International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 37-49

ON A TYPE OF M-PROJECTIVE CURVATURE TENSOR ON KENMOTSU MANIFOLDS

M. SAROJA DEVI \& JAY PRAKASH SINGH
1,2 Department of Mathematics and Computer Science, Mizoram University, Tanhril, Aizawl-796004, India
E-mail: ${ }^{1}$ devi_saroja@rediffmail.com, ${ }^{2}$ jpsmaths@gmail.com

Abstract

The object of the present paper is to study the properties of M-projective curvature tensor on Kenmotsu manifolds. It has been shown that globally ϕ - M-projectively symmetric Kenmotsu manifold is an Einstein manifold.

1. Introduction

The study of odd dimensional manifolds with contact and almost contact structures was initiated by Boothby and Wong [5] in 1958 rather from topological point of view. Sasaki and Hatakeyama [7] re-investigated them using tensor calculus in 1961. In [8], Tanno classified connected almost contact metric manifolds whose automorphism groups possesses the maximum dimension. For such a manifold M^{n}, the sectional

Key Words and Phrases : Globally $\phi-M$-projectively symmetric, Harmonic M-projective curvature tensor, Kenmotsu manifolds, Locally $\phi-M$-projectively symmetric, M-projective curvature tensor, $\xi-M-$ projectively flat.
2010 AMS Subject Classification : 53B05, 53C25, 53D10.
© http: //www.ascent-journals.com
curvature of plane sections containing ξ is a constant, say c. If $c>0, M^{n}$ is homogeneous Sasakian manifold of constant sectional curvature. If $c=0, M^{n}$ is the product of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature. If $c<0, M^{n}$ is a warped product space $\mathbf{R} \times{ }_{f} \mathbf{C}^{n}$. In 1971, Kenmotsu studied a class of contact Riemannian manifolds satisfying some special conditions [4]. We call it Kenmotsu manifold.
The M-projective curvature tensor is defined by [3]

$$
\begin{align*}
W^{*}(X, Y) Z & =R(X, Y) Z-\frac{1}{2(n-1)}\{S(Y, Z) X \tag{1.1}\\
& -S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y\}
\end{align*}
$$

where R, S and Q are the Riemannian curvature tensor of type (1,3), the Ricci tensor of type $(0,2)$ and the Ricci operator defined by $g(Q X, Y)=S(X, Y)$ respectively.
Definition 1.1: An n-dimensional Kenmotsu manifold is said to be ξ - M-projectively flat if $W^{*}(X, Y) \xi=0$, where $X, Y \in T M^{n}$.

Definition 1.2: An n-dimensional Kenmotsu manifold is said to be ϕ - M-projectively flat if $W^{*}(\phi X, \phi Y, \phi Z, \phi U)=0$, where $X, Y, Z, U \in T M^{n}$.
The paper is organized as follows. After preliminaries in section 2, in section 3 we consider globally ϕ - M-projectively symmetric Kenmotsu manifolds. Section 4 deals with 3 -dimensional locally ϕ - M-projectively symmetric Kenmotsu manifolds. In section 5, we prove that an n-dimensional Kenmotsu manifold is ξ - M-projectively flat if and only if it is an Einstein manifold. In section 6, we show that an n-dimensional ϕ - M-projectively flat Kenmotsu manifold is an η-Einstein manifold. In section 7, we prove that a Kenmotsu manifold of harmonic M-projective curvature tensor with killing vector ξ is an η-Einstein manifold. Finally, an example of 3-dimensional Kenmotsu manifold is given.

2. Preliminaries

Let ($M^{n}, \phi, \xi, \eta, g$) be an n-dimensional (where $\mathrm{n}=2 \mathrm{~m}+1$) almost contact metric manifold, where ϕ is a $(1,1)$ - tensor field, ξ is the structure vector field, η is a 1 -form and g is the Riemannian metric. It is well known that the (ϕ, ξ, η, g) structure satisfies the conditions [2]

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \tag{2.1}\\
g(X, \xi)=\eta(X), \tag{2.2}
\end{gather*}
$$

$$
\begin{gather*}
\phi \xi=0, \quad \eta \phi=0, \quad \eta(\xi)=1, \tag{2.3}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2.4}
\end{gather*}
$$

for any vector fields X and Y on M^{n}.
If moreover

$$
\begin{gather*}
\left(D_{X} \phi\right)(Y)=-g(X, \phi Y) \xi-\eta(Y) \phi X, \tag{2.5}\\
D_{X} \xi=X-\eta(X) \xi, \tag{2.6}
\end{gather*}
$$

where D is the Riemannian connection, then $\left(M^{n}, \phi, \xi, \eta, g\right)$ is called a Kenmotsu manifold. It is well known [4] that

$$
\begin{gather*}
R(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{2.7}\\
S(X, \xi)=-(n-1) \eta(X), \tag{2.8}\\
\left(D_{X} \eta\right) Y=g(X, Y)-\eta(X) \eta(Y), \tag{2.9}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) . \tag{2.10}
\end{gather*}
$$

A Kenmotsu manifold M^{n} is said to be η-Einstein if the Ricci tensor S is of the form [1]

$$
S(X, Y)=\lambda_{1} g(X, Y)+\lambda_{2} \eta(X) \eta(Y),
$$

for any vetor fields X and Y, where λ_{1} and λ_{2} are functions on M^{n}. If $\lambda_{2}=0$, then η-Einstein manifold becomes Einstein manifold.
From [10], we know that for a 3 -dimensional Kenmotsu manifold

$$
\begin{align*}
R(X, Y) Z & =\frac{(r+4)}{2}[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{(r+6)}{2}[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \tag{2.11}\\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y], \\
S(X, Y)= & \frac{1}{2}[(r+2) g(X, Y)-(r+6) \eta(X) \eta(Y)], \tag{2.12}
\end{align*}
$$

where r is the scalar curvature of the manifold.

3. Globally ϕ - M-Projectively Symmetric Kenmotsu Manifolds

Definition 3.1: A Kenmotsu manifold M^{n} is said to be globally ϕ - M-projectively symmetric if M-projective curvature tensor W^{*} satisfies

$$
\begin{equation*}
\phi^{2}\left(\left(D_{U} W^{*}\right)(X, Y) Z\right)=0, \tag{3.1}
\end{equation*}
$$

for all vector fields $X, Y, Z, U \in T M^{n}$.
Let us suppose that M^{n} is a globally ϕ - M-projectively symmetric Kenmotsu manifold. Then the equation (3.1) is satisfied.
Now using (2.1) in the equation (3.1), we get

$$
\begin{equation*}
-\left(D_{U} W^{*}\right)(X, Y) Z+\eta\left(\left(D_{U} W^{*}\right)(X, Y) Z\right) \xi=0 \tag{3.2}
\end{equation*}
$$

From (1.1) it follows that

$$
\begin{align*}
0 & =-g\left(\left(D_{U} R\right)(X, Y) Z, V\right)+\frac{1}{2(n-1)}\left\{\left(D_{U} S\right)(Y, Z) g(X, V)\right. \\
& -\left(D_{U} S\right)(X, Z) g(Y, V)+\left(D_{U} S\right)(X, V) g(Y, Z) \\
& \left.-\left(D_{U} S\right)(Y, V) g(X, Z)\right\}+\eta\left(\left(D_{U} R\right)(X, Y) Z\right) \eta(V) \\
& -\frac{1}{2(n-1)}\left\{\left(D_{U} S\right)(Y, Z) \eta(X)-\left(D_{U} S\right)(X, Z) \eta(Y)\right. \\
& \left.+g(Y, Z)\left(D_{U} S\right)(X, \xi)-g(X, Z)\left(D_{U} S\right)(Y, \xi)\right\} \eta(V) . \tag{3.3}
\end{align*}
$$

Putting $X=V=e_{i}$ in the equation (3.3), where $\left\{e_{i}\right\},(i=1,2, \ldots . . n)$ is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over i, we get

$$
\begin{aligned}
0 & =-\left(D_{U} S\right)(Y, Z)+\frac{1}{2(n-1)} n\left(D_{U} S\right)(Y, Z) \\
& -\frac{1}{2(n-1)}\left(D_{U} S\right)(Y, Z)+\frac{1}{2(n-1)} d r(U) g(Y, Z) \\
& -\frac{1}{2(n-1)}\left(D_{U} S\right)(Y, Z)+\eta\left(\left(D_{U} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right) \\
& -\frac{1}{2(n-1)}\left\{\left(D_{U} S\right)(Y, Z)-\left(D_{U} S\right)(Z, \xi) \eta(Y)\right. \\
& \left.+g(Y, Z)\left(D_{U} S\right)(\xi, \xi)-\left(D_{U} S\right)(Y, \xi) \eta(Z)\right\} .
\end{aligned}
$$

Putting $Z=\xi$ in the above expression we obtain,

$$
\begin{align*}
& -\frac{n}{2(n-1)}\left(D_{U} S\right)(Y, \xi)+\frac{d r(U)}{2(n-1)} \eta(Y) \tag{3.4}\\
& +\quad \eta\left(\left(D_{U} R\right)\left(e_{i}, Y\right) \xi\right) \eta\left(e_{i}\right)=0 .
\end{align*}
$$

We know that

$$
\begin{align*}
g\left(\left(D_{U} R\right)\left(e_{i}, Y\right) \xi, \xi\right) & =g\left(D_{U} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(D_{U} e_{i}, Y\right) \xi, \xi\right) \tag{3.5}\\
& -g\left(R\left(e_{i}, D_{U} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) D_{U} \xi, \xi\right)
\end{align*}
$$

at $p \in M^{n}$. Since $\left\{e_{i}\right\}$ is an orthonormal basis, $D_{X} e_{i}=0$ at p. Using (2.7) we find

$$
\begin{align*}
g\left(R\left(e_{i}, D_{U} Y\right) \xi, \xi\right) & =g\left(\eta\left(e_{i}\right) D_{U} Y-\eta\left(D_{U} Y\right) e_{i}, \xi\right) \\
& =\eta\left(e_{i}\right) g\left(D_{U} Y, \xi\right)-\eta\left(D_{U} Y\right) g\left(e_{i}, \xi\right) \tag{3.6}\\
& =0
\end{align*}
$$

Using (3.6) in (3.5) we have

$$
\begin{equation*}
g\left(\left(D_{U} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(D_{U} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) D_{U} \xi, \xi\right) \tag{3.7}
\end{equation*}
$$

Since

$$
g\left(R\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R(\xi, \xi) Y, e_{i}\right)=0
$$

we get

$$
\begin{equation*}
g\left(D_{U} R\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R\left(e_{i}, Y\right) \xi, D_{U} \xi\right)=0 \tag{3.8}
\end{equation*}
$$

In consequence of (3.8), the equation (3.7) becomes

$$
g\left(\left(D_{U} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R\left(e_{i}, Y\right) \xi, D_{U} \xi\right)-g\left(R\left(e_{i}, Y\right) D_{U} \xi, \xi\right)
$$

Using (2.6) in the above equation, we find

$$
\begin{aligned}
g\left(\left(D_{U} R\right)\left(e_{i}, Y\right) \xi, \xi\right) & =-g\left(R\left(e_{i}, Y\right) \xi, U\right)+\eta(U) g\left(R\left(e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, Y\right) U, \xi\right)+\eta(U) g\left(R\left(e_{i}, Y\right) \xi, \xi\right) \\
& =0,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
g\left(\left(D_{U} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=0 \tag{3.9}
\end{equation*}
$$

By using (3.9) in the equation (3.4) we get

$$
\begin{equation*}
\left(D_{U} S\right)(Y, \xi)=\frac{1}{n} d r(U) \eta(Y) \tag{3.10}
\end{equation*}
$$

Putting $Y=\xi$ in (3.10), we get $d r(U)=0$.
This implies that r is constant.
So from (3.10), we obtain

$$
\left(D_{U} S\right)(Y, \xi)=0,
$$

which implies that

$$
\begin{equation*}
S(Y, U)=(1-n) g(Y, U) \tag{3.11}
\end{equation*}
$$

Hence we can state the following:
Theorem 3.1 : If a Kenmotsu manifold is globally ϕ - M-projectively symmetric, then the manifold is an Einstein manifold.
Next suppose $S(X, Y)=\lambda g(X, Y)$,
that is, the manifold is an Einstein manifold.
Then from (1.1) we have

$$
\left(D_{U} W^{*}\right)(X, Y) Z=\left(D_{U} R\right)(X, Y) Z
$$

Applying ϕ^{2} on both sides of the above equation we have

$$
\phi^{2}\left(\left(D_{U} W^{*}\right)(X, Y) Z\right)=\phi^{2}\left(\left(D_{U} R\right)(X, Y) Z\right)
$$

Hence we can state:
Theorem 3.2 : A globally ϕ - M-projectively symmetric Kenmotsu manifold is globally ϕ-symmetric.
Remakr 3.1 : Since a globally ϕ-symmetric Kenmotsu manifold is always a globally ϕ - M-projectively symmetric manifold, from Theorem 3.2 , we conclude that on a Kenmotsu manifold, globally ϕ-symmetry and globally ϕ - M-projectively symmetry are equivalent.

4. 3-Dimensional Locally ϕ - M-Projectively Symmetric Kenmotsu Man-

 ifoldsDefinition 4.1 : A Kenmotsu manifold M^{n} is said to be locally ϕ - M-projectively symmetric if M-projective curvature tensor W^{*} satisfies

$$
\begin{equation*}
\phi^{2}\left(\left(D_{U} W^{*}\right)(X, Y) Z\right)=0, \tag{4.1}
\end{equation*}
$$

where X, Y, Z and U are horizontal vectors.
Using (2.11) and (2.12) in (1.1), in a 3-dimensional Kenmotsu manifold the M projective curvature tensor is

$$
\begin{align*}
W^{*}(X, Y) Z & =\left(\frac{r+6}{4}\right)[g(Y, Z) X-g(X, Z) Y] \\
& -\left(\frac{3 r+18}{8}\right)[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \tag{4.2}\\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y]
\end{align*}
$$

Taking the covariant differentiation to the both sides of the equation (4.2), we have

$$
\begin{align*}
\left(D_{U} W^{*}\right)(X, Y) Z & =\frac{d r(U)}{4}[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{3}{8} d r(U)[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] \\
& -\left(\frac{3 r+18}{8}\right)\left[g(Y, Z)\left(D_{U} \eta\right)(X) \xi+g(Y, Z) \eta(X) D_{U} \xi\right. \\
& -g(X, Z)\left(D_{U} \eta\right)(Y) \xi-g(X, Z) \eta(Y) D_{U} \xi+\left(D_{U} \eta\right)(Y) \eta(Z) X \\
& +\eta(Y)\left(D_{U} \eta\right)(Z) X-\left(D_{U} \eta\right)(X) \eta(Z) Y \\
& \left.-\eta(X)\left(D_{U} \eta\right)(Z) Y\right] \tag{4.3}
\end{align*}
$$

Now assume that X, Y and Z are horizontal vector fields. So the equation (4.3) becomes

$$
\begin{align*}
\left(D_{U} W^{*}\right)(X, Y) Z & =\frac{d r(U)}{4}[g(Y, Z) X-g(X, Z) Y] \\
& -\left(\frac{3 r+18}{8}\right)\left[g(Y, Z)\left(D_{U} \eta\right)(X) \xi\right. \\
& \left.-g(X, Z)\left(D_{U} \eta\right)(Y) \xi\right] \tag{4.4}
\end{align*}
$$

Applying ϕ^{2} on both sides of (4.4) and making use of (2.1), we obtain

$$
\begin{equation*}
\phi^{2}\left(\left(D_{U} W^{*}\right)(X, Y) Z\right)=-\frac{d r(U)}{4}[g(Y, Z) X-g(X, Z) Y] \tag{4.5}
\end{equation*}
$$

Hence we can state the following:
Theorem 4.1 : A 3-dimensional Kenmotsu manifold is locally ϕ - M-projectively symmetric if and only if the scalar curvature r is constant.

5. $\xi-M$-Projectively Flat Kenmotsu Manifolds

From (1.1), we obtain

$$
\begin{align*}
R(X, Y) \xi & =\frac{1}{2(n-1)}\{S(Y, \xi) X-S(X, \xi) Y \tag{5.1}\\
& +g(Y, \xi) Q X-g(X, \xi) Q Y\}
\end{align*}
$$

Using (2.7), (2.8) in (5.1), we get

$$
\begin{equation*}
\eta(Y) Q X-\eta(X) Q Y+(n-1)\{\eta(Y) X-\eta(X) Y\}=0 . \tag{5.2}
\end{equation*}
$$

Putting $Y=\xi$ in (5.2) and using (2.3), we have

$$
\begin{equation*}
Q X=-(n-1) X \tag{5.3}
\end{equation*}
$$

Taking inner product with U of (5.3) yields

$$
\begin{equation*}
S(X, U)=-(n-1) g(X, U) \tag{5.4}
\end{equation*}
$$

From relation (5.4), we conclude that the manifold is an Einstein manifold.
Conversely, we assume that an n-dimensional Kenmotsu manifold satisfies (5.4). Then we easily obtain from (1.1) that

$$
W^{*}(X, Y) \xi=0 .
$$

In view of the above discussions we state the following:
Theorem 5.1 : An n-dimensional Kenmotsu manifold is ξ - M-projectively flat if and only if it is an Einstein manifold.

6. ϕ - M-Projectively Flat Kenmotsu Manifolds

In an n-dimensional almost contact metric manifold, if $\left\{e_{1}, \ldots \ldots . . e_{n-1}, \xi\right\}$ is a local orthonormal basis of the tangent space of the manifold, then $\left\{\phi e_{1}, \ldots . . \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis. It is easy to verify that

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)=S(\phi Y, \phi Z)+g(\phi Y, \phi Z), \tag{6.1}\\
\sum_{i=1}^{n-1} S\left(\phi e_{i}, \phi e_{i}\right)=r-n+1 \tag{6.2}
\end{gather*}
$$

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) S\left(\phi Y, \phi e_{i}\right)=S(\phi Y, \phi Z) \tag{6.3}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)=n-1 \tag{6.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)=g(\phi Y, \phi Z) \tag{6.5}
\end{equation*}
$$

Then we have from (1.1) that

$$
\begin{align*}
{ }^{\prime} R(\phi X, \phi Y, \phi Z, \phi U) & =\frac{1}{2(n-1)}\{S(\phi Y, \phi Z) g(\phi X, \phi U) \\
& -S(\phi X, \phi Z) g(\phi Y, \phi U)+g(\phi Y, \phi Z) S(\phi X, \phi U) \\
& -g(\phi X, \phi Z) S(\phi Y, \phi U)\} \tag{6.6}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots ., e_{n-1}, \xi\right\}$ be a local orthonormal basis of the tangent space of the manifold. Then $\left\{\phi e_{1}, \phi e_{2}, \ldots, \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis of the tangent space. Putting $X=U=e_{i}$ in (6.6) and summing up from 1 to (n-1) we have,

$$
\begin{align*}
\sum_{i=1}^{n-1}\left\{^{\prime} R\left(\phi e_{i}, \phi Y, \phi Z, \phi e_{i}\right)\right\} & =\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left[S(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)\right. \\
& -S\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right) \\
& +g(\phi Y, \phi Z) S\left(\phi e_{i}, \phi e_{i}\right) \\
& \left.-g\left(\phi e_{i}, \phi Z\right) S\left(\phi Y, \phi e_{i}\right)\right] \tag{6.7}
\end{align*}
$$

Using (6.1), (6.2), (6.3) and (6.4) in (6.7), we obtain

$$
\begin{equation*}
S(\phi Y, \phi Z)=\left(\frac{r-3 n+3}{n+1}\right) g(\phi Y, \phi Z) \tag{6.8}
\end{equation*}
$$

Replacing Y and Z by ϕY and ϕZ in (6.8) and using (2.1) we have

$$
\begin{equation*}
S(Y, Z)=\left(\frac{r-3 n+3}{n+1}\right) g(Y, Z)+\left(\frac{-r-n^{2}+3 n-2}{n+1}\right) \eta(Y) \eta(Z) \tag{6.9}
\end{equation*}
$$

Putting $Y=Z=e_{i}$ in (6.9) and taking summation over $i, 1 \leq i \leq n$ we get by using (6.4) that

$$
\begin{equation*}
r=-\left(2 n^{2}-3 n+1\right) \tag{6.10}
\end{equation*}
$$

In view of the above discussions we have the following:

Proposition 6.1 : An n-dimensional $\phi-M$-projectively flat Kenmotsu manifold is an η - Einstein manifold with constant curvature.

7. Harmonic M-Projective Curvature Tensor on Kenmotsu Manifolds

Let us assume that ξ is a killing vector, then S and r remain invariant under it, i.e.,

$$
\begin{equation*}
L_{\xi} S=0 \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\xi} r=0, \tag{7.2}
\end{equation*}
$$

where L denotes Lie derivation.
Definition 7.1: The Riemannian curvature tensor R is harmonic if

$$
\begin{equation*}
(\operatorname{div} R)(X, Y, Z)=0 . \tag{7.3}
\end{equation*}
$$

Definition 7.2: A Riemannian manifold M^{n} is of harmonic M-projective curvature tensor if

$$
\begin{equation*}
\left(\operatorname{div} W^{*}\right)(X, Y, Z)=0 . \tag{7.4}
\end{equation*}
$$

In a Kenmotsu manifold it is known [6] that

$$
\begin{align*}
\left(\operatorname{div} W^{*}\right)(X, Y, Z) & =\frac{1}{2(n-1)}\left[(2 n-3)\left\{\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z)\right\}\right. \tag{7.5}\\
& \left.-\frac{1}{2}\{d r(X) g(Y, Z)-d r(Y) g(X, Z)\}\right]
\end{align*}
$$

Theorem 7.1: If a Kenmotsu manifold is of harmonic M-projective curvature tensor and ξ is killing vector, then the manifold is an η-Einstein manifold.
Proof: Let M^{n} be a Kenmotsu manifold that satisfies $\operatorname{div} W^{*}=0$.
Then from the equation (7.5) we have

$$
\begin{equation*}
\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z)=\frac{1}{2(2 n-3)}[d r(X) g(Y, Z)-d r(Y) g(X, Z)] \tag{7.6}
\end{equation*}
$$

From (7.1), it follows that

$$
\begin{equation*}
\left(D_{\xi} S\right)(Y, Z)=-S\left(D_{Y} \xi, Z\right)-S\left(Y, D_{Z} \xi\right) \tag{7.7}
\end{equation*}
$$

and from (7.2), we get $d r(\xi)=0$. Putting $X=\xi$ in (7.6), we obtain

$$
\begin{align*}
\left(D_{\xi} S\right)(Y, Z)-\left(D_{Y} S\right)(\xi, Z) & =\frac{1}{2(2 n-3)}[g(Y, Z) d r(\xi) \tag{7.8}\\
& -\eta(Z) d r(Y)] .
\end{align*}
$$

Making use of (7.7) in (7.8), we have

$$
\begin{align*}
-S\left(D_{Y} \xi, Z\right)-S\left(Y, D_{Z} \xi\right)-\left(D_{Y} S\right)(\xi, Z) & =\frac{1}{2(2 n-3)}[g(Y, Z) d r(\xi) \tag{7.9}\\
& -\eta(Z) d r(Y)]
\end{align*}
$$

In consequence of $d r(\xi)=0$, the above equation assume the form

$$
\begin{equation*}
-S\left(Y, D_{Z} \xi\right)-D_{Y} S(\xi, Z)+S\left(\xi, D_{Y} Z\right)=-\frac{1}{2(2 n-3)} \eta(Z) d r(Y) \tag{7.10}
\end{equation*}
$$

Using (2.6) and (2.9) in the above, we have

$$
\begin{align*}
& -S(Y, Z)+(n-1) g(Y, Z)-2(n-1) \eta(Y) \eta(Z) \\
& =-\frac{1}{2(2 n-3)} \eta(Z) d r(Y) \tag{7.11}
\end{align*}
$$

Replacing Z by ϕZ in the above equation, we get

$$
\begin{equation*}
S(Y, \phi Z)=(n-1) g(Y, \phi Z) \tag{7.12}
\end{equation*}
$$

Again replacing Y by ϕY and using (2.4) and (2.10) the above equation gives

$$
S(Y, Z)=(n-1) g(Y, Z)-2(n-1) \eta(Y) \eta(Z)
$$

i.e., the manifold is an η-Einstein manifold.

8. Example of a Locally ϕ - M-Projectively Symmetric Kenmotsu Manifold in 3-Dimension

Example 8.1 : We consider the 3-dimensional manifold $M^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^{3}.
The vector fields
$e_{1}=z \frac{\partial}{\partial x}, e_{2}=z \frac{\partial}{\partial y}, e_{3}=-z \frac{\partial}{\partial z}$
are linearly independent at each point of M^{3}.
Let g be the Riemannian meric defined by
$g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0$,
$g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1$.
Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in T M^{n}$.
Let ϕ be the $(1,1)$ tensor field defined by
$\phi\left(e_{1}\right)=-e_{2}, \phi\left(e_{2}\right)=e_{1}, \phi\left(e_{3}\right)=0$.
Then using the linearity of ϕ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1, \\
\phi^{2} Z=-Z+\eta(Z) e_{3}, \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W),
\end{gathered}
$$

for any $Z, W \in T M^{n}$. Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M^{3}.
Let D be the Levi-Civita connection with respect to metric g. Then we have

$$
\begin{align*}
{\left[e_{1}, e_{3}\right] } & =e_{1} e_{3}-e_{3} e_{1} \\
& =z \frac{\partial}{\partial x}\left(-z \frac{\partial}{\partial z}\right)-\left(-z \frac{\partial}{\partial z}\right)\left(z \frac{\partial}{\partial x}\right) \\
& =-z^{2} \frac{\partial^{2}}{\partial x \partial z}+z^{2} \frac{\partial^{2}}{\partial z \partial x}+z \frac{\partial}{\partial x} \\
& =e_{1} . \tag{8.1}
\end{align*}
$$

Similarly, $\left[e_{1}, e_{2}\right]=0$ and $\left[e_{2}, e_{3}\right]=e_{2}$.
The Riemannian connection D of the metric g is given by

$$
\begin{align*}
2 g\left(D_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) \tag{8.2}
\end{align*}
$$

which is known as Koszul's formula. Using (7.2) we have

$$
\begin{align*}
2 g\left(D_{e_{1}} e_{3}, e_{1}\right) & =-2 g\left(e_{1},-e_{1}\right) \\
& =2 g\left(e_{1}, e_{1}\right) \tag{8.3}
\end{align*}
$$

Again by (8.2), we have

$$
\begin{equation*}
2 g\left(D_{e_{1}} e_{3}, e_{2}\right)=0=2 g\left(e_{1}, e_{2}\right) \tag{8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g\left(D_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(e_{1}, e_{3}\right) \tag{8.5}
\end{equation*}
$$

From (8.3), (8.4) and (8.5), we obtain

$$
\begin{equation*}
2 g\left(D_{e_{1}} e_{3}, X\right)=2 g\left(e_{1}, X\right) \tag{8.6}
\end{equation*}
$$

for all $X \in T M^{n}$. Thus $D_{e_{1}} e_{3}=e_{1}$. Therefore, (8.2) further yields

$$
\begin{align*}
D_{e_{1}} e_{3} & =e_{1}, D_{e_{1}} e_{2}=0, D_{e_{1}} e_{1}=-e_{3} \\
D_{e_{2}} e_{3} & =e_{2}, D_{e_{2}} e_{2}=e_{3}, D_{e_{2}} e_{1}=0 \\
D_{e_{3}} e_{3} & =0, D_{e_{3}} e_{2}=0, D_{e_{3}} e_{1}=0 \tag{8.7}
\end{align*}
$$

From the above it follows that the manifold satisfies
$D_{X} \xi=X-\eta(X) \xi$, for $\xi=e_{3}$.
Hence the manifold is a Kenmotsu manifold.
Remark 8.1 : In [9] the authors have shown that the above example shows that a 3dimensional Kenmotsu manifold is locally ϕ-concircularly symmetric iff the scalar curvature r is constant. Similarly we can show that the above example supports Theorem 4.1.

References

[1] Yildiz A., De U. C. and Acet B. E., On Kenmotsu manifolds satisfying certain curvature conditions, SUT Journal of Mathematics, 45(2) (2009), 89-101.
[2] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Berlin-Heidelberg-New York, 509 (1976).
[3] Pokhariyal G. P., Mishra R. S., Curvature tensors and their relativistic significance II, Yoko. Math. Jour., 19(2) (1971), 97-103.
[4] Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(2)(1972), 93-103.
[5] Boothby M. M. and Wong R. C., On contact manifolds, Anna. Math., 68 (1958), 421-450.
[6] Chaubey S. K., On weakly M-projectively symmetric manifolds, Novi Sad J. Math., 42(1) (2012), 67-71.
[7] Sasaki S. and Hatakeyama Y., On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 13 (1961), 281-294.
[8] Tanno S., The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 2 (1969), 21-38.
[9] De U. C. and De Krishnendu, On ϕ-concircularly symmetric Kenmotsu manifolds, Thai Journal of mathematics, 10(1) (2012), 1-11.
[10] De U. C. and Pathak G., On 3-dimensional Kenmotsu manifold, Indian J. Pure Appl. Math., 35 (2004), 159-165.

