis . It is easy to verify that

n—1

> 9(R(gei, ¢Y)$Z, dei) = S(4Y, 6Z) + g(8Y, ¢ 2), (6.1)

=1

n—1

ZS(gbei,gZ)ei) =r—n+1, (6.2)

i=1
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nf g(dei, 92)S(8Y, ¢e;) = S(8Y, 02), (6.3)

- n—1
Zg(qﬁei,(ﬁei) =n—1, (6.4)

and o -
; g(gei, $Z)g(4Y, dei) = g(oY, 62). (6.5)

Then we have from (1.1) that

ROX.0Y.0Z.00) = 5o S(0Y.02)0(6X. 00)
— S(0X,0Z)g(¢Y, 0U) + g(¢Y, ¢Z)S(¢ X, 9U)
— 9(0X,90Z)S(¢Y, ¢U)}. (6.6)
Let {e1,e2,.....,en—_1,&} be a local orthonormal basis of the tangent space of the mani-
fold. Then {¢e1, peq, ...., pe,—1,£} is also a local orthonormal basis of the tangent space.

Putting X = U = ¢; in (6.6) and summing up from 1 to (n-1) we have,
n—1 1 n—1

> {'R(gei, oY, 0Z, pe;)} = 5D > [S(6Y, 62)g(¢es, de:)

i=1 i=1

= S(¢ei, 0Z)g(dY, ¢ei)

+ 99y, gbZ)S(QSGZ, ¢el)

(
— g(dei, pZ)S(dY, pei)]. (6.7)

Using (6.1), (6.2), (6.3) and (6.4) in (6.7), we obtain

r—3n+3
n—+1

Replacing Y and Z by ¢Y and ¢Z in (6.8) and using (2.1) we have

S(¢Y,9Z) = ( )9(¢Y, ¢Z). (6.8)

r—3n —r —n?+3n—
s,2) = () + (T vz, (69)

n+1
Putting Y = Z = ¢; in (6.9) and taking summation over i,1 < i < n we get by using
(6.4) that

r=—(2n® —3n+1). (6.10)

In view of the above discussions we have the following:
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Proposition 6.1 : An n-dimensional ¢-M-projectively flat Kenmotsu manifold is an

7- Einstein manifold with constant curvature.

7. Harmonic M-Projective Curvature Tensor on Kenmotsu Manifolds
Let us assume that £ is a killing vector, then S and r remain invariant under it,
ie.,

LeS=0 (7.1)

and
L{’I“ = O, (72)

where L denotes Lie derivation.

Definition 7.1 : The Riemannian curvature tensor R is harmonic if
(divR)(X,Y,Z) = 0. (7.3)

Definition 7.2 : A Riemannian manifold M™ is of harmonic M-projective curvature
tensor if
(divW*)(X,Y,Z) = 0. (7.4)

In a Kenmotsu manifold it is known [6] that

(diW*)(X,Y.Z) = giiyl@n—3){(DxS)(Y.Z) — (DyS)(X, Z)}

(7.5)
— gldr(X)g(Y,2) — dr(Y)g(X. 2)}].
Theorem 7.1 : If a Kenmotsu manifold is of harmonic M-projective curvature tensor
and & is killing vector, then the manifold is an 7 -Einstein manifold.
Proof : Let M™ be a Kenmotsu manifold that satisfies divW* =0 .

Then from the equation (7.5) we have

(DXS)(Y.2) = (Dy$)(X.2) = gssldr (X)g(¥. 2) = dr(V)o(X. 2. (76)
From (7.1), it follows that
(DeS)(Y, Z) = ~S(Dy&, Z) — S(Y, D) (7.7)

and from (7.2), we get dr(£) = 0. Putting X = £ in (7.6), we obtain
(DeS)(V.2) = (DyS)(€.2) = i[9 2)dr(E)

— n(Z)dr(Y)].
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Making use of (7.7) in (7.8), we have

~S(Dy¢€,2) = S(Y,Dz€) — (DyS)(&,Z) = gmylo(Y, Z)dr(€)

— n(Z)dr(Y)].
In consequence of dr(£) = 0 , the above equation assume the form

1

—S(Y,Dz¢) — DyS(¢,2) + S(¢, Dy Z) = “202n—3)"

(Z)dr(Y).
Using (2.6) and (2.9) in the above, we have

—S(Y, Z) + (n = 1)g(¥, Z) = 2(n = \)n(Y)n(2)

= — @y (Z)dr(Y).

Replacing Z by ¢Z in the above equation, we get

S(Y.67) = (n — 1)g(Y,62).

Again replacing Y by ¢Y and using (2.4) and (2.10) the above equation gives

S(Y,Z) = (n—=1)g(Y, Z) = 2(n — )n(Y)n(Z),

i.e., the manifold is an n-Einstein manifold.
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(7.10)

(7.11)

(7.12)

8. Example of a Locally ¢-M-Projectively Symmetric Kenmotsu Man-

ifold in 3-Dimension

Example 8.1 : We consider the 3-dimensional manifold M3 = {(z,y,2) € R3,z # 0},

where (1,7, z) are standard co-ordinate of R .

The vector fields

e1 = Z%,GQ = za%,eg = —z%

are linearly independent at each point of M3.

Let g be the Riemannian meric defined by

gle1,e3) = gle1, e2) = g(ez, e3) =0,

gler,e1) = glez, e2) = gles, e3) = 1.

Let 1 be the 1-form defined by n(Z) = g(Z, e3) for any Z € TM™ .
Let ¢ be the (1,1) tensor field defined by
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p(e1) = —e2,d(e2) = e1,¢(e3) = 0.
Then using the linearity of ¢ and g , we have

n(es) =1,

$*Z = —Z +1(Z)es,

9(dZ, oW) = g(Z, W) — n(Z)n(W),

for any Z,W € TM". Then for e3 = £ , the structure (¢,&,7,g) defines an almost
contact metric structure on M?3.

Let D be the Levi-Civita connection with respect to metric g. Then we have

le1,e3] = ere3 —eseq
0 0 0 0
= Z%(—Z&) - (—35)(2%)
_ 0 42 0 . L9
N 0x0z 0z0x ox
= e1. (8.1)

Similarly, [e1,e2] = 0 and [eg, e3] = €2 .

The Riemannian connection D of the metric g is given by

29(DxY,Z) = X9V, Z)+Yg(Z,X)—-Zg(X,Y)

(8.2)
- g(Xa D/v Z]) - g(}/a [Xa ZD + g(Z7 [X7 Y])?
which is known as Koszul’s formula. Using (7.2) we have
29(De,e3,e1) = —2g(e1, —e1)
(8.3)
= 2g(e1,eq).
Again by (8.2), we have
29(De,e3,e2) = 0 =2g(ey,e2) (8.4)

and

29(De, e3,e3) = 0 = 2g(ey, e3). (8.5)
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From (8.3), (8.4) and (8.5), we obtain
2g(De, e3,X) = 2g(e1, X), (8.6)
for all X € TM™. Thus D, e3 = e;. Therefore, (8.2) further yields
De ez = e1, Deye2 =0, De,e1 = —es,
De,e3 = ez, De,e2 = €3, Deye1 = 0,
D.,e3 =0,Depea =0, Dege; = 0. (8.7)

From the above it follows that the manifold satisfies

Dx&=X —(X)¢, for € =5 .

Hence the manifold is a Kenmotsu manifold.

Remark 8.1 : In [9] the authors have shown that the above example shows that a 3-
dimensional Kenmotsu manifold is locally ¢-concircularly symmetric iff the scalar curva-

ture r is constant. Similarly we can show that the above example supports Theorem 4.1.
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